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Abstract
It is shown that the asymmetric deformation of the magnetic island caused by
the finite plasma viscosity gives a stabilizing effect on the magnetic islands in
the Rutherford regime. Such stabilization typically overcomes the destabilizing
effect of the ion polarization current.

1. Introduction

Magnetic islands associated with low m (poloidal mode number) helical modes often limits the
performance of a tokamak plasma and may lead to plasma disruptions. When a tearing mode
stability parameter �′ is negative, �′ < 0, so that the standard magnetohydrodynamic (MHD)
tearing modes are stable, magnetic islands modes can be excited by the perturbed bootstrap
current or by the external resonant magnetic perturbation due to the residual error fields. Both
types of modes are strongly detrimental for tokamak plasmas so that their avoidance is a crucial
issue for the reactor scale devices [1]. Experimental data indicate that only sufficiently large
initial magnetic perturbations grow to a larger amplitude so that there exists a threshold level
below which the magnetic islands do not grow. It was found [2–4] that the ion polarization
current may affect stability of a magnetic island in the Rutherford regime [5]. In particular, it
has been concluded that the ion polarization current may provide a stabilizing effect that leads
to a threshold for the magnetic islands excitation. The stabilizing effect of the ion polarization
current was used in early evaluations of the critical level of the error magnetic field [6–12].
It has also been suggested [13] that the ion polarization current provides a threshold for the
neoclassical tearing modes (NTM). Later, it has been realized [14] (see also [15,16]) however
that the ion polarization current is destabilizing for a typical situation of a magnetic island
driven by the external magnetic perturbation (and in neglect of the ion finite Larmor radius
(FLR) effects). A simple analysis shows [14] that with the destabilizing effect of the ion
polarization current there exists no threshold for the magnetic islands driven by the external
field. On the contrary, it appears that due to the destabilizing effect of the ion polarization
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current, any small initial perturbation in the Rutherford regime will be growing. Such a result
is in apparent contradiction with a number of experimental observations. In this paper we
re-examine the problem of the magnetic island interacting with a static external perturbation
such as an error field. We show that in a viscous plasma, there is an additional stabilizing factor
due to the shear plasma flow near the magnetic islands. Such a stabilizing effect occurs due to
the deformation of the magnetic island by the plasma flow. We note that such a deformation
has recently been studied theoretically [17,18]. It appears that experimental data [17,18] also
indicate asymmetric deformations of the magnetic island.

2. Basic equations

The helically symmetric perturbation is described by an auxiliary flux function ψ that contains
both the unperturbed sheared magnetic field and the perturbation

ψ = − x2

2Ls
B0 + ψ̃ cos ξ, (1)

where ξ = mθ̂ , x = r − rs is the distance from the corresponding rational surface, Ls = qR/S

is the shear length, S = rsq
′/q, qs is the safety factor at the rational surface. The helical

coordinate θ̂ is θ̂ = θ − ζ/qs, where qs ≡ q(rs) = m/n is the safety factor on the rational
surface, and θ, ζ are the poloidal and toroidal angles, respectively. Such a perturbation creates
a magnetic island with a half width w, w2 = 4ψ̃Ls/B0.

We consider the magnetic island dynamics within the one-fluid magnetohydrodynamic
model. The vorticity equation is

− c2

4πv2
A

d0

dt
∇2

⊥φ + ν
c2

4πv2
A

∇4
⊥φ + ∇‖J‖ = 0. (2)

Here v2
A = B2

0/4πn0mi is the Alfvén velocity, ∇‖ is the gradient along the total magnetic field,
J is the longitudinal current, and ν is the viscosity coefficient.

In the leading order, the relation between the electrostatic potential φ and the magnetic
flux function ψ can be found from the parallel component of Ohm’s law which gives

φ = F(ψ). (3)

The electric current found from (2) is used in the Ampere law giving
∞∫

−∞
dx

π∫
−π

dξJ (x, ξ) cos ξ = c

4
�′

cψ̃, (4)

∞∫
−∞

dx

π∫
−π

dξJ (x, ξ) sin ξ = c

4
�′

sψ̃. (5)

The �′
c and �′

s are respectively the cos ξ and sin ξ components of the general tearing stability
parameter. Examination of (4) and (5) shows that, in fact, equation (1) represents only a
zero-order approximation. More accurately, expression (1) has to be modified to account for
derivatives of ψ̃ :

ψ = − x2

2Ls
B0 + ψ̃

(
1 +

�′
c

2
|x|
)

cos

(
ξ − �′

s

2
|x|
)
. (6)

The term �′
c |x| /2 gives quasilinear corrections to the island growth [19]. As follows from

the momentum balance equation, in a viscous plasma the �′
s parameter is defined by the value
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of the velocity shear outside the magnetic islands. The term �′
s |x| /2 gives a finite phase shift

investigated in [17, 18].
Usually, a symmetric island perturbation is considered (as given by (1)), so that ψ̃ is even

in ξ , and φ̃ is also even in ξ . As a result the second term in (2) does not contribute to the cos
component of the parallel current, and the viscous term in (2) does not affect directly the island
stability in equation (4). When the magnetic island is deformed due to �′

s as in (6), there is a
component of φ̃ which is odd in ξ, then there is a finite contribution of the viscous term to the
cos component of J (x, ξ); thus there is an additional contribution to (4). Investigation of this
contribution is the subject of the present paper.

3. Plasma flow around the magnetic island

In the lowest order, the viscous term in (2) does not enter the equation for the longitudinal
current because of symmetry in ξ . However, the solubility condition for (2) allows one to
find a one-parametric family of the function F(ψ). Averaging equation (2) over the magnetic
surface, we obtain the following solubility condition [14]:〈∇4

⊥F(ψ)
〉 = 0. (7)

This equation, together with boundary conditions, may be used to completely determine the
velocity profile outside the magnetic island. For thin islands we can write

∇4
⊥F(ψ) 
 ∂4

∂x4
F(ψ) = ψx

∂2

∂ψ2

(
ψ3

x

∂2F(ψ)

∂ψ2

)
. (8)

Then equation (7) takes the form

∂2

∂ψ2

(∮
ψ3

x dξ
∂2F(ψ)

∂ψ2

)
= 0. (9)

Outside the magnetic separatrix we have two separate regions: (+) for x > 0 and (−) for
x < 0. The solubility condition can be integrated separately for both, giving

∂2F

∂ψ2
= −C

(±)
1

4ψ̃

1

λ3(k)
. (10)

Here, the function λ3(k) is determined by the relation∮
ψ3

x dξ = Ak
(

2
3 (2k

2 − 1)E(1/k) − 1
3 (k

2 − 1)K(1/k)
) ≡ Aλ3(k), (11)

where A is an unimportant constant, E and K are the elliptic integrals, and k is the magnetic
surface label introduced by the relation 2k2 − 1 = −ψ/ψ̃ .

Integrating (10) one more time, we obtain

∂F

∂ψ
= C1g(k), (12)

where

g(k) =
k∫

1

k dk

λ3(k)
. (13)

Constant C(±)
1 is determined from external boundary conditions.

We consider the simplest case of a static magnetic island created by a stationary error field
magnetic perturbation in a moving plasma. The plasma flow is zero at the magnetic separatrix
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and approaches the equilibrium value V0(x) away from the magnetic island. In the limit of
large x, we find from (12)

∂F

∂ψ
= sgn(x)C1

(
g∞ − 2

πk

)
+ O(

1

k2
), k � 1, (14)

where

g∞ =
∞∫

1

k dk

λ3(k)

 0.86.

By using the asymptotic form V → V
′

0x at x � w, we obtain from (14)

C1 = −V
′

0Ls

cg∞
. (15)

The velocity profile defined by equations (14) and (15) was also used in [14].

4. Effect of plasma inertia

Plasma inertia modifies the stability of magnetic islands via the ion polarization current. From
(2) we find

Jc = c3

4πv2
A

∂F

∂ψ

(
∇2

⊥φ̃ − 〈∇2
⊥φ̃〉

)
, (16)

or after using φ̃ 
 F(ψ) and ∇2
⊥ 
 ∂2/∂x2, we obtain [4]

Jc = c3

4πv2
A

2B0ψ̃

Ls

∂F

∂ψ

∂2F

∂ψ2
(cos ξ − 〈cos ξ〉) . (17)

For the velocity profile defined by (12) we obtain

�′
c + g2

V
′2

0 L2
s

v2
A

1

w
= 0, (18)

where the numerical coefficient

g2 = 16λ2

πg2∞
,

and λ2 is defined by

λ2 =
∞∫

1

K(1/k)

λ3(k)
g(k)

(〈
cos2 ξ

〉− 〈cos ξ〉2
)

dk 
 0.1.

Equation (18) was obtained in [14]. The last term in (18) indicates that the ion polarization
current is destabilizing for a static magnetic island in a moving plasma. Note that in this paper
we consider a nonrotating (locked) magnetic island in a surrounding plasma that is moving with
velocity V0. For magnetic islands rotating with frequency ω, equation (18) is modified with
the transformation V

′
0w → (ω − ωE) /kθ [11, 20], where ωE is the Doppler shift frequency

due to the equilibrium electric field, and kθ = m/rs. In the next section we consider how (18)
is modified taking into account the deformation of the magnetic island in a viscous plasma.



Stabilization of magnetic islands 1665

5. Effects of the viscous shear flow

5.1. Momentum balance equation

The sin ξ component of Ampere’s law corresponds to the poloidal component of the momentum
balance equation so that the �′

s parameter describes the momentum absorption at the rational
surface [21–23]. The island equilibrium equation (5) can also be derived by integrating the
current closure equation over dψ dξ .

By integration of (5) by parts, one obtains∫
∇‖J dψdξ = kθcψ̃

2

4Ls
�′

s. (19)

Integration of the viscous term gives∫
∇4

⊥φ dψ dξ = −4π
B2

0

L2
s

∂F

∂ψ

∣∣∣∣
x�w

= −4π
B2

0

L2
s

C1g∞. (20)

Then, the final momentum balance equation takes the form

�′
s = −64

νV ′
0L

2
s

kθv
2
Aw

4
, (21)

which is similar to the equation in [14]. This equation illustrates the fact that the viscous shear
flow forces a finite value of �′

s, thus making the magnetic surfaces asymmetric due to the
contribution of a sin ξ component to ψ .

5.2. Viscous shear layer

Near the separatrix the electrostatic potential is no longer a magnetic flux function resulting
in a finite value of the electric current along the magnetic field lines. The plasma inertia can
be neglected within such a viscous-resistive layer that is described by the equation

−ν
c2

4πv2
A

∇4
⊥φ − σ∇2

‖φ = 0. (22)

Near the separtrix we approximate x = w cos(ξ/2) so that

∂

∂x
= ψx

∂

∂ψ

 −B0

Ls
w cos

ξ

2

∂

∂ψ
. (23)

Then equation (22) takes the form

ε cos4 ξ

2
ψ̃4 ∂

4φ

∂ψ4
− cos

ξ

2

∂

∂ξ

(
cos

ξ

2

∂φ

∂ξ

)
= 0, (24)

where the small parameter ε is given by

ε =
(wc

w

)6
. (25)

The width of the viscous-resistive layer wc is defined by the expression

w6
c = 256νDm

L2
s

k2
θ v

2
A

, (26)

where Dm = c2/4πσ .
We look for the solution of (24) in the form

φ̂ = F(ψ)Y (ξ), (27)
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where the radial and angular functions satisfy the equations

ε ψ̃4 ∂
4F

∂ψ4
+ λ0F = 0, (28)

∂

∂ξ

(
cos

ξ

2

∂Y

∂ξ

)
+ λ0 cos3 ξ

2
Y = 0. (29)

The positive eigenvalue λ0 can be estimated from the variational form

λ0 =

π∫
−π

cos(ξ/2)(∂Y/∂ξ)2 dξ

π∫
−π

cos3(ξ/2)Y 2 dξ
. (30)

The general solution of equation (28) has the form

F = a1 cos(χ/
√

2) exp(−χ/
√

2) + a2 sin(χ/
√

2) exp(−χ/
√

2), (31)

where a new variable χ was introduced as

χ = ψ + ψ̃

ψ̃

(
λ0

ε

)1/4

. (32)

Expression (27) together with (28) and (29) describe the transition layer where the odd part
of the electrostatic potential φs decays to zero inside the magnetic island, so that F → 0
for χ � 1. The outer boundary condition can be obtained from the outer solution given by
equation (12). In the outer region

φ = F(ψ). (33)

We are interested only in the sin ξ component, so we use

ψ = − x2

2Ls
B0 + ψ̃ cos ξ + ψ̃

�′
s

2
|x| sin ξ. (34)

Assuming that �′
sw < 1, we obtain

∂φs

∂x
= ∂F (ψ)

∂ψ
ψ̃

�′
c

2
sin ξ +

∂2F(ψ)

∂ψ2
ψx

ψ̃�′
cx

2
sin ξ (35)

for the sin ξ component of the electrostatic potential. Then the outer boundary conditions at
the boundary of the transition layer are

φs|ψ=ψs
= 0, (36)

∂φs

∂x

∣∣∣∣
ψ=ψs

= − ∂2Fout(ψ)

∂ψ2

ψ̃�′
cψxx

2

∣∣∣∣∣
ψ=ψs

sin ξ. (37)

Note that the exact location of the outer boundary of the transition layer is not important; we
chose it to be ψ = ψs ≡ −ψ̃ or χ = 0. Then, the following are the boundary conditions
for F(χ):

F |χ=0 = 0, (38)

∂F

∂χ

∣∣∣∣
χ=0

= − ∂2Fout(ψ)

∂ψ2

(
ε

λ0

)1/4
ψ̃2�′

s

2

∣∣∣∣∣
ψ=ψs

, (39)

F |χ�1 = 0. (40)
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To match the outer solution with the transition layer, we take Y (ξ) in the form

Y (ξ) = cos
ξ

2
sin ξ. (41)

We use this expression also as a trial function to evaluate λ0 in (30).
Applying boundary conditions (38)–(40), we find

a1 = 0, (42)

a2√
2

= − ∂2Fout(ψ)

∂ψ2

(
ε

λ0

)1/4
ψ̃2�′

sw

2

∣∣∣∣∣
ψ=ψs

. (43)

The electric current within the viscous-resistive layer is found from Ohm’s law

J = −σ∇‖φ = −σ
kθ

B0
ψx

∂φ̂

∂ξ
. (44)

Using (44) and (27) in (4), we have

c�′
cψ̃

4
=
∫

J‖ cos ξ dx dξ = −4σ
kθ

B0

(
ε

λ0

)1/4

R0G0, (45)

where

R0 =
π∫

0

cos ξ
∂

∂ξ
Y (ξ) dξ = 16

15
,

G0 =
∞∫

0

F(χ) dχ = a2√
2
.

Finally we obtain

R0

l3
C1σ

kθ

8Ls

(
ε

λ0

)1/2 �′
sw

3

2
= c�′

c

4
, (46)

where l3 = λ3(1) = 2/3.
By using the momentum balance (21) for �′

s in (46), we obtain the island width equation

g3

(
ε

λ0

)1/2
ν

Dm

V
′2

0 L2
s

v2
A

1

w
= �′

c, (47)

where

g3 = 8R0

πl3g∞

 4.74.

The left-hand side of this equation is positive, which means that the sheared plasma flow
in a viscous plasma provides a stabilizing effect on the magnetic islands in the Rutherford
regime.

6. Summary

In a stationary state, the external electromagnetic torque associated with the resonant magnetic
perturbation is balanced by the viscous force [21, 22]. Thus, transverse plasma viscosity
maintains a finite velocity gradient around the magnetic island. It is shown in this paper that
plasma viscosity leads to an asymmetric deformation of the magnetic island such that a sin ξ

component in the perturbed electrostatic potential is excited. As a result, the viscous force
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directly affects the island evolution equation modifying its stability. Such modification is a
novel effect which was not considered earlier. In this paper we show that this leads to the
stabilization of the magnetic islands.

It follows from (18) and (47) that the overall stability of a magnetic island is determined
by the competition of the destabilizing effect of the polarization current in (18) and stabilizing
effects of the viscosity and the sheared flow in (47). For smaller magnetic islands, the
stabilizing effect is dominant. To evaluate the critical island width, we use the following
parameters (typical for the JET tokamak): B0 = 2.5 Tl, minor radius a = 100 cm, major radius
R = 300 cm, T = 1.25 keV,m/n = 3/2, ne = 1.9×1013 cm−3. We use a classical expression
for plasma diffusivity Dm = c2/(4π)η⊥/2, with the electron resistivity η⊥ = 1.15 × 10−14

Zeff ln 6T
−3/2

e s, Zeff = 2 and Coulomb logarithm ln 6 = 17. The transverse plasma viscosity
is assumed to be anomalous with an empirical viscosity coefficient with a gyro-Bohm type
scaling ν = Aρ2vti/a

2,where we take A = 1.
For the above parameters, the width of the viscous-resistive layer around the magnetic

island is wc = 0.5 cm. From (18) and (47) we conclude that for magnetic islands with a
width less than w < wth ≡ wc(g3ν/Dmg2λ

1/2
0 )1/3 
 1.7 cm, the stabilizing effect due to

the shear flow and viscosity overcomes destabilization due to the polarization current. The
magnetic island of a width wth corresponds to the magnetic perturbation (at the rational
surface) of the order of Br/B0 = w2

th/(rsLs). For the above parameters of JET, this
gives Br/B0 
 9.4 × 10−5. The above expression for the threshold magnetic island wth

leads to the following scaling of the critical magnetic field Br/B0 ∼ T n1/3B−8/3. This
is not too far from JET experimental scaling Br/B0 ∼ n0.55B−1.25ω0 [25] assuming that
ω0 ∼ T/B.

In general, finite ion Larmor radius effects [16, 24] can also be important within the
viscous-resistive layer. Note that for the above parameters the viscous-resistive layer width
is of the same order of magnitude as the ion Larmor radius. In our estimates, we have used
classical plasma conductivity, while the perpendicular viscosity was taken to be anomalous.
In fact, electrical conductivity can also be anomalous due to the stochastization of electron
trajectories (such effects could be especially important near the separatrix of a magnetic island).
Then one may need to employ a mean field Ohm’s law [26, 27] for a turbulent collisionless
plasma. Such a hierarchical MHD and turbulence model in the context of the magnetic island
evolution was proposed in [26].

Influence of the equilibrium plasma flow on tearing modes has long been a subject of
intense interest [30–38]. It was shown that the stability of the linear tearing modes is changed
by a finite plasma flow. Earlier studies have shown that the perpendicular plasma flow caused
by plasma diffusion is generally stabilizing [30,31], though later a new region of the instability
was also found [37]. Large shear flow may induce new instability due to coupling to Kelvin–
Helmholtz modes [33, 35]. Nonlinear coupling of modes with different helicity may also
destabilize magnetic islands and lead to oscillatory behaviour [38]. In the nonlinear stage, the
shear flow and viscosity was shown to reduce the growth rate and decrease the saturated island
width [33, 34]. Deformation of the magnetic flux surfaces due to the plasma flow is clearly
noticeable in numerical simulations [34]; however, no detailed studies of these effects have
been made so far.

In summary, we have investigated an effect of the asymmetric deformation of the magnetic
island caused by the finite plasma viscosity and sheared plasma flow. Such an effect is
stabilizing for sufficiently narrow magnetic islands and may be responsible for the threshold
typically observed in experiments with externally applied resonant magnetic perturbations
[29, 39–41].
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