
Non-local energy transport in tunneling
and plasmonic structures

Winston Frias,∗ Andrei Smolyakov, and Akira Hirose
Department of Physics and Engineering Physics, University of Saskatchewan,

116 Science Place, Saskatoon, SK S7N 5E2, Saskatoon, Canada
∗ wpf274@mail.usask.ca

Abstract: Various definitions of the velocity of propagation of the
electromagnetic field have been adopted in experimental and theoretical
studies of tunneling and plasmonic systems. Tunneling problems are often
analyzed by invoking the group delay (or dwell time) velocities. On the
other hand, slow light and plasmonic systems are considered by using the
wave packet group velocity. This paper discusses various definitions for the
velocity of the electromagnetic wave propagation and compares them in
applications to the problems of slow light and superluminality in resonant
and tunneling structures. Energy propagation is, in general, a nonlocal
quantity and depends on the global properties of the system, rather than
being simply a local quantity. The energy propagation velocity takes into
account the non-local characteristics of the wave propagation and offers
a natural generalization for those situations when the group velocity is ill
defined or gives unphysical results. It is shown that the group delay velocity,
which may be superluminal away from the resonance, becomes equal to the
energy velocity at the resonant point.
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1. Introduction

There has been renewed interest in recent years to the question of how fast electromagnetic ra-
diation (light) propagates in material media. One of the motivations for these studies originates
in the problem of apparent superluminal propagation in quantum-mechanical tunneling [1, 2].
Since the stationary Schrodinger equation is equivalent to the wave equation for electromag-
netic waves, similar phenomena exist for electromagnetic waves [1, 3–6]. The problem has
received new impetus again due to the discovery of the phenomenon of slow light in quantum
mechanical systems and photonic structures [7–11]. Tunneling and slow light phenomena have
also been investigated in metamaterials and Photonic Band Gap (PBG) systems [12–14]. These
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exotic properties of slow and stopped light and wave propagation in metamaterials and PBG
media offer a wide range of applications in various fields.

Over the course of numerous studies, several different measures of the speed of electro-
magnetic wave propagation were used, such as the group delay velocity vd , the group velocity
vg = ∂ω/∂k, and the energy velocity vE [15]. The group delay velocity vd is introduced by
using the group delay [16], which is defined as the time at which the transmitted packet reaches
its peak at the exit of the medium: vd = ∂ω/∂κ , where κ = Lϕt and ϕt is the phase of the trans-
mission coefficient. The energy velocity vE = S/U is introduced as the ratio of the Poynting
vector to the electromagnetic energy density inside the medium [15]. One can easily show that
for a finite wave packet in an unbounded non-dissipative medium, the energy velocity is equal
to the group velocity [17]. This work aims to study the differences and mutual relations between
various measures of the propagation speed of electromagnetic radiation. One important point
to note is that the various definitions of the velocity do not necessarily apply to the velocity of
energy (or information) propagation.

It is generally accepted that for a transparent medium, which supports propagating waves,
the concept of group velocity is a valid measure of the energy flow velocity, and therefore,
the information flow velocity, given that the information flow has to be associated with a finite
energy flow. The group velocity is widely used, in particular, to characterize various slow light
systems. Generally, slow light is realized in systems with high dispersion, when the group ve-
locity is orders of magnitude smaller than the speed of light. There are however a number of
physical situations when the concept of group velocity has limited utility, becomes misleading,
or does not exist. One such situation occurs when the group velocity is mentioned as an upper
bound for the information velocity. This could be easily incorrect for wave propagation in a
strongly dissipative medium where the group velocity can exceed the speed of light. In other
situations, the group velocity is not well defined, such as in tunneling, in which the wave vector
becomes purely imaginary and the solution is a combination of evanescent modes. Such solu-
tions are perfectly capable of energy (and hence information) transport [18, 19], yet the group
velocity cannot be defined. There is another reason why the group velocity is not necessarily the
measure of the energy velocity even for the case of non-dissipative transparent media, when the
group velocity is well defined. A simple illustration of this fact can be seen from the example of
a standing wave in a transparent medium with a well defined ε(ω)> 0 and ∂ω/∂k �= 0, which
nevertheless does not transport any energy. The group velocity, ∂ω/∂k, is a local quantity and
is defined for wavepackets in an infinite medium. It does not take into account wave reflections,
and, as such, it does not depend on the geometry of the medium, e.g. on the boundary condi-
tions. As a matter of fact, the energy flux through the medium, and, consequently the energy
flow velocity, is in general a non-local quantity. It is not defined solely by the local proper-
ties of the dielectric medium via the local function ω = ω(k) , but also depends on the overall
geometry of the system, in particular, on boundary conditions.

In this paper we illustrate that in general the group velocity does not fully characterize the
energy transport even for a simplest case of a transparent (non-dissipative) media. It suggests
that the energy velocity vE = S/U is a better measure of the energy propagation velocity. It fully
takes into account non-local effects (finite system dimensions and presence of boundaries). It
is also remains well defined in those cases, when the group velocity becomes ill-determined (as
in tunneling problems) and/or produces unphysical results. There exists noticeable disconnect
between the approaches used to study slow light in various optical and electromagnetic struc-
tures and the methods used to study pulse propagation in tunneling problems. The slow light
phenomenon is mainly interpreted as an effect of very small group velocity vg ≡ ∂ω/∂k � c,
resulting from large dispersion near the resonances (the nature of resonance varies for differ-
ent systems). The concept of group velocity does not exist for evanescent waves in tunneling.
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In the latter, the concept of the group delay and dwell time are often used as a measure of
the propagation time. The interpretation of the group delay as the tunneling (traversal) time
leads to apparent paradoxes such as superluminality [20–22]. Series of experiments by vari-
ous groups [6, 23–26] have measured a group delay velocity which is higher than the speed of
light. Superluminal velocities have also been measured in gain media [27]. It is important to
note that superluminal propagation does not mean casuality violation, so that no information is
transferred with velocities larger than the speed of light [23, 26].

It was noted [28, 29] that the delay time (group delay) is actually related to the storage time.
Therefore saturation of the delay time for a sufficiently thick barrier becomes independent of
the barrier width as the field penetrates only into a narrow part (”skin”depth) of the barrier
(Hartman effect). The dwell time is a quantity related to the group delay time and has similar
properties [28, 29].

The goal of this work is to analyze the relations among the energy velocity vE , the group
velocity vg = ∂ω/∂k, and the group delay velocity vd in several configurations involving tun-
neling and evanescent wave energy transport. Our particular interest is in resonant regimes, in
particular, those involving surface mode and standing wave resonances [30–32].

The very nature of the metamaterials is based on the resonances that are used to achieve
simultaneous negative permittivity and negative permeability. It is thus of interest to study the
energy transport in these resonant structures, in particular, those involving tunneling. We con-
centrate on two simple structures that involve tunneling barriers exhibiting two types of reso-
nances: the surface mode resonance that occurs at the interface of the materials with opposite
signs of the dielectric permittivity (permeability) and the standing wave resonance that occurs
due to partial wave trapping between two barriers [18].

This article is organized as follows. In section 2, the concepts of group delay and energy
velocity are explored are reviewed. In section 3, these concepts are applied to the propagation of
electromagnetic waves through a slab to illustrate the main ideas and fix the notations. In section
4, energy transport is analyzed for the cases of resonant tunneling of evanescent waves through
multilayered structures and the corresponding velocities are obtained. Finally, in section 5,
some final remarks and the summary of this work are given.

2. Group delay time and energy velocity

To fix the notations, in this section we define the group delay or Wigner delay, which is used to
determine the group delay velocity (not be confused with the group velocity). We also define
the energy transport velocity, which will be compared with the group delay velocity and the
standard group velocity for propagating modes.

The Wigner delay [16, 29] is defined by considering the propagation of a localized
wavepacket. The localized wave packet, peaked around a frequency ω0, can be presented in
the form

ψ(x, t) =
∫

ω
f (ω −ω0)exp[ikx− iω t]dω. (1)

This packet propagates in vacuum with a group velocity ∂ω/∂k. Upon collision with a generic
barrier, the reflected and transmitted wavepackets are generated

ψR(x, t) =
∫

ω
f (ω −ω0)|R |exp[iφr(ω)+ ikx− iω t]dω, (2)

ψT (x, t) =
∫

ω
f (ω −ω0)|T |exp[iφt(ω)+ ikx− iω t]dω. (3)

Assuming that the functions f (ω −ω0)|R| and f (ω −ω0)|T | are slowly varying functions of
ω and that the phase changes rapidly with ω , using the stationary phase method [29, 33], these
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integrals can be estimated by setting the rate of change of the phase to zero

d
dω

(φr −ωt) = 0, (4)

d
dω

(φt + kd−ωt) = 0. (5)

These last equations suggest that the peaks of the reflected and transmitted packets appear at
the positions x = d (for the transmitted packet) and x = 0 (for the reflected packet) with delays
given by [29, 33]

τgt =
d

dω
(φt + kd) , (6)

τgr =
dφr

dω
. (7)

It can be shown that for symmetric barriers, the delay in transmission and in reflection are iden-
tical [34], and that will be the case considered here. In the most general case of an asymmetric
barrier, the bi-directional delay is defined as [34]

τg = |R|2 τgr + |T |2 τgt . (8)

Since the group delay is defined as the time at which the transmitted packet peaks at the exit,
the group delay velocity may be defined as the length of the barrier divided by the group delay

vd =
d

τgt
. (9)

This velocity often becomes superluminal. Various interpretations of the group delay as a
transit time, and the related consequences of superluminal propagation have been a topic of
intense debate [29, 35, 36]. The group delay has been measured in a number of experiments
[23–26], including experiments with gain media with negative group-velocity index [27]. The
superluminal velocities reported in these experiments are not in disagreement with casuality
since the group delay velocity is not a signal velocity (nor the energy/information transmission
velocity) [23, 24, 27], which should always be less than c.

The energy velocity can be defined in general form as done by Brillouin and Sommerfeld
based on the equation of energy conservation for the electromagnetic field [15]

∂U
∂ t

+∇ ·S = Q, (10)

where U is the electromagnetic energy density, S is the Poynting vector (electromagnetic en-
ergy flux) and Q represents the Joule losses. The flux of any quantity can be represented as the
density of this quantity multiplied by its flux velocity, that is, S =UvE . This last representation
of the Poynting vector is known as the Umov form [37]. For a wave packet in an infinite homo-
geneous medium, the energy flux and the energy density are constant with vE = ∂ω/∂k, that
is, the energy velocity equals the group velocity. In general, U and S can be position dependent
and the local energy velocity can be non-uniform in space. In general, this energy velocity is
always less than c even for gain media [38].

In the next section, we consider a plane electromagnetic wave incident on a one-dimensional
structure in vacuum. Then, the energy flux can be conveniently written in terms of the amplitude
of the incident electromagnetic field (E0, H0) and the transmission coefficient

S|z=0 = S|z=d =
1
2

Z0|H0|2|T |2 = 1
2Z0

|E0|2|T |2, (11)
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where Z0 = E0/H0 is the impedance of free space.
It is instructive to consider how the energy is transmitted through a tunneling barrier with

only evanescent waves present. Consider an evanescence region such that the magnetic field
Hx(z) is given by

Hx(z) =C exp(−κz)+D exp(κz), (12)

with κ a real number but C and D possibly complex, being the amplitudes of two waves in the
region. By Maxwell’s equations, the electric field associated with these waves is given by

Ey(z) =−i
1

ωε
∂Hx

∂ z
, (13)

or
Ey(z) = i

κ
ωε

(C exp(−κz)−D exp(κz)) . (14)

For the Poynting flux we have

Sz =
1
2

ℜ(EyH
∗
x )∼ (CD∗ −C∗D)∼ ℑ(CD∗). (15)

As can be seen from Eq. (15) the z-component of the Poynting flux becomes finite when the
product CD∗ has an imaginary part other than zero; in other words, there has to be a finite phase
shift between the amplitudes C and D. Therefore, a finite energy flux occurs as a result of the
superposition of two evanescent modes with a finite phase shift [18]; this is called interference
of evanescent waves [18]. It is important to note that the reflected and transmitted waves (sep-
arated by the evanescent region) can be viewed as the result of the energy ”leaking” from the
system through two different channels (reflection and transmission respectively) [18]. Energy
transport by the evanescent waves inside the barrier is responsible for the tunneling. The conti-
nuity (energy conservation) Eq. (10) introduces the velocity for this energy transport, this way
naturally introducing the measure for the tunneling velocity. It is important to note that this
energy transport is purely electromagnetic and does not include other forms of energy present
inside the medium, nor any ”localized energy” associated with the degrees of freedom in the
medium [38].

3. Velocities in dispersive slab

Consider y-polarized plane waves propagating in the z-direction, normally incident on a slab of
dispersive material. The general electromagnetic field can be represented then in the form

E = [0,Ey,0]e
i(kz−ω t), (16)

H = [Hx,0,0]e
i(kz−ω t). (17)

Since Ey and Hx are related, the full solution is uniquely defined by the magnetic field Hx.
In general, Maxwell equations define the full solution as a sum of two waves propagating in
opposite directions (as in the plasma region 0 < z < d). The ratio of the amplitude of the
backward wave to the amplitude of the incident wave in vacuum region on the left (z < 0)
defines the reflection coefficient R. There is no reflected wave in the vacuum region on the right
of the plasma slab (z > d) :

H0

(
eikvz +Re−ikvz

)
z < 0, (18)

H0

(
Aeikz +Be−ikz

)
0 < z < d, (19)

H0Teikvz z > d. (20)
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The wave vector k is a function of ω

k2 =
ω2

c2 ε(ω), (21)

where the dielectric constant ε(ω) is taken to be in the form

ε(ω) = 1− ω2
p

ω2 . (22)

For the case where ε(ω)< 0, the wavevector becomes imaginary and the fields become evanes-
cent.

The parameters A, B, R and T are obtained by using the boundary conditions for the fields
(e.g continuity of Ey and Hx at the boundaries z = 0 and z = d). The resulting reflection and
transmission coefficients for this structure are given by

T =
e−ikvd

g
, (23)

R = i
(kε0/kvε − kvε/kε0)sinkd

2g
, (24)

where
g = coskd− i(kε0/kvε + kvε0/kε)sinkd/2, (25)

kv =
ω
c
, (26)

and
k =

ω
c

√
ε(ω). (27)

The above formulas also remain valid in the evanescent case, where k is replaced with iκ .
The phase of the transmission coefficient is given by

φ0 = φt + kvd = arctan

(
kε0/kvε + kvε0/kε

2
tankd

)
. (28)

The reflection and transmission responses for the slab are plotted in Fig. 1 as a function of
ε(ω).

The group delay velocity is given by

vd =
d

τgt
= d

(
∂φ0

∂ω

)−1

. (29)

The averaged energy velocity in the direction of propagation (z-direction) is given by

vE =
1
2 Z0|H0|2|T |2∫ d

0 Udz
, (30)

where U is given by

U =
1
4

ε0
∂ (ωε)

∂ω
|Ey|2 + 1

4
μ0|Hx|2. (31)

For the case of a dispersive slab, Eq. (30) reduces to

vE

c
=

4

(1+ ε)
(

1+ 1
ε

∂ (ωε)
∂ω

)
+(ε −1)

(
1− 1

ε
∂ (ωε)

∂ω

)
sin2kd

2kd

. (32)
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Fig. 1. Reflection and transmission responses of the slab layer: ωp=10 GHz, and d=0.02 m.

For a medium with dielectric permittivity given by Eq. (22), such that

∂ (ωε)
∂ω

= 1+
ω2

p

ω2 = 2− ε, (33)

the energy velocity divided by c (normalized to the speed of light), reduces to

vE

c
=

2ε
1+ ε + sin2kd

2kd (ε −1)2
, (34)

which, as can be seen clearly, remains always subluminal and will oscillate due to the term
sin2kd

2kd .
The usual group velocity is given by the usual formula vg = ∂ω/∂k, which is valid only for

regions where ε > 0. The energy, group and group delay velocities are plotted in Fig. 2(a). A
close-up look of the region where ε → 0 is given in Fig. 2(b).

Figure 2(a) illustrates the difference between group delay velocity, group velocity and energy
velocity. The group delay velocity is oscillating as a function of the dielectric constant. These
oscillations correspond to the oscillations in the transmission coefficient as in Fig. 1. The energy
velocity is different from the group velocity because of the finite thickness of the layer. As can
be seen from Eq. (34), due to dispersion, the energy velocity also oscillates. The energy velocity
becomes equivalent to the group velocity in the limit of ε → 1. It can be seen that the group
delay velocity becomes superluminal in the tunneling regime ( ε < 0). It is worth noting here
that while the group velocity approaches zero at ε = 0, the energy flow velocity is never zero.
In tunneling, for the non resonant case it can be very small. It is interesting to notice that the
energy velocity remains small for tunneling even in the resonant case, contrary to the resonant
cases with surface wave resonances as in Section 4.
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In the case of a medium whose dielectric permittivity is given by the Drude-Lorentz model

ε = 1+
ω2

p

ω2
0 −ω2

, (35)

where ω0 is the resonant frequency of the electron motion [17], the situation is similar. The
energy velocity will oscillate and it will be equal to the group delay velocity when the trans-
mission is total. The group velocity is not equal to the energy velocity. Similarly to the previous
model, all the velocities tend to the same value as ε → 1 as can be seen from Fig. 2(c).

This difference among the different velocities is valid even for propagating cases as can be
seen from Figs. 3(a) and 3(b) where the different velocities are plotted as functions of frequency
and barrier width for a nondispersive case with dielectric constant larger than 1. In these exam-
ples the difference between the group velocity and the energy velocity is clearly seen, with the
energy velocity being smaller than the group velocity. This can be seen from the expressions
for the energy velocity in a non-dispersive slab. The energy velocity as defined in Eq. (30),
reduces, for a nondispersive slab, to

vE

c
=

2
ε +1

. (36)

As is clear from Eq. (36), the energy velocity is dependent on the dielectric constant of the slab
and, contrary to the energy velocity for the dispersive case and to the group delay velocity, does
not oscillate but has a constant value. This same situation happens also with the group velocity,
that does not oscillate for the non-dispersive case, whereas it does for the case with dispersion.
It is worth noticing that its value is always lower than that of the group velocity, which for non
dispersive slabs is given by vg = c/

√
ε , the only exception being of course in vacuum. The

energy velocity remains always subluminal due to the fact that ε < 1 implies dispersion and
therefore Eq. (36) is no longer valid. For 0 < ε < 1, the group velocity will be superluminal.

The group delay velocity is oscillating along with the transmission coefficient of the slab. The
group delay velocity becomes equal to the energy velocity in the regions where the transmission
is resonant as can be seen from Figs. 3(a) and 3(b), in accordance to the result obtained by
D’Aguanno et al [39].

4. Velocities for a double layer and a double barrier

Consider a two layer structure as shown in Fig. 4(a). The layers have a dielectric constants
ε1 = ε1(ω) and ε2 = ε2(ω) and widths L1 and L2, for a total width of L = L1 +L2. The electro-
magnetic wave that will be considered is TM-polarized (p-polarized), with the electric field in
the incidence plane (y,z) and the magnetic field in the x-direction. Denoting:

k2
v = k2

0 − k2
y , k0 = ω/c ky = k0 sinθi, (37)

κ2
1 = k2

y − ε1(ω)k2
0, (38)

κ2
2 = k2

y − ε2(ω)k2
0, (39)

ηi = εi/κi, (40)

the fields in the structure are given by

H0

(
eikvz +Re−ikvz

)
z < 0, (41)

H0
(
Ae−κ1z +Beκ1z) 0 < z < L1, (42)

H0

(
Ce−κ2(z−L1) +Deκ2(z−L1)

)
L1 < z < L, (43)

H0 T eikvz z > L. (44)
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Fig. 2. (a) Normalized energy, group delay and group velocities of the slab layer, ωp=10
GHz and d=0.02 m; (b) Close-up of the region where ε → 0; (c) the case with dispersion,
ε is given by Eq. (35), ω0 = 0.5ωp, d and ωp as in (a).
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Fig. 3. Normalized energy, group delay and group velocities for ε = 10. (a) As a function
of frequency; a=0.2 m. (b) As function of the slab width; f=1 GHz.
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Fig. 4. (a) The two layer structure, region 1- 0 < ε1 < 1; region 2 - ε2 < 0. Incidence angles
larger than the critical are considered, so waves are evanescent in both regions. (b) The
double barrier structure; regions 1,3 - ε < 0; region 2 - ε = 1.

Similar to the procedure used to obtain the reflection and transmission responses of the slab,
by applying the boundary conditions for the fields at the interfaces and solving the correspond-
ing equations, the transmission coefficient for the double layer is

T =
e−ikvL

g
, (45)

g = coshκ2L2 coshκ1L1 +Δ1 sinhκ1L1 sinhκ2L2 + i [Δ2 sinhκ1L1 coshκ2L2] . (46)

The phase of the transmission coefficient is given by

φ0 =−arctan

[
Δ2 sinhκ1L1 coshκ2L2 +Δ3 coshκ1L1 sinhκ2L2

coshκ2L2 coshκ1L1 +Δ1 sinhκ1L1 sinhκ2L2

]
. (47)

Here Δ1, Δ2 and Δ3 are defined as

Δ1 =
1
2

(
η1

η2
+

η2

η1

)
, (48)

Δ2 =
1
2

(
η1

η0
− η0

η1

)
, (49)

Δ3 =
1
2

(
η2

η0
− η0

η2

)
. (50)

The resonant conditions of the structure are given by the conditions [18]

κ1L1 = κ2L2, (51)

η1 +η2 = 0. (52)

This resonance corresponds to the excitation of surface modes in the structure. In Fig. 5 the
resonance at the interface of the slabs can be seen.

The plots for the transmittance, the group delay velocity and the energy velocity are given
in Figs. 6(a)–7. Note that the energy velocity stays subluminal and reaches a maximum value
of 0.05 c.At the resonance, where the transmission coefficient is 1, the group delay velocity is
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Fig. 5. Magnetic field distribution for the double layer structure. The width of the first layer
L1 = 0.78m, the width of the second layer L2 = 0.02m, ε1 = 0.9, ε2 =−35. The resonance
occurs at θ 	 74◦.
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Fig. 6. Transmissivity of the double layer for ωp1 = 3.77× 1010 rad s−1 (6 GHz), ωp2 =
2× 109 rad s−1 (0.32 GHz), L1 = 0.78m, L2 = 0.02m. (a) As a function of the incident
angle with f=1 GHz. (b) As a function of frequency at resonant incidence.
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Fig. 7. Normalized energy velocity and group delay velocity of the double layer structure
at resonant incidence.

equal to the energy velocity. The group delay velocity becomes superluminal away from the
resonance.

For the double barrier, two symmetrical barriers of width a are bounded by vacuum and
separated by another vacuum region of width L as shown in Fig. 4(b). As in the double layer
case, a TM-polarized electromagnetic wave will be considered and the same notations will be
used.

The fields in this configuration are given by

H0

(
eikvz +Re−ikvz

)
z < 0, (53)

H0
(
A0 e−κz +B0 eκz) 0 < z < a, (54)

H0

(
A1 eikvz +B1 e−ikvz

)
a < z < L+a, (55)

H0

(
A2 e−κ(z−L−a) +B2 eκ(z−L−a)

)
L+a < z < L+2a, (56)

H0 T eikvz z > L+2a. (57)

As it was done for the slab and the double layer, by using Maxwell equations to obtain the
electric field in the double barrier and using the boundary conditions at the interfaces, the trans-
mission coefficient can be calculated to be

T =
e−2ikva

g
, (58)

g = cosh2(κa)+
1
4

sinh2(κa)
[
σ2 cos(kvL)−δ 2]

+isinh(κa)

[
δ cosh(κa)+

1
4

σ2 sinh(κa)sin(2kvL)

]
. (59)

Here
σ =

η0

η1
+

η1

η0
, (60)

δ =
η1

η0
− η0

η1
, (61)

σ2 = δ 2 +4. (62)
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The resonant conditions for the double barrier structure are given by [36, 40]

cot(kvL) =−1
2

δ tanh(κa), (63)

or by [18]

tan(kvL) =
2ξ

1−ξ 2 , ξ =
η0

η
=

κε
kvε0

. (64)

The phase of the transmission coefficient is given by

φ0 = kvL− arctan

[
sinh(κa)

[
δ cosh(κa)+(1/4)σ2 sinh2(κa)sin(2kvL)

]
cosh2(κa)+(1/4)sinh2(κa) [σ2 cos(2kvL)−δ 2]

]
. (65)

The resonant condition are the leaky eigenmode solutions to the finite depth well problem [18].
In Fig. 8 the resonances at the interface between the slabs and the inner vacuum region can be
seen.
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Fig. 8. Magnetic field distribution for the double barrier structure. The width of the barriers
is a = 0.021m, the width of the middle layer is L = 0.25m, ε =−35. The resonance occurs
at θ = 62.3◦.

The plots for the transmittance, the group delay velocity and the energy velocity are given
in Figs. 9(a)–10. As before, the energy velocity is subluminal, with a maximum value of the
order of 0.01 c. The group delay velocity is equal to the energy velocity at the resonance and
becomes superluminal away from the resonance.

5. Discussion and summary

Various definitions of the velocities are often invoked in the discussions of slow light and su-
perluminality problems. The conventional group velocity vg = ∂ω/∂k can be used as a mea-
sure of the energy velocity only for transparent (non-dissipative) weakly dispersive and infinite
medium when the wave packet width is shorter than the characteristic width of the propagation
region and no multiple reflections occur. In the latter case, the conventional group velocity is
equal to the energy flow velocity given by the ratio of the Poynting flux to the energy density,
vg = vE ≡ S/U. This equality is broken however in many instances. Even in the simplest case of
a transparent (non-dissipative) dispersive medium the energy transport velocity in a finite width
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Fig. 9. Transmissivity of the double barrier structure for ωp = 3.77×1010 rad s−1 (6 GHz),
L = 0.25m, a = 0.021m. (a) As a function of the incident angle with f=1 GHz. (b) As a
function of frequency at resonant incidence.
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Fig. 10. Normalized energy and group delay velocities of the double barrier structure as
function of frequency for resonant incidence.

region differs from the group velocity due to nonlocal (boundary) effects as it was discussed in
Section 3.

The energy velocity vE offers a natural generalization of the conventional group velocity
vg = ∂ω/∂k. It is worth noting here that the actual energy transport (and the energy velocity
vE) remains finite even when the conventional group velocity becomes zero [41]. The energy
velocity vE describes the energy transport in other situations, such as in dissipative media,
where the group velocity may become superluminal (and thus has not the physical meaning of
the energy/information propagation velocity) and when the group velocity is not well defined
(as in tunneling problems).

The other often referred measure of the propagation speed is the so called group delay veloc-
ity Eq. (9), based on the concept of the group delay which is calculated as the derivative of the
phase of the transmission coefficient. The group delay saturates with the width of the tunneling
barrier, leading to apparent superluminal propagation. Superluminal propagation of the group
delay was measured in many experiments. It is not considered to result in any casuality viola-
tion since no information is transferred by a smooth wave packet. Signal/information transfer is
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related to the non-analytical points of the pulse and thus the velocity at which it is transmitted
is that of the front (or precursor) and is limited by the speed of light [15]. It is worth noting that
information transfer requires a finite energy transport which always remains subluminal.

In this paper, we have compared the different velocities associated with tunneling for dif-
ferent tunneling configurations that involve standing wave and surface mode resonances. The
standing wave resonances result in bandgaps of multi-layer dielectric structures. The delay time
in such structures were experimentally studied in [25], where it was shown that the delay time
is very sensitive to the number of λ/4 layers. It is shown here that strong variations of the
group delay velocity are related to system resonances due to standing waves and/or surface
waves. These resonances result in oscillations of the propagation velocities as functions of the
system width and frequency (Figs. 2 and 3). At the resonance, the group delay velocity vd be-
comes subliminal and equal to the energy velocity vE (Figs. 7 and 10). In the deeply tunneling
regime, away from the resonance, the group delay velocity vd may become superluminal while
the energy velocity always remains subluminal. The evanescent resonant regimes studied in
this paper are characterized by large amplitudes of the electromagnetic field and result in low
energy velocities, reaching resonance values of 0.05 c for the double layer and of 0.01 c for the
double barrier. These values suggest the possibility of using these resonant tunneling structures
as slow light systems.
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