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Long wavelength gradient drift instability in Hall plasma devices.
I. Fluid theory
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The problem of long wavelength instabilities in Hall thruster plasmas is revisited. A fluid model of

the instabilities driven by the E0 � B drift in plasmas with gradients of density, electron

temperature, and magnetic field is proposed. It is shown that full account of compressibility of the

electron flow in inhomogeneous magnetic field leads to quantitative modifications of earlier

obtained instability criteria and characteristics of unstable modes. Modification of the stability

criteria due to finite temperature fluctuations is investigated. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4736997]

I. INTRODUCTION

Plasmas involving strong electron drift in crossed elec-

tric and magnetic fields are of great interest for a number of

applications such as space propulsion and material process-

ing plasma sources. In these devices, the strength of the

external magnetic field is chosen such that electrons are mag-

netized, qe � L, but ions are not, qi � L, where L is the

characteristic length scale of the plasma region in the device.

Electron and ion dynamics are mostly collisionless, though

inter-particle collisions (including those with neutrals) as

well as with the walls can also be important. Similar condi-

tions are also met in a variety of other plasmas such as in

ionosphere, reconnecting magnetotail, shock waves, and

pinch devices. For the purpose of this paper all these are

loosely defined as Hall plasmas.

Hall plasma conditions are typical for many technologi-

cal applications. Common feature of these devices is the

presence of stationary, externally applied electric field E0;
which is perpendicular to the equilibrium magnetic field B0;
thus producing stationary E0 � B0 drift velocity. The ions,

due to large Larmor radius, are unmagnetized and acceler-

ated in the E0 direction, while the electron collisions lead to

a finite current along the E0. As a result, quasineutral plasma

is accelerated along the E0: Such plasma accelerators, typi-

cally in coaxial geometry with radial magnetic field B0, axial

E0, and azimuthal E0 � B0 drift, also used as technological

plasma sources, have recently became a subject of growing

interest due to their applications in electric space propulsion,

so called Hall plasma thrusters.

Hall plasma in externally applied electric field E0;
which is perpendicular to the equilibrium magnetic field B0;
is a basis for operation of Hall thrusters,1–3 which are high

efficiency, low thrust engines used on many missions for sat-

ellite orbit corrections, and planned for future interplanetary

missions. Magnetron plasma discharges, which are widely

used in materials processing for sputter deposition of metal-

lic and insulating films, are also based on the electron drift in

the crossed electric and magnetic fields in the presence of

non-magnetized ions.

Despite many successful applications of Hall thrusters and

other Hall plasma sources, some aspects of their operation are

still poorly understood. A particularly important problem is the

anomalous electron mobility,4–6 which greatly exceeds classi-

cal collisional values. Hall plasma devices exhibit numerous

turbulent fluctuations in a wide frequency range7–10 and it is

generally believed that fluctuations resulting from plasma

instabilities are probable reasons of anomalous mobility.

An inhomogeneous plasma immersed in external inho-

mogeneous electric and magnetic fields is not in a state of

thermodynamic equilibrium. The equilibrium E0 � B0 elec-

tron drift is a source of a number of plasma instabilities in

Hall plasmas.11 There exists a large body of work devoted to

studies of such instabilities in applications to shock waves in

laboratory and space plasmas. These instabilities were

observed in a number of experiments,12,13 and thought to be

responsible for anomalous resistance and turbulent heating.

Low-hybrid instability and modified two-stream instability

of Hall plasma with transverse current14–16 are thought to be

particularly important. Effects of plasma and magnetic field

gradients on low hybrid instability were studied in kinetic

theory in Refs. 17–20. The modified two-stream instability

was studied in detail (also in kinetic theory) in Refs. 12 and

21. Lower hybrid instability is typically a short wavelength

mode with k?qe ’ 1, where qe is the electron Larmor radius,

while the modified two stream version has the most unstable

modes for longer wavelengths k?qe < 1,12 but requires a fi-

nite component of the wavevector along the magnetic field.

The short wavelength low hybrid modes are also a special

case of more general beam cyclotron instabilities,21–23 in

which higher cyclotron harmonics are included. Nonlinear

stage of such cyclotron instabilities driven by the transverse

current was analyzed in Refs. 21, 22, and 24, where it was

concluded that these small scale modes saturate at relatively

low amplitude due the ion trapping.

The E0 � B0 instability driven by the combination of

magnetic field and density gradients was experimentally anda)Electronic mail: wpf274@mail.usask.ca.
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theoretically identified as a possible source of fluctuations

and anomalous mobility in Hall plasma thrusters.25,26 This is

the long wavelength instability obtained in neglect of the

effects of electron inertia, me ! 0. Therefore, it is not

directly related to the low hybrid modes, nor it requires a fi-

nite value of the wavevector along the equilibrium magnetic

field, kjj: Later, theoretical studies revealed the existence of

other instability mechanisms in Hall thrusters due to colli-

sions and ionization,27,28 Rayleigh type shear flow instabil-

ity, and resistive instabilities of low-hybrid and Alfvén

waves.29,30 Kinetic studies23 identified the high-frequency

instability driven by the resonances between the electron cy-

clotron harmonics and E0 � B0 drift.

In this paper, we revisit the problem of the long wave-

length E0 � B0 instability in plasmas with inhomogeneous

magnetic field and gradients of plasma density gradients

which was originally studied in Ref. 26 and more recently in

Ref. 31. It is expected that, if present, long wavelength

modes will dominate the anomalous transport of electrons.

These modes have been originally proposed25,26 as a possible

cause of turbulent fluctuations and anomalous transport in

Hall thruster. Recent experimental observations have con-

firmed presence of high frequency long wavelength

modes,5,32 however it is not clear whether the standard crite-

ria for gradient density magnetic field driven instability

instability25,26,31 are satisfied everywhere inside the thruster

channel.33 We revisit the problem of gradient instability and

show that quantitative corrections (to previous theory) are

required for accurate determination of the conditions for the

instability and its characteristics (real part of the frequency

and the growth rate). Furthermore, we show that in inhomo-

geneous magnetic field the studied modes have finite pertur-

bations of the electron temperature. We develop a three-field

fluid model describing the fluctuations of the electric field,

density, and electron temperature and study how finite tem-

perature perturbations any affect the quantitative picture of

instabilities. We investigate general stability criteria and in

accompanying paper, Part II, study the stability of realistic

profiles in some Hall thrusters.

In this paper, we concentrate on long wavelength modes

existing in neglect of electron inertia and assuming kjj ¼ 0,

when low hybrid and modified two-stream instabilities are

not operative. These assumptions are similar to those in pre-

vious works.26,31 The instability of short wavelength modes

in application to Hall thruster conditions (but without gradi-

ent effects) was considered in kinetic theory and numerical

simulations in Refs. 23 and 34. It was shown that short wave-

length modes are excited with some features similar to those

observed by collective light scattering.10,35 The analysis of

Refs. 23 and 34 also included in part the effects of kjj 6¼ 0,

which may be required in geometry of Hall thruster experi-

ments. The extension of our analysis (of effects of plasma

parameters and magnetic field gradients) into the short wave-

length regime requires a kinetic theory and will be a subject

of a separate publication.

The paper is organized as follows. In Sec. II, the insta-

bility due to density gradient is studied and a comparison

with previous models is given. Section III discusses the

effects of the electron temperature gradients and its role in

the gradient-drift instabilities. The summary is given in

Sec. IV.

II. LONG WAVELENGTH HALL PLASMA
INSTABILITY DUE TO GRADIENTS OF DENSITY
AND MAGNETIC FIELD

The gradients of plasma density and magnetic field were

earlier identified as a source of robust instability in Hall

thruster plasma with electron drift due to the equilibrium

electric field. We consider this instability in this section and

show that a more accurate analysis leads to a quantitatively

different result as compared to previous works, though the

physical mechanisms behind the instability remain similar.

We consider the simplified geometry of a coaxial Hall

thruster with the equilibrium electric field E0 ¼ E0x̂ in the

axial direction x and inhomogeneous density n ¼ n0ðxÞ,
E0x > 0. Locally, Cartesian coordinates (x,y,z) are introduced

with the z coordinate in the radial direction and y in the sym-

metrical azimuthal direction. The magnetic field is assumed

to be predominantly in the radial direction, B ¼ B0ðxÞẑ
þBxðzÞx̂, though the B0 � Bx.

The ions are assumed unmagnetized so that the magnetic

field is omitted in the ion momentum equation,

mini
dvi

dt
¼ eniE�rpi: (1)

The ion density is found from the continuity equation

@ni

@t
þr � ðniviÞ ¼ 0: (2)

Assuming ni ¼ n0 þ ~ni and vi ¼ v0 þ ~vi, with the zeroth

order ion velocity defined as v0x̂, Eqs. (1) and (2) can be lin-

earized as

@~vi

@t
þ v0

@~vi

@x
¼ eE� rpi

min0

; (3)

@~ni

@t
þ v0

@~ni

@x
þ n0r � ~vi ¼ 0: (4)

We look for the solution in Fourier form �eiðk�r�xtÞ,
which requires the Boussinesque quasi-classical approxima-

tion kxLx � 1; where k ¼ ðkx; ky; 0Þ is the wave-vector of

perturbations. Considering only electrostatic perturbations

and isothermal ions, Eqs. (3) and (4) give

~ni

n0

¼ e

mi

k2
? /

ðx� kxv0Þ2 � k2
?v

2
Ti=2

; (5)

where v2
Ti ¼ 2Ti=mi, and k2

? ¼ k2
x þ k2

y .

The second term in the denominator of Eq. (5) is respon-

sible for ion sound effect and Landau wave resonance. Note

that we consider the perturbations aligned along the equilib-

rium magnetic field, so the conditions x� ðkzvTe; kzvTiÞ are

satisfied both for ions and electrons.

The fluid theory is only justified in the non-resonant

limit, ðx� kxv0Þ2 � k2
?v

2
Ti, so that Eq. (5) can be approxi-

mated as
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~ni

n0

¼ e

mi

k2
? /

ðx� kxv0Þ2
: (6)

The general electron momentum equation is

mene
dve

dt
¼ �ene Eþ 1

c
ve � B

� �
�rpe: (7)

The electrons are magnetized and conditions

x� xce; qe � L (8)

are satisfied. The electron inertia term on the left hand side

can be neglected for relatively low frequency long wave-

length modes. This assumption eliminates low hybrid and

modified tow-stream instabilities. Under these conditions,

the electron velocity can be found in the form,

ve ¼ vE þ vpe; (9)

where

vE ¼
c

B0

b�r/ (10)

is the E� B drift, and

vpe ¼ �
c

enB0

b�rpe (11)

is the diamagnetic drift.

The fluid velocity from Eq. (9) is used in the continuity

equation

@ne

@t
þr � ðneveÞ ¼ 0; (12)

giving the following equation for perturbed electron density

@

@t
nþ vE � rn� 2vE � r ln B� 2nvpe � r ln B ¼ 0: (13)

Here, the terms with gradients of magnetic field appear

as a result of compressibility of the ¼ E� B and diamagnetic

velocity. The compressibility is calculated assuming low

pressure plasmas so that terms due to the equilibrium plasma

current are neglected, r� B ¼ 0; i.e., the equilibrium mag-

netic field is assumed to be the vacuum field. This results in

r � VE ’ �2VE � r ln B; (14)

r � ðnVpeÞ ’ �2nVpe � r ln B: (15)

We would like to note that in a number of previous

papers, e.g., Refs. 26 and 31, the compressibility is calcu-

lated by assuming the strictly one- dimensional magnetic

field in the form B ¼ B0ðxÞẑ and the compressibility of elec-

tron flow was taken to be in the form r � VE ’ �VE �
r ln B: One-dimensional magnetic field B ¼ B0ðxÞẑ has to

be supported by a finite plasma current, which is not typical

for Hall thruster conditions where the magnetic field with

high accuracy is very close to the vacuum field.

In neglect of electron temperature fluctuations, the elec-

tron continuity equations results in the following form of the

perturbed electron density:

ne

n0

¼ x� � xD

x� x0 � xD

e/
Te
: (16)

Here, xD ¼ kyvD, x0 ¼ kyu0, and x� ¼ kyv�; vD is the

magnetic drift velocity, v� is the electron diamagnetic drift

velocity, and u0 is the electric drift velocity in the equilib-

rium electric field, and

vD ¼ �2
cTe

eB0LB
;

v� ¼ �
cTe

eB0LN
;

u0 ¼ �ŷ
cE0x

B0

;

where

1

LB
¼ @

@x
ln BðxÞ;

1

Ln
¼ @

@x
ln n0ðxÞ:

Invoking quasineutrality and using Eqs. (6) and (16), we

obtain the following dispersion relation36

x� � xD

x� x0 � xD
¼ k2

?c2
s

ðx� kxv0iÞ2
; (17)

whose solutions are given by

x� kxv0 ¼
1

2

k2
?c2

s

x� � xD
6

1

2

k2
?c2

s

x� � xD

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

kxv0

k2
?c2

s

ðx� � xDÞ � 4
k2

y

k2
?

q2
s D

s
: (18)

The instability will occur for

k2
y

k2
?

q2
s D >

1

4
;

where

D ¼ @

@x
ln

n0

B2
0

� �
eE0

Te
þ @

@x
ln ðB2

0Þ
� �

; (19)

and q2
s ¼ Temic

2=e2B2
0 is the so called ion-sound Larmor

radius.

Equation (18) is similar to the electrostatic limit in

Refs. 25 and 26. However, these authors did not include the

compressibility of the electron diamagnetic drift due to finite

electron temperature so the xD term in the denominator of

the right hand side of Eq. (18) was absent. The electron dia-

magnetic drift was included in Ref. 31, however part of the
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electron compressibility was omitted as described above. As

a result, our dispersion equation (18) is similar in structure to

Eq. (18) in Ref. 31, but numerical factors are different. The

difference occurs because of the incomplete account of elec-

tron flow compressibility in Refs. 26 and 31.

Typically the electric field in the acceleration zone is

large so that

eE0x

Te
>
@

@x
ln ðB2

0Þ: (20)

Then the condition for the instability is

@

@x
ln

n0

B2
0

� �
> l�1

c ; (21)

where the parameter lc is defined as

lc 	
k2

y

k2
?

q2
s

eE0x

Te
þ @

@x
ln ðB2

0Þ
� �

; (22)

and it is assumed that E0x > 0.

For weak electric field

eE0x

Te
<
@

@x
ln ðB2

0Þ; (23)

the weaker instability may set in for

4
k2

y

k2
?

q2
s

@

@x
ln

n0

B2
0

� �
@

@x
ln ðB2

0Þ > 1: (24)

Equations (21) and (24) define the instability boundary

in the ðLN; LBÞ space. For purely azimuthal propagation

(kx ¼0), and LN and LB of the same sign, the instability

occurs when LB > 2 LN . When LN and LB are of opposite

signs, the instability will occur for negative LB. There is no

instability when LB is positive but LN is negative. Figure 1

shows the contour plot of the growth rate as a function of LN

and LB for typical Hall thruster parameters (B0¼ 150 G,

n0¼ 1012 cm�3, u0¼�4.75� 107 cm/s, Te¼ 10 eV, channel

length¼ 2.5 cm) and typical characteristic lengths of the

order of the channel length. The instability growth rate is in

the megahertz range, increasing towards the marginal insta-

bility boundary LB ¼ 2 LN , close to which, the maximum

growth rate is of the order of 50 MHz. The growth rates are

smaller in the region where LB is negative and LN is positive.

The growth rate for fixed values of LB, as a function of LN , is

shown in Figs. 2 and 3 as a function of LB. The growth rate

sharply peaks as plasma parameters approach the instability

boundary. Away from this boundary the growth rate

decreases to values of the order of 0.5–1 MHz.

A characteristic feature of the dispersion relation (18) is

a weak dependence of the real part of the frequency on the

value of the equilibrium electric field, which enters only via

the kxv0 term. For the generic case LN ’ LB ’ LT ’ L/; the

real and imaginary parts of the frequency scale as

xr ’ xcikyL (25)

and

c ’ k?cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEx0

ðL�1
B � L�1

N Þ

s
’ k?cs

ffiffiffiffiffiffiffiffi
e/0

Te

s
: (26)

A notable feature of this instability is that the growth

rates are maximal near the marginal stability boundary. The

real part of the frequency also increases near the stability

boundary and does not scale with the equilibrium ¼ E� B

electron drift velocity. It is important to note that the density

gradient parameter LN is intrinsically related to the electric

field and, effectively, the electric field enters the dispersion

relation (17) also via LN .

The gradient-drift instability described by Eq. (17) per-

sists also in the case when there is no gradient of the mag-

netic field. In this case, and assuming kx ¼ 0, the dispersion

relation reduces to

FIG. 1. Contour plot of the growth rate as a function of LN and LB.

FIG. 2. Growth rate as a function of LN for different values of LB.
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x�
x� x0

¼ k2
?c2

s

x2
: (27)

The solution of the dispersion relation (27) is

x ¼ k2
?c2

s

2x�
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x�x0

k2
?c2

s

s !
: (28)

The growth rate for the case of no magnetic field gradients is

shown in Fig. 4. From Eq. (28), the conditions for instability

are obtained as ð@=@xÞ ln ðn0ÞE0 > 0 and

4ju0j
xci

1

LN
> 1: (29)

Instabilities driven by plasma density gradient and E0 �
B0 drifts were studied in ionospheric physics,37–39 though

under different conditions, either with magnetized ions38 or

unmagnetized but strongly collisional ions.39

III. ELECTRON TEMPERATURE FLUCTUATIONS
EFFECTS

The instability described in Refs. 26 and 31 and revis-

ited in this paper is caused by an unfavorable combination of

plasma density and magnetic field gradients. It is well

known, however, that such instabilities can be affected by

temperature gradients which were neglected by the authors

of Refs. 26 and 31. Temperature gradient instabilities40 are

the main source of anomalous plasma transport in fusion

plasmas41 and may occur both in configurations with inho-

mogeneous magnetic field as well as in configurations with a

uniform field.42,43 In this section, we consider how the gradi-

ent drift instability in inhomogeneous magnetic field may be

affected by temperature gradients, which are known to be

significant for typical Hall thruster parameters.44

When fluctuations of the electron temperature are

included, the electron continuity and momentum equations

are complemented by the electron energy balance equation

in the form

3

2

dp

dt
þ 5

2
pr � vþr � q ¼ 0; (30)

which includes the electron diamagnetic heat flux

q ¼ � 5

2

cp

eB0

b�rT: (31)

The electron energy equation, together with the electron

continuity equation, quasineutrality and the equations for ion

component constitutes a three-field ðn; T ;/Þ fluid model for

gradient-drift instability, while in the two-field model, only

the electron density and electrostatic potential were included

ðn;/Þ: Taking into account finite electron temperature fluctu-

ations, the electron density equation (13) results in

�ðx� x0 � xDÞ
~ne

n0

þ xD

~Te

T0

¼ �ðx� � xDÞ
e/
Te
: (32)

The temperature evolution can be found from the energy

balance equation (30) or equivalently from the temperature

equation,

3

2
n

dT

dt
þ pr � vþr � q ¼ 0: (33)

Using Eqs. (9) and (31), Eq. (33) is reduced to the form

3

2
n
@T

@t
þ vE � rT

� �
� 2pvE � r ln Bþ 2cT

eB0

r ln B � b

�rpþ 5cp

eB0

r ln B � b�rT ¼ 0: (34)

In linearized form, one gets the equation,

xD
~ne

n0

þ 7

2
xD�

3

2
ðx�x0Þ

� �
~Te

Te
¼ xD�

3

2
x�T

� �
e/
Te
; (35)

where

x�T ¼ �
kycTe0

eB0LT
(36)

and

1

LT
¼ @ ln Te0

@x
:

The coupled equations (32) and (35) for density and

temperature can be solved giving the following equations for

the electron temperature and density:

~Te

Te
¼
ðx� x0 � xDÞx�T � 2

3
ðx� x0 � x�ÞxD

ðx� x0Þ2 � 10
3

xDðx� x0Þ þ 5
3
x2

D

e/
Te
; (37)

ne

n0

¼
�ðx�x0ÞðxD�x�ÞþxD x�T�7

3
x�

� �
þ5

3
x2

D

ðx�x0Þ2�10
3
xDðx�x0Þþ5

3
x2

D

e/
Te
: (38)

FIG. 3. Growth rate as a function of LB for different values of LN as given

by the two fluid models. The vertical lines correspond to the instability

boundary. As can be seen from the plots, the growth rate tends asymptoti-

cally to the values 1.56 MHz and 2.66 MHz, which correspond to the straight

horizontal lines in Fig. 7.
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One should note that the models of the electron density

and electron temperature used in our paper, as well as in pre-

vious papers, completely neglect the parallel electron dy-

namics in the direction of the equilibrium magnetic field.

Using Eqs. (6) and (38), along with the quasineutrality con-

dition, the following cubic dispersion relation is obtained:

�ðx� x0ÞðxD � x�Þ þ xD x�T � 7
3
x�

� �
þ 5

3
x2

D

ðx� x0Þ2 � 10
3

xDðx� x0Þ þ 5
3
x2

D

¼ k2
?c2

s

ðx� kxv0iÞ2
: (39)

It is important to note that temperature fluctuations remain

finite even in plasma without temperature gradients. Finite

temperature fluctuations occur as a result of plasma compres-

sion in inhomogeneous magnetic field. Note that plasma dy-

namics is not adiabatic due to finite compressibility of the heat

flux, r � q 6¼ 0: in magnetized plasmas with nonuniform mag-

netic field the flow of plasma density and energy are different.

As a result even in the limit of LT ¼ 1, the three-field model

predicts different stability picture as compared to the two-field

model. In a homogeneous magnetic field, when xD ¼ 0, the

dispersion relation form Eq. (39) reduces to Eq. (27) and tem-

perature gradient effects are not important.

Equation (39) is solved numerically to study the effect

of the gradients of the electron temperature in the three-field

model. The qualitative landscape of the instability in

ðLN ; LBÞ plane is similar to the results from the two-field

model in Fig. 1, though, quantitatively, the growth rate val-

ues and the behavior change (Fig. 5).

The growth rate profile as function of LB and LT is

shown on the contour plot in Fig. 6 for LN ¼ 0:5 cm and

LN ¼ 1:5 cm. For these characteristic lengths of density gra-

dient, the maximum growth rate for positive values of LT is

of the order of 15 MHz and 22 MHz, respectively, attained

close to the instability boundary. Also, it is clear from this

figure that the stability window widens for increasing posi-

tive values of LN . For the positive values of LN used, the

FIG. 4. Growth rate as a function of LN for the case with no gradients of the

magnetic field.

FIG. 5. Growth rate as a function of LN for different values of LB when LT

is 1 cm.

FIG. 6. Contour plot of the growth rate as a function of LB and LT for

LN¼ 0.5 cm and LN¼ 1.5 cm.
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instability is also possible for negative gradients of tempera-

ture. The value of the growth rate in this case is in general

smaller that for positive values of LB.

The Fig. 7 shows the effects of temperature in three-field

model. For lower values of LB (strong magnetic field gradi-

ent), the instability occurs only for a narrow window of LT

values. When the characteristic length LB increases, the insta-

bility regions becomes wider and the growth rate to decrease

from a maximum value of around 10 MHz to the value of

1.56 MHz for LN¼ 0.5 cm and from around 20 MHz to

2.66 MHz for LN¼ 1.5 cm. The latter values correspond to

the limit of no magnetic field gradient (LB !1). The same

limit is recovered from the two-field model as shown in

Fig. 3. One of the important results of the three-field model is

the prediction of the stabilization of the instability for larger

of the temperature gradient. On the other hand, in unstable

regions, the three-field model predicts higher growth rates

compared to the two-field model. Comparison between the

two-field and three-field models can be seen from Fig. 7

which shows the growth rate as a function of the temperature

gradient LT for different values of LB and LN . This behaviour

is to be compared with the results of the two-field shown in

Fig. 3, where the growth rate fluid model is shown as a func-

tion of LB, for two values of LN used in Fig. 7.

Another important difference between the two field

model and the three field model is the growth rates predicted

for small values of the electric field, as the ones near the an-

ode region in a Hall thruster. The dependence of the growth

rate on the electric field is drawn in Fig. 8. In both cases, the

growth rate increases with increasing electric field and

decreases with increasing value of LB, which corresponds to

regions away from the instability boundary. In the regions

with electric field close to zero, the two field model predicts

a non zero growth rate, while the three field model predicts a

small stable region close to E0¼ 0. This stable region

becomes narrower as LB increases. Close to this stability

boundary, the growth rate increases sharply, reaching a peak

and then falls and continues to grow with the electric field.

Also, when the parameter LT increases, while LB and LN

remain fixed, the growth rate decreases, but the stable region

becomes wider, showing that the effect of the temperature

gradients from one side to reduce the instability when LT

FIG. 7. Growth rate as a function of LT for (a) LN¼ 0.5 cm and (b)

LN¼ 1.5 cm, for different values of LB. The straight lines correspond to the

values predicted by the two-field model.

FIG. 8. Growth rate as a function of the electric field for LN¼ 1.5 cm as pre-

dicted by (a) the two-field model and (b) the three-field model, LT¼ 1 cm.
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grows, but at the same time, to create regions of stability in

regions where LT is small, as can be seen in Fig. 9.

This situation can be clearly appreciated in Fig. 10,

where the growth rate as a function of the electric field is

plotted for the parameters LN¼ 1.5 cm and LB¼ 2.9 cm. For

these parameters, the two field model predicts stability, while

the three-field model predicts instability for certain values of

the electric field.

IV. SUMMARY

Understanding of the turbulent electron mobility requires

a detailed knowledge of the spectra of unstable modes and

their saturation levels. Quantitative information about the

conditions for linear instabilities and mode eigenvalues (real

part of the frequencies and growth rates) is, thus, of interest.

Earlier works in instabilities in Hall thruster plasmas revealed

the plasma density and magnetic field gradients as important

sources of long wavelength plasma instabilities. We have

revisited this problem and derived a modified criterion for

this instability as discussed in Sec. II. We have extended the

fluid model to include the dynamics of electron temperature

and have developed a three-field fluid model that includes the

electron energy equation. The inclusion of two moments,

density and temperature, provides a more accurate model of

the electron response. Such two moments ðn; T Þ model

amounts to the two-pole approximation of the exact kinetic

response and provide a reasonably accurate description of the

exact kinetic response away from the resonances.45 Such

models were shown to be successful in describing a wide

class temperature gradient modes in fusion plasmas.45 The

possible role of resonances has to be investigated with a ki-

netic model that will be reported somewhere else.

Our analysis shows the effects of temperature fluctua-

tions included in two-moment (n,T), or equivalently, in

three-field model, ðn; T; Þ/, may significantly modify the

instabilities of Hall plasmas with unmagnetized ions, in par-

ticular, near the marginal stability boundary. It also predicts

the instability for the parameters where two-field model is

stable. It is important to note that gradient-drift instabilities

as predicted by our model are mostly aperiodic modes

with c� xr. The real part of the frequency does not

explicitly depend on the equilibrium electric field (only via

explicit dependence via LN and LB). Two-field model predict

the scaling for the real part of the mode frequency

xr ’ �ðk2
?=kyÞxciðL�1

N � 2L�1
B Þ
�1

, see Eq. (18). The main

features of this scaling are similar in the three-field model,

though it could be modified near the marginal stability

boundary. Experimental observations5,9,29 show inverse de-

pendence on the magnetic field and show increase with the

electric field. The scaling above does not show these fea-

tures, though they might appear via implicit dependence on

LN: In unstable case ðL�1
N � 2L�1

B Þ > 0, and real part of the

mode xr < 0, which is consistent with the direction of the

equilibrium E� B drift, though the frequency is significantly

lower than kyu0. Similar trend was observed experimen-

tally,35 where it was explained on a basis of the cyclotron

instabilities driven by the equilibrium electron drift.

Similar to the previous work,25,26,31 we have neglected

the electron inertia in the transverse electron current as well

the parallel electron flow. The latter assumption is equivalent

to the condition that the wave vector component kjj along the

magnetic field is zero, while the neglect of electron inertia

eliminates low hybrid modes. These conditions are equiva-

lent to the model of thermalized magnetic field lines intro-

duced in Refs. 1–3. In Part II, we will apply the obtained

stability criteria to the realistic configurations of plasma pa-

rameters in some Hall thruster experiments.
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