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The excitation of negative energy, ion sound type modes driven by the E�B drift and the

reactive/dissipative response of the wall sheath interface is analyzed for conditions typical in a Hall

thruster. Such sheath impedance modes are sensitive to the dielectric properties of the thruster wall

material, which therefore may have direct influence (other than via the secondary electron

emission) on fluctuations and transport. Our results predict mode frequencies consistent with the

frequencies of fluctuations observed experimentally. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885093]

I. INTRODUCTION

Classical collisional transport is not large enough to

explain the electron mobility observed in Hall thrusters. Two

main mechanisms have been proposed for the observed anom-

alous transport. The first mechanism is turbulent enhancement

due to the various plasma instabilities which exist in a Hall

thruster.1–5 The exact nature of the instabilities and the spe-

cific role they play in explaining the turbulent electron trans-

port are the subject of great interest and are currently an

active area of research.6–15 Experimental observations suggest

that wall properties also affect the electron transport.16

Electron collisions with the wall sheath have been proposed as

a second mechanism responsible for the observed anomalous

transport. The near wall conductivity, first proposed by

Morozov,17 is sensitive to the sheath structure which in turn

affects the collisions of the electrons with the wall. Both of

these mechanisms, fluctuations and near wall conductivity, are

thought to play a role in the conditions of the Hall thrusters.

The closure of the stationary electron current via the

chamber walls has a strong influence on steady state collisional

transport. This phenomenon is well documented and it is

known as the Simon short circuit effect.19–21 The role of sheath

boundary conditions on the drift wave modes was also studied

in Ref. 22. Time dependent wall sheath boundary conditions

(represented in terms of sheath impedance) for the dielectric

wall were recently derived18 and it was shown that the fluctua-

tions of the closure current (into the wall) may destabilize ion

sound type modes in the system with E0�B0 electron drift.

The sheath impedance instability strongly depends on the

dielectric properties of the wall material. In the present paper,

we will examine how the sheath impedance induced instability

may manifest itself for the conditions typical of Hall thrusters.

II. NEGATIVE ENERGY MODES IN HALL PLASMA
WITH E03 B0 ELECTRON DRIFT

The instabilities discussed in this paper are related to the

ion sound modes that exist in a non-isothermal plasma such

that Te � Ti, where Te and Ti are the electron and ion tem-

perature, respectively. The basic dispersion relation for such

modes in a non-magnetized plasma is given by the relation

x2 ¼ k2c2
s , where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound velocity

and k is the mode wave-vector. The simplest example of the

negative energy instability in Hall thruster plasma is that of

the ion sound waves in the presence of the E0�B0 electron

drift and electron collisions.

To fix notations consider an infinite collisionless plasma

with an external magnetic field B0 ¼ B0ẑ and an external

electric field, perpendicular to the magnetic field, E0 ¼ E0x̂.

We assume finite variations along the magnetic field, kz 6¼ 0,

so that in the limit x< kzvTe, the electron inertia can be

neglected (vTe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
). With these assumptions, the

electron equation of motion in the direction parallel to the

magnetic field can be written in the form

0 ¼ en0rk/� Terk~ne: (1)

From this equation and assuming that the perturbed quanti-

ties vary as eiðxt�k�rÞ, the perturbed electron density can be

obtained as

~ne

n0

¼ e/
Te
: (2)

The ion response, on the other hand, is influenced by inertia.

The ion Larmor radius is assumed to be much larger than the

characteristic wavelength of the perturbations and much

larger than the geometric length of the system such that the

ions can be considered unmagnetized. Assuming that the

ions are cold, the momentum conservation and continuity

equations give the ion perturbed density in the form

~ni

n0

¼
ðk2

y þ k2
z Þc2

s

x2

e/
Te
; (3)

where kz is the wavevector along the magnetic field, and ky is in

the azimuthal perpendicular direction. Thus, the dispersion rela-

tion for the (stable) ion sound waves in Hall plasmas is obtained

from the quasineutrality condition and Eqs. (2) and (3)a)Electronic mail: wpf274@mail.usask.ca.
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x2 ¼ ðk2
y þ k2

z Þc2
s : (4)

It is worth noting here that the equilibrium electron velocity

v0 ¼ cE0 � B0=B2
0 does not enter the above dispersion rela-

tion. In fact, the effect of the Doppler shift due to the electron

flow 0 is hidden in the response of the parallel electron current.

Though this current is not explicitly present in Eqs. (1)–(3), it

is finite. It can be found from the electron continuity equation

@~ne

@t
þ v0 � r~ne þ n0

@~vez

@z
¼ 0; (5)

which gives

~Jek ¼ �eðx� x0Þ~ne=kz; (6)

where x0¼k � v0 is the drift frequency.

It is seen from Eq. (6) that the parallel electron current

is affected by the magnetic field and exhibits a Doppler shift

with respect to the density perturbations. In an infinite

plasma, the parallel (along the magnetic field) electron cur-

rent remains arbitrary but finite. A coupling between the par-

allel electron current and the density and potential

perturbations would modify the wave dynamics. The sim-

plest feedback mechanism that can produce this coupling is

provided by electron collisions. The electron equation of

motion, Eq. (1), including collisions can be written as

en0rk/� Terk~ne � men0�e~vez ¼ 0;

ikz /� Te

e

~ne

n0

� �
þ me�e

e2n0

~Jek ¼ 0;
(7)

where �e is the electron collision frequency. The perturbed

electron density can now be written from Eq. (7) as

~ne

n0

¼ e/
Te

1

1� i�eðx� x0Þ=k2
z v

2
Te=2

: (8)

Combining the ion and electron density perturbations from

Eqs. (3) and (8) and using quasineutrality, the following dis-

persion relation is obtained:

x ¼ kcs 1� i
�e x� x0ð Þ

2k2
z v

2
Te

� �
: (9)

The dispersion relation in Eq. (9) describes ion sound

waves destabilized by electron collisions.18 The condition

x<x0 is required for the growth rate of the instability to be

positive. The equilibrium electron flow v0 is a source of free

energy for this instability. Normally, perturbations from the

full thermodynamic equilibrium, have positive energy, e.g.,

the kinetic energy is such that E ¼
Ð

mv2=2 ds> 0, where ds
is the respective volume element, and v is the perturbed veloc-

ity. In systems thermodynamically away from equilibrium,

such as in a system with a finite flow in the equilibrium state,

the perturbations which have a phase velocity lower than the

equilibrium velocity, vph< v0, may have a total energy in the

perturbed state lower than the equilibrium energy related to

the stationary flow, v0: E0 ¼
Ð

mv2ds=2 < E0 ¼
Ð

mv2
0ds=2;

here v ¼ v0 þ v0 is the total velocity, which includes an

equilibrium part v0 and a perturbation v0. These are the so

called negative energy perturbations,23 see also Ref. 24 and

references therein. The amplitude of such perturbations

increases when the energy is removed from the system, e.g.,

turning into heat due to dissipation. This way, dissipation may

destabilize the negative energy mode. Alternatively, the cou-

pling of two modes, one with negative and other with positive

energy, may lead to a reactive instability where both modes

would grow via energy transfer from the negative energy

mode to the mode with positive energy.

In the ion sound instability example considered above,

the dissipation is due to the electron collisions, which

remove energy from the fluctuations. The coupling of the

perturbed electron current, density and potential fluctuations

creates the phase shift between current and potential which

produces the instability via a positive feedback mechanism

that feeds the initial perturbations.

III. SHEATH BOUNDARY CONDITIONS AND SHEATH
INDUCED INSTABILITIES

Another feedback mechanism in a finite length plasma,

and the focal one for this paper, arises when the sheath bound-

ary conditions are included. The sheath boundary conditions

determine the electron current to the walls resulting in coupling

of perturbed plasma density and potential to produce the insta-

bilities in a process similar to that described in the example in

Sec. II. Consider a plasma between two walls separated by a

distance of 2H, where the equilibrium magnetic field B0 ¼ B0ẑ

is in the radial direction normal to the walls, the equilibrium

electric field E0 ¼ E0x̂ is in the axial direction and the elec-

trons drift along the azimuthal y direction with a velocity v0

¼ cE0 � B0=B2
0 as in a Hall thruster (see Fig. 1). In stationary

state, the ion current to the sheath is equal to the Bohm current

Ji0 ¼ en0cs; (10)

while the electron current is determined by the electrons in

the tail of the (Maxwellian) distribution function with ener-

gies above the potential drop in the sheath /0 ¼ /p � /w,

FIG. 1. The instability is driven by the component of the perturbed parallel

current that is directed into the regions of positive charge (shown with

“þ ”), thus enhancing the initial perturbation.
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where /p is the plasma potential at the plasma-sheath edge

and /w is the wall potential

J0e ¼ �
en0vTe

2
ffiffiffi
p
p exp �

eð/p � /wÞ
Te

� �
: (11)

In stationary state, the total current into the sheath is zero,

e.g., J0eþ J0i¼ 0. The perturbed ion and electron currents

are determined by the density, potential, and temperature

perturbations given by Eqs. (10) and (11) as

~Ji ¼
~ni

n0

þ 1

2

~Te

Te0

 !
J0i; (12)

~Je ¼
~ne

n0

þ 1

2

~Te

Te0

�
eð~/p � ~/wÞ

Te
� K

~Te

Te0

 !" #
J0e; (13)

where K ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=2pme

p
. The parallel current to the sheath

is the sum of the ion and electron currents from Eqs. (12)

and (13). The total sheath current can then be expressed,

neglecting temperature fluctuations, as18

~Jsh ¼
e2n0cs

Te

~/p � ~/w

� �
: (14)

If we have a conductive wall, ~/w ¼ 0, the sheath current

results in dissipation, the so called sheath resistivity.25–28 In

the case of a dielectric wall, one can assume that due to cur-

rent conservation, the current at the plasma sheath edge is

equal to the displacement current in the dielectric wall.

Using the potential at the wall as a boundary condition and

assuming that kzH � 1, where H is the half width of the

channel, the potential at the wall can be written as function

of the potential in the wall plasma18

~/w ¼ ~/p

1

1� iexjkyjcs=x2
pi

; (15)

where e is the dielectric constant of the wall material and xpi

is the ion plasma frequency. Using Eqs. (14) and (15), the

current into the sheath can be written as a function of the per-

turbations of the plasma potential as

~Jsh ¼ �
e2n0cs

Te

~/p

iK

1� iK
; (16)

where K � exjkyjcs=x2
pi. The value of the K parameter

depends on the mode wave-vector ky and the dielectric con-

stant e.
The expression for the sheath current that couples the

perturbed plasma density, potential and current can be used

to derive the dispersion relation for two types of modes.

One of these modes is characterized by long wavelengths

such that H@/@z � 1, while the other modes take into

account the variations along the magnetic field. In both

cases, the modes are rendered unstable due to the parallel

component of the current that is directed into the regions

of positive charge and enhances the initial perturbations, as

illustrated in Fig. 1.

To study the long wavelength global modes, consider

a long plasma tube between the walls z¼�H and z¼H
(see Fig. 1). The electron and ion continuity equations,

neglecting variations along the axial direction, can be

written as

@~ne

@t
þ v0

@~ne

@y
� 1

e

@ ~Jke
@z
¼ 0; (17)

@~ni

@t
� i

en0

mix
@2 ~/
@y2
þ 1

e

@ ~Jki
@z
¼ 0: (18)

We can introduce the average density and potential as

�n � 1

2H

ðH

�H

~ndz; (19)

�/ � 1

2H

ðH

�H

~/dz; (20)

and the ion and electron continuity equations can be aver-

aged, assuming an odd parity for the parallel currents

(Jkð�HÞ ¼ �JkðHÞ), to produce

�iðx� x0Þ�n �
JkeðHÞ

eH
¼ 0; (21)

�ix�n þ ien0

k2
y
�/

xmi
þ

JkiðHÞ
eH

¼ 0; (22)

where JkeðHÞ and JkiðHÞ are the electron and ion currents at

the sheath boundary, given by Eqs. (12) and (13),

JkiðHÞ ¼
nðHÞ

n0

J0i; (23)

JkeðHÞ ¼
nðHÞ

n0

J0e þ
iK

1� iK

e

Te
/ðHÞJ0e: (24)

From Eqs. (19)–(24), it can be seen that the electron

current exhibits a Doppler shift while the ion current does

not. Introducing the sheath collision frequency, �sh¼ cs/H,

and using the expressions obtained for the currents above,

the perturbed average ion and electron densities are given

by18

�ni

n0

¼
k2

y c2
s

xðxþ i�shÞ
e�/
Te
; (25)

�ne

n0

¼ �shK

1� iKð Þ x� x0 þ i�shð Þ
e�/
Te
: (26)

Using quasineutrality and assuming that K< 1 (dielectric),

we can obtain the following dispersion relation:18

x2 xþ i�shð Þ ¼
jkyjcsx2

pi

e�sh
x� x0 þ i�shð Þ: (27)

The mode described by Eq. (27) has an unstable root for

x<x0, given by

062113-3 Frias et al. Phys. Plasmas 21, 062113 (2014)



xr ’ c ’ �
x0jkyjcsx2

pi

e�sh

 !1=3

; (28)

which corresponds to a reactive instability of the negative

energy mode similar to the one described at the beginning of

this section. In the opposite limit, K � 1, the instability

becomes dissipative with a real part of the frequency and a

growth rate of

�xr ’ c ’
jx0jk2

y c2
s

2�sh

 !1=2

: (29)

The transition between the two limits, K< 1 and K> 1,

is controlled by the mode frequency and the value of the

dielectric constant e. The limit of an infinitely conducting

wall can be obtained formally by taking e!1.

The effect of the ion convection is manifest in the inclu-

sion of the term kxV 0i, where kx is the wavevector in the

axial direction and V0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e/=mi

p
is the equilibrium ion

velocity due to the electric field. When this term is included,

the dispersion relation for the long wavelength (global)

modes given by Eq. (27) becomes

xðx� kxV0iÞ x� kxV0i þ i�shð Þ ¼
jkyjcsx2

pi

e�sh
x� x0 þ i�shð Þ:

(30)

Considering that the Hall thruster channel length, Lx, is

of the order of 0.1 m, the axial wavevector is kx¼ 2p/Lx �
62.83 rad/m and the maximum ion equilibrium velocity is of

the order of 104 m/s, the ion convection frequency for the

long wavelength modes is fi¼ kxV0i/2p � 105 Hz, which is

lower than the typical frequencies of the global and local

modes obtained in this paper.

The local modes are obtained when the variations along

the magnetic field are taken into account. The eigenmodes

obtained in this case depend on both the z (parallel to the

magnetic field) and y (perpendicular to the magnetic field)

coordinates. In general, these perturbations can be expressed

as the sum of a mode with both z and y dependence and a

boundary mode that depends only on y

/ ¼ /0cosðkzzÞ þ /b½ 	eiðkyy�xtÞ; (31)

n ¼ en0

Te
/0cosðkzzÞ þ /b

k2
y c2

s

x2

� �
eiðkyy�xtÞ: (32)

Here, x is given by Eq. (4), ky is a free parameter determined

from the geometry and boundary conditions of the region of

interest and kz is an eigenvalue that is calculated from the

solvability condition of the linear system obtained from the

ion and electron continuity and momentum conservation

equations.

Coupling to the sheath follows from the averaged elec-

tron and ion equations (21) and (22), where now the average

potential and density over the region from z¼�H to z¼H
can be calculated using Eqs. (31) and (32) to produce

�/ ¼ /0

sin kzHð Þ
kzH

þ /b

� �
exp �ixtþ ikyyð Þ; (33)

�n ¼ en0

Te
/0

sin kzHð Þ
kzH

þ /b

k2
y c2

s

x2

" #
exp �ixtþ ikyyð Þ: (34)

Replacing the values for the currents in Eqs. (23) and

(24) and the averaged density and potential from Eqs. (33)

and (34) in the electron continuity equation (21), one

obtains

/b �iðx� x0Þ
k2

y c2
s

x2
þ �sh

k2
y c2

s

x2
þ �sh

iK

1� iK

� �

þ/0 �iðx� x0Þ
sin kzH

kzH
þ �shcos kzH

1� iK

� �
¼ 0:

(35)

Using quasineutrality, the ion continuity equation (22) can

be written as

ix0�n þ i
en0

xmi
k2

y
�/ þ 1

eH

iK

1� iK

e

Te
/ðHÞJ0e ¼ 0;

or

/0 ix0

sin kzH

kzH
� i

k2
y c2

s

x
sin kzH

kzH
þ iK�shcos kzH

1� iK

 !

þ/b �iðx� x0Þ
k2

y c2
s

x2
þ �sh

iK

1� iK

� �
¼ 0:

(36)

From Eqs. (35) and (36), a 2� 2 linear system for /b and

/0cosðkzHÞ is obtained. The solvability condition for this

system of equations yields the dispersion relation for the

small scale (local) modes as18

tan kzHð Þ
kzH

� x0 �
k2

y c2
s

x
�

ix x� x0ð Þ
�sh

1�
k2

y c2
s

x2

� �"

þix
x2

k2
y c2

s

� 1

 !
K

1� iK

#

þ x� x0 þ
�sh

1� iK
� �sh

x2

k2
y c2

s

K

1� iK

" #
¼ 0: (37)

The eigenvalues for x can be obtained by solving Eq. (37)

together with the dispersion relation in Eq. (4). The local and

global modes dispersion relation have been studied in detail

in Ref. 18. The dispersion relations predict perturbations

which have azimuthal phase velocity in the direction of the

electron E0�B0 drift. The growth rate and absolute value of

the frequency of the unstable modes grow with the height of

the channel, and the electron drift velocity x0. The growth

rate also exhibits a 1=
ffiffiffiffiffi
mi
p

dependence. The absolute value

of the real part of the frequency and the growth rate tend to

decrease with increasing dielectric permittivity, but they do

not completely disappear in the limit e ! 1 which would

correspond to the case of the fully conducting wall with

/w ¼ 0.
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IV. SHEATH INDUCED MODES IN HALL THRUSTER

The instabilities studied in Sec. III can be thought of as

resulting from a positive feedback mechanism between the

Doppler shifted parallel electron current and fluctuations of

plasma density and potential. In this section, we investigate

characteristic frequencies for these instabilities in conditions

typical for the Hall thruster. As an example, we will use

generic parameters from the 1 kW Laboratory Hall thruster

developed at the PPPL Hall Thruster Experimental facil-

ity.29,31 This thruster has a channel made of boron nitride ce-

ramic (BN) and has length of 90 mm (from anode to channel

exit) and a mean radius of 36 mm.31 For our study, we will

use measured plasma parameters for the acceleration and

exit region of the thruster as reported in Ref. 29.

The growth rate and frequency obtained from Eqs. (27)

and (37) using the plasma parameters corresponding to the

1 kW Laboratory Hall thruster are shown in Fig. 2. The insta-

bilities are present in the region that extends from 8 mm

upstream from the channel exit to the exit of the channel.

The growth rate and the real part of the frequency of the

instabilities predicted by the global modes in Eq. (27) reach

maximum values of f¼ 2.88 MHz and c¼ 3.53 MHz 2 mm

upstream from the channel exit. The real part of the fre-

quency and the growth rate of the instabilities predicted by

the local modes in Eq. (37) reach maximum values of

f¼ 2.88 MHz and c¼ 3.53 MHz, also 2 mm upstream from

the exit of the thruster channel. It turns out that for these pa-

rameters, the growth rate and frequency for the global and

local modes are identical. These calculated frequencies are

of the same order of magnitude as the azimuthal modes

experimentally observed by Litvak et al.29 The calculated az-

imuthal phase velocity of the instabilities for the lowest azi-

muthal mode number (m¼ 1) is shown in Fig. 3. The

azimuthal phase velocity for the global modes reaches a

maximum value of 6.52� 105 m/s at 2 mm upstream from

the channel exit. The maximum value for the azimuthal

phase velocity of the local modes is reached at 2 mm

upstream from the channel exit and has a value of

6.52� 105 m/s. The equilibrium E0�B0 electron drift veloc-

ity has a maximum value of 2.25� 106 m/s also at 2 mm

upstream from the channel exit. Thus, the phase velocities of

both local and global modes are below the equilibrium elec-

tron drift velocity, meaning that the instability is of the nega-

tive energy type. The phase velocity of the unstable modes

reported by Litvak et al. has a maximum value of the order

of 1.75� 106 m/s also at 2 mm upstream from the channel

exit. The instability reported in the current paper is also char-

acterized by having a real part of the frequency that

decreases with increasing magnetic field and increases with

increasing electric field as can be seen in Fig. 4. These

results agree with the results obtained by Litvak et al. (com-

pare with Fig. 7 from Ref. 29).

Another device of interest is the SPT-100 Hall thruster.

The SPT-100 thruster has dielectric walls made of Borosil

(BNSiO2) whose dielectric constant, e, is 3.50–3.75. The

FIG. 2. Frequency and growth rate of the instabilities in the 1 kW

Laboratory Hall thruster29 as a function of axial position from the channel

exit as predicted by Eqs. (27) and (37); ky¼ 28 rad/m (m¼ 1). The anode is

located at x¼�36 mm. The exit plane is at x¼ 0.

FIG. 3. Azimuthal phase velocities of the instabilities in the 1 kW

Laboratory Hall thruster29 as a function of axial position as predicted by

Eqs. (27) and (37) for different mode numbers and the equilibrium E0�B0

electron drift velocity, ky¼m/r, r¼ 3.6 cm. The anode is located at

x¼�36 mm. The exit plane is at x¼ 0.

062113-5 Frias et al. Phys. Plasmas 21, 062113 (2014)



channel width is 1.50 cm and the mid radius of the thruster is

5 cm.30 The growth rates and frequency obtained from Eqs.

(27) and (37) using the plasma parameters in the discharge

chamber the of SPT-100 Hall thruster obtained by Hoffer

with the HPHall-2 code32,33 as reported in Ref. 30 are shown

in Fig. 5. For these conditions, the instabilities are present in

the region located 9 mm upstream from the channel exit for

the local modes. The global modes predict instability for the

channel region, but the growth rate is small reaching a value

of 1 MHz at around 8 mm upstream from the channel exit

and a maximum value of 3.03 MHz 2 mm upstream from the

exit plane. The real part of the frequency of the instabilities

predicted by the global modes Eq. (27) reaches a value of

2.554 MHz at the exit of the channel, while the frequency for

the local modes reaches a value of 2.5 MHz at the channel

exit. These values correspond to azimuthal phase velocities

at the exit plane of 8.03� 105 m/s for the both the global and

local modes. Similarly to the case with the 1 kW Laboratory

Hall Thruster, the real part of the frequency and the growth

rates for the local and global modes are very close.

The results obtained for the SPT–100 parameters

are similar to high frequency instabilities reported by

Lazurenko et al.13 Lazurenko et al. studied high frequency

instabilities in the 1.5 kW SPT-100ML and 5 kW PPS-

X000ML Hall thrusters. They observed a high frequency

mode in the region directly downstream from the peak of the

magnetic field inside the channel and in the near exit region

that propagates azimuthally with a phase velocity of

2.0� 106 m/s, which corresponds to a frequency of 7–9 MHz

for the lowest azimuthal mode.13 This velocity is close to the

expected electron equilibrium E0�B0 velocity. The real part

of the frequency of the instabilities reported by Lazurenko

et al. increases with increasing discharge voltage (see Fig.

10 in Ref. 13). Also, a decrease of the frequency with

increasing magnetic field in the PPS-X000ML Hall thruster

is reported.13 This is similar to the trend observed in the

experiments from Ref. 29.

As noted above, in the channel exit region, the real part

of the frequency and the growth rate of the instabilities pre-

dicted by both global and local dispersion relations are iden-

tical. The frequency of the local modes, x, and eigen-value

wavenumber in the direction parallel to the magnetic field,

kz, are calculated using Eqs. (4) and (37). For the frequencies

FIG. 4. Frequency of the modes predicted by Eqs. (27) (a) and (37) (b) as a

function of the magnetic field for different values of the electric field in

1 kW Laboratory Hall thruster,29 ky¼ 28 rad/m (m¼ 1).
FIG. 5. Frequency and growth rate of the instabilities in a SPT-100

thruster30 as a function of axial position from the channel exit as predicted

by Eqs. (27) and (37), ky¼ 20 rad/m (m¼ 1, poloidal mode number). The

exit plane is at x¼ 0.
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predicted by the local modes in the channel exit region, the

obtained parallel (to the magnetic field) wavenumber are

such that the factor tanðkzHÞ=kzH is small, tanðkzHÞ=kzH
� 1. Taking this into account, the equation for the local

modes in the region close to the channel exit can be written as

k2
y c2

s ðx� x0Þ ¼ x2 �shK

1� iK
: (38)

In the exit region, we have K � 1 and the sheath collision

frequency �sh smaller than both the frequency of the instabil-

ity and the electron drift frequency. This allows us to write

the equation for the local modes in this region as

x3 ¼
jkyjcsx2

pi

e�sh
x� x0ð Þ; (39)

which is the same as the dispersion relation for the global

modes, Eq. (27), under the assumption that �sh � x, x0.

Another result obtained from the solution to the eigenvalue

problem for kz is that from Eqs. (31) and (32), we have that

/b � /0, which means that the potential and density pertur-

bations are mainly boundary modes that depend on the azi-

muthal coordinate, a characteristic similar to that of the

global modes.

Now, we will try to estimate the magnitude of the axial

current produced by these fluctuations using the quasilinear

estimates. The perturbations of the azimuthal electric field

produce the axial drift velocity

~vex ¼
~Ey

B0

: (40)

This perturbed electron drift results in the axial electron cur-

rent, whose time average can be calculated at each point

along the channel as

h~Jexi ¼
1

2
Re e~ne~v



ex

	 

: (41)

Using the expression in Eq. (25) for the perturbed

plasma density, along with quasineutrality, and with the azi-

muthal electric field given by the potential perturbations
~Ey ¼ �iky/, the averaged axial electron current can be cal-

culated as

h~Jexi ¼
e2n0k3

y c2
s

2B0Te

j/j2

jxj2jxþ i�shj2
xrð2cþ �shÞ: (42)

This estimate can be written in the form

h~Jexi ’
n0Tek3

y c2
s

B0

e2j/j2

T2
e jxj

2
; (43)

assuming jxj ’ xr ’ c. For (purely) sound waves with x ’
kycs, and ej/j=Te ’ 1, this estimate would lead to the Bohm

like current h~Jexi ’ n0Teky=B0, ky¼m/r, where m is the azi-

muthal wave number and r is the radius. Note that potential

fluctuations of the order of j/j ¼ 10 V were observed in

experiments13,34 for the exit region.

However, for the boundary modes considered here, Eq.

(43) predicts a much lower amplitude for the axial current

because the amplitude of density fluctuations proportional to

the ratio k2
y c2

s=x
2 (see Eq. (25)) is small for the modes under

consideration. The suppression of the amplitude of the den-

sity response (with respect to the amplitude of potential fluc-

tuations) occurs as a result of the current constraint at the

sheath, Eqs. (23) and (24). It is important to note that the

sheath response depends on the dielectric constant of the

wall material. In the limit K � 1 (high e and ky) both the

mode frequency and growth rate decrease.18 In this regime,

using the frequency given by Eq. (29), the axial current esti-

mate in Eq. (43) takes the form

h~Jexi ’
n0Te

B0

ky
�sh

jx0j

� �
ej/j
Te

� �2

: (44)

In the K� 1 regime, as seen from Eq. (44), the current

density does not depend explicitly on either ky or e.
Numerically, for the thruster parameters used above, and

j/j ’ 10 V, the axial current, calculated from Eq. (44), has a

maximum value of the order of 102 A/m2, consistent with

typical experimentally observed values. The current ampli-

tude decreases with increasing magnetic field (downstream

towards the exit). The current decrease with magnetic field is

weaker than B�1
0 ; note that in the e!1 limit, the magnetic

field dependence formally disappears in Eq. (44). The

self-consistent evaluation of the anomalous current requires

nonlinear theory to determine the fluctuation amplitude as

well as the effective wave number.

V. DISCUSSION AND SUMMARY

The stationary E0�B0 flow of magnetized electrons is a

powerful source of free energy for instabilities in plasmas

with unmagnetized ions. A variety of bulk plasma modes

driven unstable due to gradients of magnetic field, plasma

density, and collisional and ionization effects;4,6,7,9–12,35

were considered as potential sources of turbulent transport.

In this paper, we considered a new mechanism due to posi-

tive feedback between the plasma current into the sheath and

the plasma potential fluctuations. This feedback coupling

was described as a complex sheath impedance, resulting in

the instability of bulk plasma and sheath fluctuations. This

shows the dependence of the instabilities on the dielectric

properties of the wall material, as was noted earlier from ex-

perimental results.16

The instabilities discussed in the present paper are

mainly localized in the region around the peak value of the

magnetic field. They have a real part of the frequency in the

1–10 MHz range, giving the azimuthal phase velocity of the

order of 6.52� 105–8.03� 105 m/s for the lowest azimuthal

wavenumber m¼ 1. This phase velocity is lower but of the

same order of magnitude as the equilibrium E0�B0 electron

drift velocity. Similar propagation characteristics have been

observed experimentally by Litvak et al.29 and Lazurenko

et al.13 for different types Hall thrusters.

The real part of the frequency of both the global and

local modes in Eqs. (27)–(37) decreases with increasing
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magnetic field and increases with increasing electric field

similar to the behavior observed in experiments performed

by Litvak et al. and Lazurenko et al., as can be seen in

Fig. 4. This is also consistent with the observation that the

maximum values of both the real part of the frequency and

the growth rate correspond to the region of the maximum

equilibrium E0�B0 velocity.

The characteristic phase velocity of the modes studied in

our work is weakly sensitive to the mode number, as shown in

Figs. 3 and 6. For higher mode numbers, the mode frequency

increases, while the phase velocity decreases (see Figs. 3 and

6). In these regimes, kinetic electron cyclotron effects need to

be included, but these considerations are outside the scope of

our paper. Tsikata et al. have observed fluctuations in the

5 kW PPS-X000ML Hall thruster that are located outside of

the peak of the magnetic field and have a real part of the fre-

quency of around 4.5 MHz and wavelengths of the order of

the electron cyclotron radius.14,15 These instabilities are char-

acterized by a phase velocity much smaller than the E0�B0

equilibrium drift velocity and originate due to the resonance

of the electron cyclotron frequency with the azimuthal elec-

tron drift frequency kyv0.
7,14,15

In our model, wall material effects manifest themselves

via the dielectric permittivity of the wall. The walls of the

Hall thrusters studied are made of Boron Nitrate (1 kW PPPL

Laboratory Hall Thruster) and Borosil, BNSiO3, (SPT-100),

whose permittivity can increase with temperature. The

thruster walls can reach temperatures of the order of 500 �C,

which may result in a permittivity as high as 50. In the pres-

ent paper, we have considered purely dielectric wall materi-

als (real e). The more general case of finite conductivity

(complex permittivity e) is not studied here, though the case

with ideally conducting walls can be reproduced in the limit

e!1. Our results indicate that the dielectric permittivity of

the wall material acts as an additional parameter that may

affect the electron transport and thruster performance and

thus its effects are complementary to the secondary electron

emission (SEE) effects which are also important for the

electron transport.16 It is interesting to note that the possible

influence of the dielectric properties of the wall material on

the thruster performance was noted in Ref. 36.

In this paper, the effect of the dielectric properties of the

wall material was considered using the example of ion sound

waves. The frequencies of the sheath impedance modes

obtained in this paper are in the 2.0–10 MHz range compara-

ble to the typical lower hybrid frequency. A more accurate

model that takes into account the electron inertia, which was

ignored in the present work, is required but is left for future

work. A complete quantitative theory requires also a number

of other effects, e.g., plasma gradients, collisions and finite

Larmor radius, that are neglected here but that have been

considered earlier for the problem of anomalous transport in

Hall thrusters.6,7,9,11,12
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