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Electromagnetic forces and internal stresses in dielectric media
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The macroscopic electromagnetic force on dielectric bodies and the related problem of the momentum
conservation are discussed. It is argued that different forms of the momentum conservation and, respectively,
different forms of the force density, correspond to the different ordering in the macroscopic averaging procedure.
Different averaging procedures and averaging length scale assumptions result in expressions for the force density
with vastly different force density profiles which can potentially be detected experimentally by measuring the
profiles of the internal stresses in the medium. The expressions for the Helmholtz force is generalized for the
dissipative case. It is shown that the net (integrated) force on the body in vacuum is the same for Lorentz and
Helmholtz expressions in all configuration. The case of a semi-infinite medium is analyzed and it is shown that
explicit assumptions on the boundary conditions at infinity remove ambiguity in the force on the semi-infinite
dielectric.
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I. INTRODUCTION

Electromagnetic forces on charged particles result in an
overall force imparted on a body that is called radiation
(ponderomotive) pressure. Though these forces are small,
their applications are becoming increasingly important (e.g.,
in manipulations of nanoparticles, optical trapping, and ma-
nipulation of biological cells [1–6]). In general, the force is
determined by the momentum conservation equation in the
medium. Therefore the force exerted by the electromagnetic
field on a body is an intrinsic part of the problem of the
momentum of light and the form of the electromagnetic
stress tensor in a material medium. The two most famous
expressions suggested for the momentum of light in the
medium are those postulated by Abraham and Minkowski,
respectively, given by gA = E × H/c2 and gM = D × B.
Different expressions for the momentum result in different
expressions for the stress tensor and different expressions for
the radiation force on a material medium. There have been
numerous expressions for the ponderomotive force published
in the literature [7–11] and a number of attempts were made to
resolve the problem experimentally [9,12–14]. There also exist
a number of review papers that extensively cover the theoretical
discussions of this problem as well as experimental results
and interpretations [9,12]. In contrast to most of the previous
work, we consider one particular aspect that is notably missing
in previous discussions. We analyze the spatial distribution of
the radiation forces and show how different expressions for
macroscopic force correspond to the average of microscopic
forces. We argue here that the introduction of the macroscopic
force inevitably requires one or another form of averaging
and that the various expressions for the radiation forces cor-
respond to different sizes of the sampling volume (averaging
length scale). Therefore, different expressions for the forces
represent different levels of resolution at which the forces
can be measured. Different force densities result in internal
stresses existing at different length scales of the averaging
volume.
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This article is organized as follows. In Sec. II, the problem
of the momentum exchange and the force is explored from
the microscopic point of view. In Sec. III, the Abraham and
Minkowski expressions for the momentum and the stress
tensor of the electromagnetic field in a medium are reviewed
and discussed from the perspective of the momentum exchange
between a different subsystem. In Sec. IV, an expression for
the macroscopic force density is derived by using different
ordering of the averaging length scales. The force density is
compared with the Lorentz force density obtained from the
macroscopic Maxwell’s equations. In Sec. V, the radiation
force on a finite length slab is calculated. In Secs. VI and
VII, the force on a dielectric coating film is calculated using
two different formulations. In Sec. VIII, the force on a slab
separated from a semi-infinite medium by an air gap of finite
width is calculated. In Sec. IX, the forces on a finite length
dielectric slab with dissipation and on a semi-infinite region
are calculated. In Sec. X, the summary and conclusions are
given.

II. MOMENTUM EXCHANGE AND FORCES
AT THE MICROSCOPIC LEVEL

Conceptually, the exchange of momentum and, respec-
tively, the forces on charged particles are easiest to consider at
the microscopic level. The Maxwell equations in microscopic
form are

∇ × b = μ0i + 1

c2

∂e
∂t

, (1)

∇ × e = −∂b
∂t

, (2)

∇ · e =ρ/ε0, (3)

∇ · b = 0, (4)

where ρ and i are the microscopic charges and currents due to
all charged particles and e and b are the microscopic electric
and magnetic fields. From Eqs. (1)–(4), one can write the
conservation of the momentum of the electromagnetic field in
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the form,
∂

∂t
ε0 ( e × b) + ∇ · t = −(ρe + i × b), (5)

t =ε0

(
ee − 1

2
e2I

)
+ 1

μ0

(
bb − 1

2
b2I

)
. (6)

The term on the right-hand side of Eq. (5) represents the
momentum exchange between the electromagnetic field and
the charged particles. This term, which is simply the total
Lorentz force on a charged particle, appears with the opposite
sign in the conservation law for the mechanical momentum of
particles:

d

dt

∑
i

mivi = f ≡ ρe + i × b, (7)

where mvi is the mechanical momentum of the ith particle
and the sum is taken over all particles, ρ = ∑

i qiδ (r − ri),
i = ∑

i qiviδ (r − ri), vi = dri/dt . The microscopic Maxwell
stress tensor t in Eq. (6) describes the flux of the momentum
in the electromagnetic field.

Despite its simplicity and transparency, the conservation
of the momentum in the form given by Eqs. (5) and (7)
is impractical in most cases, except when one is interested
in stationary momentum exchange for a finite-size body in
vacuum immersed in a harmonic electromagnetic field. In the
latter case, the total force on the body is obtained by integration
over the whole body (over a closed surface in vacuum just
outside the body) and averaging over a time period longer than
the wave period, T > 2π/ω. Then the total stationary force on
the body is

F =
∫

〈f〉 dV = −
∫

dv

〈
∂

∂t
ε0 (e × b) + ∇ · t

〉

= −
∫

S

t · dS, (8)

where “〈〉” means averaging over time. For stationary pro-
cesses, the average of the time-dependent term is zero and
the force becomes equal to the total flux of the momentum
into the body (represented by the stress tensor t). The stress
tensor is calculated at the surface of the body (on its vacuum
side). Therefore it becomes equal to the stress tensor of the
macroscopic field in vacuum which can be relatively easily
calculated:

T = ε0

(
EE − 1

2
E2I

)
+ 1

μ0

(
BB − 1

2
B2I

)
. (9)

The problem of averaging (length and time scales) is already
apparent in the steps involved in Eq. (8). Averaging over the
whole body volume and taking the boundary of the integration
volume just outside of the body allows one to replace the
microscopic fields with the macroscopic ones, which can be
easily justified in vacuum. In this case t → T and the surface
values for the macroscopic field and stress tensor T can easily
be determined by solving the macroscopic scattering problem
for a harmonic electromagnetic field incident on the body. The
full time derivative term will average to zero only for periodic
processes when the time average is done over a time scale
longer than the wave period, T > 2π/ω. One has to assume

also that the local instantaneous fields e and b do not involve
correlated fast scale processes in which quadratic averages
may contribute to the slow scale evolution of the fields.

III. ABRAHAM AND MINKOWSKI FORMS OF THE
MOMENTUM CONSERVATION AND THE LORENTZ

FORCE FROM MACROSCOPIC EQUATIONS

The expressions for the momentum and forces at the
microscopic level, Eqs. (5) and (6), illustrate the momentum
conservation between two subsystems: The momentum lost by
the electromagnetic field appears as the particle momentum.
This momentum exchange represents the force on all particles.
In the microscopic equations both subsystems are well defined
and the momentum exchange and force can be clearly identi-
fied. The situation becomes less transparent for macroscopic
Maxwell’s equations.

Let’s consider macroscopic Maxwell’s equations in the
form:

∇ × E = −∂B
∂t

, (10)

∇ × H = ∂D
∂t

, (11)

∇ · D = 0, (12)

∇ · B = 0. (13)

Assuming ideal dielectric and neglecting free charges and
currents, by manipulating Eqs. (10)–(13) in the same way as
in Eqs. (1)–(4), one can construct a conservation equation of
the form,

∂gM

∂t
+ ∇ · TM = −fH , (14)

where

gM = D × B (15)

is the Minkowski momentum [15],

T M
i,j = 1

2 (E · D δij ) − Ei Dj + 1
2 (H · B δij ) − Hi Bj (16)

is the Minkowski stress tensor, and

fH = − 1
2 E2 ∇ε − 1

2 H 2 ∇μ (17)

is the exchange term.
Equation (14) has the structure of the conservation of

the density of the Minkowski momentum, the term ∇ · TM

describes the flux of the momentum, and the exchange term,
which is known as the Helmholtz force, is given by fH .

Further identical manipulations with Maxwell’s equation
result in the momentum conservation in the Abraham form
[16]:

∂gA

∂t
+ ∇ · TA = −fA, (18)

where

gA = E × H/c2 (19)
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is the Abraham momentum, and

T A
i,j = 1

2 (E · D δij − Ei Dj − Ej Di)

+ 1
2 (H · B δij − Hi Bj − Hj Bi) (20)

is the Abraham stress tensor. In this formulation, the exchange
term is given by

fA = −1

2
E2 ∇ε − 1

2
H 2 ∇μ + εμ − 1

c2

∂(E × H)

∂t
, (21)

which is different from the Helmholtz force in Eq. (17) by the
addition of the last term, the so-called Abraham force [16].
It is important to note at this point that both formulations of
the momentum conservation (14) and (18) are mathematically
equivalent and both must be correct, from a mathematical
point of view, as long as we accept as correct the macroscopic
Maxwell equations (10)–(13).

Another and very attractive formulation of the momen-
tum conservation, with transparent physical meaning, can
be obtained from the macroscopic Maxwell equations with
explicit source terms due to the polarization charges and
the magnetization current in the absence of free charges and
currents:

ρm = −∇ · P, (22)

Jm = ∇ × M + ∂P
∂t

. (23)

The source terms in Eqs. (22) and (23) create macroscopic
electric and magnetic field according to Maxwell equations,

∇ × E = −∂B
∂t

, (24)

∇ × B = μ0Jm + μ0 ε0
∂E
∂t

, (25)

∇ · E = ρm/ε0, (26)

∇ · B = 0. (27)

Straightforward identical manipulations with Eqs. (22)–
(27) produce the following form of the conservation law:

∂g
∂t

+ ∇ · T = −fL, (28)

where

g = ε0 E × B (29)

is the electromagnetic field momentum,

Ti,j = 1

2
ε0 E · E δij − ε0 Ei Ej

+ 1

2μ0
B · B δij − 1

μ0
Bi Bj (30)

is the flux of the field momentum, and

fL = ρ E + J × B (31)

is the Lorentz force acting on the polarization charges and
the magnetization and polarization currents. It is important to
note that E and B are the macroscopic fields calculated inside
the medium and that both the electromagnetic tensor and the
momentum density have the same form in both vacuum and

medium. Of course the fields themselves, E and B, are different
in vacuum and medium. In the latter, the fields are created by
the polarization charges and magnetization currents ρm and
Jm, while in vacuum, E and B are the source free vacuum
field determined by the Maxwell equations and boundary
conditions.

The momentum conservation in the form given in Eq. (28)
has an attractive feature of clearly showing the momentum
exchange between the macroscopic electromagnetic field in
the medium and the medium itself (via the polarization charge
and the polarization and magnetization currents). The time
variation of the momentum density and flux in Eq. (28) refer
to the electromagnetic field part only. The exchange term fL

has the simple interpretation of the total force acting on the
polarization and magnetization charges and currents due to
the macroscopic fields. Equation (28) represents a momentum
balance in a clearly defined subsystem of the macroscopic
electromagnetic field. This momentum balance is in the proper
form of the conservation law (e.g, density of the momentum in
a given volume, flux of the momentum through the boundary,
and sink/source terms). The sink/source which represents
momentum lost by the fields is easily identifiable with the force
applied to the other subsystem, the material medium. This
is the total electromagnetic force applied to the polarization
charges and magnetization currents.

We should note that contrary to the Lorentz force formu-
lation (28), both the Abraham and Minkowski formulations
of the momentum conservation do not show clear separation
of two different subsystems with a momentum exchange
between them. Obviously, both gA and gM , as well as TA

and TM , contain a mixture of electromagnetic field terms
E and B, and material terms P and M (or D and H) [17].
Respectively, the momentum exchange terms for both the
Abraham and Minkowski expressions (sink/source terms) are
not easily identifiable with the momentum exchange between
two different subsystems. Note that for Lorentz force the
momentum density and momentum flux terms in Eq. (28)
contain only the electromagnetic field terms [and not a mixture
of fields and material terms as in Eqs. (14) and (18).

A notable feature of the Abraham and Helmholtz
(Minkowski) forces, fA and fH , is that in the stationary case,
when the time-dependent Abraham force can be neglected, the
forces occur at the interfaces of the inhomogeneous material
medium. The Abraham and Helmholtz (Minkowski) force
densities in the stationary case are zero inside the body even
in those cases when the electromagnetic field amplitude is
inhomogeneous. For a finite slab of a homogeneous dielectric
subject to an incident plane electromagnetic field, the force
density will be a sum of two delta-function-like contributions
at the front and back ends of the slab. Only the field amplitudes
at the interfaces enter the expressions for the force. Of course,
the field amplitudes at the boundaries (and hence the total
force) implicitly depend on the internal distribution of the
electromagnetic field.

One can notice that formal transformations between the
Abraham and Minkowski conservation forms involve the
transformation between the volume and surface contributions.
Therefore, after volume averaging (volume integration) certain
volume contribution will appears only in the form of surface
terms. This situation is fully equivalent to the usual pressure
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force used in fluid dynamics. The volume (bulk) gradient
pressure force describes the internal pressure force. After
averaging over a given volume, the total force is simply given
by the surface contributions.

In summary of this section, we would like to emphasize
again that as long as one accepts the validity of the macroscopic
Maxwell equations in the form (10)–(13) and (1)–(4), all three
forms of the conservation law are mathematically correct since
they were obtained by formal mathematical transformations
of Maxwell’s equations. The important question is how
the exchange terms in Eqs. (14), (18), and (28), given by
Eqs. (17), (21), and (31) should be interpreted, how these
exchange terms are related to some measurable physical
forces, and where these forces are applied (what is the spatial
distribution of the force density).

In subsequent sections we would like to argue that the
spatial part of the force density in the Minkowski and Abraham
expressions, which are purely surface force densities in a
homogeneous dielectric, suggest an averaging size of the order
of the dimensions of the dielectric body. As a result, any
internal stresses are averaged out and reduced to the remaining
surface contributions [18]. We show also that the force density
given by the Lorentz force acting on the induced charge and
current densities ρ = −∇ · P and J = ∂P/∂t + ∇ × M, is a
volume force and suggests an averaging sample of the scale
at which the induced macroscopic charges and currents vary
more slowly than the fields in the volume of interest. The
latter corresponds to neglecting the internal fields created by
the individual charges and currents inside certain macroscopic
averaging volume.

IV. THE AVERAGING OF THE MICROSCOPIC FORCE

In this section, the macroscopic force is obtained by
averaging the microscopic forces acting on the point charges
comprising the medium. The total force is defined as the sum
of the forces on all particles inside a given volume. This
summation (averaging) eliminates the internal forces acting
between the particles inside the averaging volume sample.
Obviously, changing the size of the averaging sample changes
the expression for the force density. We review two standard
derivations of the average force [17,19] and consider the
physical conditions under which one or another approach is
applicable.

Consider a volume of size a, where a is much smaller
than the physical size of the medium but much larger than
the distance between microscopic charges, so there are several
charges present inside the volume. For a dielectric, in the
absence of free charges, the volume a involves one neutral
atom (or a small group of atoms clustered in the molecule).
The total force on this volume element is

Fl =
∑

a

qi (E (ri) + vi × B (ri)) , (32)

where the sum is taken over all charged particles inside the
volume a. This volume is labeled by the index l, so Fl is the
total force acting on the volume a. One can also write Eq. (32)
in the form,

F =
∫

a

ρE + J × B dV, (33)

where ρ and J are the charge and current densities inside a,
which are in general, rapidly changing functions of the spatial
coordinates. The electric and magnetic fields, E and B, inside
the volume a are produced by the sources internal and external
to the volume. The part of the force produced by the fields of
the internal sources (which change very rapidly inside a) will
cancel out due to Newton’s third law, and the net force will
be then produced only by the fields due to the external (to
the volume) sources, E and B. We set the size a, such that
the external fields can be expanded around the center of the
volume as

E(r) ≈ E(r0) + (r − r0) · ∇E(r0), (34)

B(r) ≈ B(r0) + (r − r0) · ∇B(r0). (35)

The latter expansion requires the condition a < L, where
L � (E−1∂E/∂r) � (B−1∂B/∂r). Assuming the total charge
inside the volume to be zero, one gets the expression for
the force acting on a point dipole in an inhomogeneous
electromagnetic field [10,17,19,20]:

Fl =
∫

a

{ρl r · ∇E(0) + Jl × (B(0) + r · ∇B(0))} dV

= (pl · ∇)E(0) +
∫

a

Jl × B(0) dV

+
∫

a

Jl × r · ∇B(0) dV. (36)

In Eq. (36), the definition of the dipole moment pl =∫
a
ρl r dV was used.
One can further convert the two integrals in the right-hand

side of Eq. (36). Using the continuity equation ∂ρl/∂t = −∇ ·
Jl , the first integral can be expressed as

F1i = εijk

{
Bk(0)

∫
a

∇ · (Jlr)j dV + Bk(0)
∫

a

∂ρl

∂t
rj dV

}

= εijk

∂plj

∂t
Bk(0), (37)

F1 = ∂pl

∂t
× B.

For the second integral, using [19]

x ·
∫

a

r Ji dV = −1

2

{
x ×

∫
a

r × J dV

}
,

we have

F2i = εijk

1

2

{∫
a

(r × J) dV × ∇
}

j

Bk(0)

= εijk(m × ∇)j Bk(0), (38)

F2 = (m × ∇) × B,

where m is the magnetic moment of the dipole. Combining the
results from Eqs. (36)–(38), the total force on the lth dipole is
given by

Fl = (pl · ∇)E + ∂pl

∂t
× B + (ml × ∇) × B. (39)

It is important to note that in this derivation pl and ml are
constants and the electromagnetic field is assumed to be slowly
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varying on the length scale a. Now, one can group individual
dipole elements into a larger sampling size Lm, a < Lm < L.
Then the total force density on the group (cluster) of dipoles
is obtained by summation over all dipoles in the cluster. By
dividing the net force by the volume one gets the force density,

fd = (1/V )
∑

l

Fl

= (P · ∇)E + ∂P
∂t

× B + (M × ∇)B. (40)

In this last equation, the density of polarization and
magnetization vectors P and M are defined as [21]

P = (1/V )
∑

l

pl , M = (1/V )
∑

l

ml .

Note that in the transformation from Eqs. (39) to (40)
the electromagnetic field is assumed to be slowly varying on
the length scale Lm (strictly speaking one requires that the
gradients of the field ∇E and ∇B are approximately uniform
on the length scale Lm). Therefore, the dipole force in Eq. (40)
is a result of the averaging over length scale Lm which involves
many individual dipoles with approximately uniform gradients
of the electromagnetic field over Lm.

It is worth noting that Eq. (40) is valid for dispersive
media, provided that the dispersion of P(E,ω) and M(B,ω) are
defined. In particular, for a plasma, where P = −ω2

peE/ω2,
the force density in Eq. (40) can be reduced to the familiar
expression for the ponderomotive or Miller force, proportional
to the gradient of E2,

〈fd〉 = −ω2
p

ω2
∇ |E|2

4
.

A conservation equation can be constructed that involves
the dipole force fd similar to Eq. (28):

∂g
∂t

+ ∇ · Td = −fd , (41)

where

g = ε0 E × B, (42)

T d
i,j = ε0

2
E · E δij − ε0 Ei Ej − Pi Ej

+ B · B
2μ0

δij − M · B δij − Bi Bj

μ0
+ MiBj . (43)

There exists a different ordering of the length scales leading
to a different expression for the macroscopic force. In this
common approach [17,22], an opposite assumption is made
with respect to the relative length scale of the charge and
current distribution and the electric field. In this approach the
averaging is done over the volume size a � L by using some
weight function w [17,19], such that

f =
(∫

L

ρ(r) w(r − s) d3s

)
E(r)

+
(∫

L

J(r) w(r − s) d3s

)
× B(r), (44)

The volume size a involves many individual charges which
are summed up, but the electric and magnetic fields are

assumed to be uniform over the scale length a. The weight
function w is expanded in a Taylor series [17] to take into
account weak variations of charge distribution leading to a
finite electric charge within the averaging volume (polarization
charge density),

w(r + d) = w(r) + (d · ∇)w(r). (45)

Then, the integrals inside the brackets in Eq. (44) yield the
macroscopic Lorentz force density which was obtained in the
previous section, Eq. (31) [17],

fL = (−∇ · P) E +
(

∂P
∂t

+ ∇ × M
)

× B. (46)

The two expressions in Eqs. (40) and ((46) ) are related as

fd = fL + ∇ · (PE − BM + B · M I) . (47)

Furthermore, the dipole force is related to the Helmholtz
force via

fd = fH + ∇ · (
1
2 P · E I + 1

2 M · B I
)
. (48)

From Eqs. (47) and (48), it can be seen that the force
densities differ by the full derivative of a tensor. This tensor
should be interpreted as an internal pressure (stress) tensor that
can, in principle, be measured. As can be seen from Eqs. (47)
and (48), upon integration over the whole volume of the body,
the internal pressure terms will vanish when the surface of the
integration volume is extended into vacuum where polarization
and magnetization are zero and all the expressions in Eqs. (14),
(18), (28), and (41) are equivalent. In the case of nonmagnetic
media, when M = B = 0, and for transverse waves when
∇ · (PE) = 0, the dipole and the Lorentz force are equal, as can
be seen from Eq. (47). For nonmagnetic media, the Helmholtz
force differs from both the dipole and the Lorentz forces by a
factor 1

2∇ (P · E).

V. PONDEROMOTIVE FORCE DENSITY IN A
DIELECTRIC SLAB OF THE FINITE LENGTH

As it was shown in the previous sections, in general,
for a lossless medium, the different formulations for the
ponderomotive force may have a surface contribution as in
Eqs. (17) and (21), or a volume contribution as in Eqs. (40)
and (46). In the ideal case (absence of the dissipation) the
surface part is represented by delta functions localized at the
interfaces, where the dielectric index is discontinuous. In this
section, we will calculate and compare the force profiles for a
nondissipative slab of a finite and fixed length d.

We are concerned only with the interaction of monochro-
matic high-frequency electromagnetic fields with homoge-
neous dielectric, nonmagnetic media. In this case, the time
average quantities can be replaced with their respective aver-
ages over a wave cycle. This way, the full time derivatives of
the momentum density terms ∂tg and similar term in the force
(such as Abraham force) will average to zero. Furthermore,
the conservation equations will reduce to the form,

∇ · 〈T〉 = −〈f〉. (49)

The total force on the body can be calculated by integrating
the force density over the whole volume of the body (or
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equivalently, integrating the stress tensor over the surface of
the body) as in Eq. (8),

〈F〉 = −
∫

V

〈f〉 dV dV =
∮

s

〈T〉 · dS. (50)

Consider a nonmagnetic dielectric slab of thickness d. The
slab is characterized by a dielectric constant ε and bounded
by vacuum (air) on both sides. Taking the z axis as normal to
the slab and linearly polarized monochromatic light normally
incident on the slab, the electromagnetic fields E and B are
given by

E = [Ex,0,0]e−iωt , (51)

B =
[

0,− i

ω

∂Ex

∂z
,0

]
e−iωt . (52)

For the transverse waves in Eqs. (51) and (52), the electric
contribution from the dipole force (P · ∇)E and the Lorentz
force (−∇ · P)E are zero. As a result, the dipole and Lorentz
force densities are the same and given by the force density
acting on the polarization current [10],

〈fd〉 = 〈fL〉 = 1

2
Re

(
∂P
∂t

× B∗
)

, (53)

where P = ε0(ε − 1) E. In what follows, we refer to both only
as Lorentz force density/force.

For a dielectric slab, the electric field is given by

Ex = (eikvz + Re−ikvz)E0 z > 0,

Ex = (Aeik1z + Be−ik1z)E0 0 < z < d,

Ex = TeikvzE0 d < z,

where kv = ω/c and k1 = kv

√
ε. The average force density

Eq. (53) becomes

〈fL〉 = ẑε0(ε − 1)k1|E0|2Im(A∗Be−2ik1z). (54)

The coefficients in Eq. (54) are obtained from the solution of
the scattering problem in the form,

Im{A∗Be−2ik1z} = (ε − 1) sin(2k1(d − z))

4ε cos2(k1d) + (ε + 1)2 sin2(k1d)
,

such that the time-averaged force density can be written as

〈fL〉 = ẑ|E0|2 ε0k1(ε − 1)2 sin(2k1(d − z))

4ε cos2(k1d) + (ε + 1)2 sin2(k1d)
. (55)

The total force is obtained by the integration over the slab
length of Eq. (55),

〈FL〉 = ẑS
∫ d

0
|E0|2 ε0k1(ε − 1)2 sin(2k1(d − z))

4ε cos2(k1d) + (ε + 1)2 sin2(k1d)
dz,

(56)

with S being the cross-sectional area of the slab. The
expression for the total force reduces to

〈FL〉 = Sε0(ε − 1)2|E0|2 sin2(k1d)

4ε cos2(k1d) + (ε + 1)2 sin2(k1d)

= 1

2
Sε0|E0|2|(1 + |R|2 − |T |2)

= Sε0|E0|2|R|2, (57)
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FIG. 1. (Color online) Density of the Lorentz force in a dielectric
slab, as calculated from Eq. (55).

where R and T are the reflection and transmission
coefficients.

As can be seen from Fig. 1, the Lorentz force density
has a standing wave spatial profile inside the slab, being
positive or negative according to the sign of sin(2k1(d − z)).
The total force oscillates as a function of the slab length and
dielectric constant according to oscillations of the reflection
coefficient as shown in Figs. 2(a) and 2(b). Because the total
force is proportional to |R|2, it is always positive (pushes the
slab), despite the fact that the force density oscillates between
positive and negative values. The total force is zero when when
the reflectance is zero,R = 0.

The Helmholtz force density, being proportional to ∇ε, is
a purely surface force density given by the sum of two Dirac
delta functions, one at each interface:

〈fH 〉 = −ẑ 1
4 |Ex |2 ε0(ε − 1) {δ(z) − δ(z − d)}. (58)

Direct integration of Eq. (58) over the width of the slab yields
the total Helmholtz force,

〈FH 〉 = −ẑ
1

4
S

∫ d

0
|Ex |2 ε0(ε − 1) {δ(z) − δ(z − d)} dz

= ẑ
1

2
Sε0|E0|2|(1 + |R|2 − |T |2)

= ẑSε0|E0|2|R|2. (59)

As it follows from Eqs. (57) and (59), the total Lorentz force
is equal to the total Helmholtz force. This is the general result,
which simply follows from the relations (47) and (48). The
force densities differ by a full divergence of the internal stress
tensor, the contribution of which vanishes upon integration
over the total slab volume bounded by vacuum, since in
vacuum P = 0 and M = 0.

The general results in Eqs. (57) and (59) also follow from a
simple balance of the exchange of the momentum between
photons and the dielectric slab. Consider a photon beam
normally incident on the dielectric layer. The incident beam has
a photon flux Ni c, where Ni is a photon density Ni = w/(h̄ω),
time-average energy density w = ε0|E0|2/2, and momentum
flux τi = Nih̄k. The reflected beam will have a momentum
τr = Nrh̄k, where Nr = |R|2 Ni . The transmitted beam with
a flux Nt has a momentum flux τt = Nth̄k with Nt = |T |2 Ni .
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FIG. 2. (Color online) Total Lorentz force on the dielectric slab
as calculated using Eqs. (57) and (59): (a) as a function of the width,
n = √

ε = 1.5; (b) as a function of n.

The total force per unit area applied to the dielectric is then

F = h̄k (Ni + Nr − Nt ) = h̄k Ni (1 + |R|2 − |T |2 ), (60)

and obviously F is positive for any |T |2 < 1 or since |R|2 +
|T |2 = 1, the force becomes F = 2h̄k Ni |R|2 = ε0|E0|2|R|2.

In summary, we would like to point out that while the total
Lorentz and Helmholtz forces are the same, the correspond-
ing force densities have very different spatial profiles: The
Helmholtz force density is purely a surface force density, and
the Lorentz force density has an oscillating density profile, as
can be seen in Fig. 1.

VI. LORENTZ FORCE ON A DIELECTRIC
COATING FILM

In this section, we consider the forces on a layer of a
dielectric film coated on a material with different dielectric
constant. This example provides a good insight on the nature of
the ponderomotive forces acting on a medium and emphasize
the differences between Lorentz and Helmholtz forces. These
results are also relevant to recent experiments measuring the
force on the ends of the dielectric fibers [13].

We consider a dielectric film coating of permittivity ε1 and
thickness d on a semi-infinite substrate with dielectric constant
ε2. The electromagnetic wave is incident from the vacuum
region on the left. For such a configuration, the electric field
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FIG. 3. (Color online) The total force on the coating film as
calculated from Eq. (62); ε1 = 1.5 and ε2 = 2.25.

is given by

Ex = (eikvz + Re−ikvz)E0 z > 0,

Ex = (Aeik1z + Be−ik1z)E0 0 < z < d, (61)

Ex = Teik2zE0 d < z,

where kv = ω
c

, k1 = kv

√
ε1, and k2 = kv

√
ε2. As in the case

we considered in the previous section, the electric components
of the Lorentz and dipole force densities do not make any
contribution. In this case, the Lorentz and dipole force densities
are equal and the force density is given by the force density on
the polarization current as in Eq. (53).

The total force is obtained by the integration the force
density, given again by Eq. (54), over the layer width, from
z = 0 to z = d:

〈FL〉 = ẑSε0|E0|2 (ε1 − 1)(ε1 − ε2)

|g|2 sin2(k1d), (62)

where the factor g given by

g = √
ε1(1 + √

ε2) cos(k1d) − i(ε1 + √
ε2) sin(k1d).

The sign of the force is determined by the sign of the product
(ε1 − 1)(ε1 − ε2). After some algebra, it is not difficult to show
that the result in Eq. (62) can be written in the form,

〈FL〉 = ẑ
Sε0|E0|2

2

(
1 + |R|2 − 1 + ε2

2
|T |2

)
. (63)

The force acting on the coating as calculated in Eq. (62)
is shown in Fig. 3 as a function of the phase k1d inside the
dielectric coating film d. The force is zero for k1d = nπ , that
corresponds to the λ/2 layer [also compare this with Eq. (57),
where the force is zero for k1d = nπ ].

Note that the force on the λ/4 antireflective coating is not
zero. Applying the result from Eq. (63) to a λ/4 antireflective
layer, such that d = λ0/4

√
ε1, k1d = π/2, ε1 = √

ε2, we have
|R|2 = 0 and |T |2 = 1/

√
ε2. This reduces Eq. (63) to

〈FL〉 = −1

4
ε0 S

(
√

ε2 − 1)2

√
ε2

|E0|2. (64)

This expression shows that the Lorentz force on the λ/4
coating is always negative, so that it pulls the coating from
the substrate.
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FIG. 4. (Color online) Force density in a coating-substrate system
from Eq. (54). The force density is zero inside the substrate (z > d);
ε1 = 1.5 and ε2 = 2.25.

The force density in the coating-substrate system is shown
in Fig. 4. One important feature to note from Fig. 4 is that the
Lorentz force density is zero (in absence of dissipation) inside
the semi-infinite substrate, for z > d. Alternatively, this can be
illustrated by the running integral of the force density defined
by the expression,

〈FL(z)〉 = ẑS
∫ z

0
f (z′)dz′. (65)

The total force is accumulated in the coating layer only.
For z > d, the total integrated force in Eq. (65) remains
constant [only the coating makes a contribution to the integral
in Eq. (65)]. Therefore, the force density is zero in the
semi-infinite region, which superficially may lead to a certain
paradox. It is obvious, however, that a single monochromatic
wave, as in the region z > d, would not create any force in
the semi-infinite region without dissipation. The case of a
semi-infinite dielectric region requires a special treatment and
it is discussed in Sec. IX.

VII. HELMHOLTZ FORCE ON A DIELECTRIC
COATING FILM

The calculation of the Helmholtz force on the coating
film may become ambiguous because of the delta-function
contributions at the interfaces.

Since the Helmholtz force density is a surface force density
and it is localized at the discontinuities of ε, the result for the
total Helmholtz force will depend on whether the boundary
between ε1 and ε2 at z = d is included in the integration
volume. One can define the force in two different ways, the
first where the boundary is not included, and the second with
the boundary included:

〈
FH

1

〉 = −1

4
S

∫ d−


0
|Ex |2 ∂ε

∂z
dz, (66)

〈
FH

2

〉 = −1

4
S

∫ d+


0
|Ex |2 ∂ε

∂z
dz

= 〈
FH

1

〉 − 1

4
S

∫ d+


d−


|Ex |2 ∂ε

∂z
dz, (67)

where 
 is an infinitesimally small parameter. A finite
contribution from the interface at z = d, given by the second
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FIG. 5. (Color online) Force on a quarter-wavelength coating as
a function of the dielectric constant from Eqs. (64) and (72).

term in Eq. (67), plays the role of a “surface tension,” similar
to the surface tension at the interface between liquid and
gaseous phases. The surface contribution occurs as a result
of the internal stress at such a boundary.

After the integration, these forces become

〈
FH

1

〉 = −Sε0|E0|2
2

(ε1 − 1)

×
(

ε1 + ε2 + (ε1 − ε2) cos(2k1d)

|g|2
)

, (68)

〈
FH

2

〉 = 〈
FH

1

〉 − Sε0|E0|2
4

4(ε2 − ε1)ε1

|g|2 (69)

= Sε0|E0|2
2

(1 + |R|2 − ε2|T |2). (70)

Clearly these two expressions for Helmholtz force are
different from each other and different from the Lorentz force
in Eq. (63). For the case of the λ/4 coating, Eqs. (68) and (69)
become

〈
FH

1

〉 = −Sε0|E0|2
4

(
√

ε2 − 1), (71)

〈
FH

2

〉 = −Sε0|E0|2
2

(
√

ε2 − 1). (72)

It is interesting to note that the Lorentz force expression for
the λ/4 coating is always negative, while the Helmholtz force
in Eq. (72) is negative for ε2 > 1 and positive for ε2 < 1. The
effect of the boundary at z = d is to double the amplitude of
the Helmholtz force on the λ/4 layer. The forces on the λ/4
antireflective coating, calculated from Eqs. (64) and (72), are
shown in Fig. 5.

The different expressions (64) and (72), resulting in
different forces (and also in forces of a different sign),
can potentially be tested experimentally. Another important
difference is a finite and oscillating force density for the
Lorentz force, Eq. (62), while the Helmholtz force has zero
volume density. The oscillating force density of the Lorentz
force would result in oscillating internal stresses, contrary to
the uniform stress due to the Helmholtz force. This difference
offers an interesting possibility of experimental verification.
The net Helmholtz force is also different depending on whether
the λ/4 layer is fused to the substrate or freely placed next to
it (with an infinitely thin air gap). The experiment can also be
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conducted by measuring the force on the layer separated from
the substrate by an air gap of finite width. We analyze this
configuration in the next section.

VIII. THE FORCE ON A DIELECTRIC FILM SEPARATED
FROM SUBSTRATE BY AN AIR GAP OF FINITE

WIDTH

As it was noted in the previous section, due to surface
contributions, the net Helmholtz force is different depending
on whether the λ/4 layer is fused to the substrate or freely
placed next to it. On the contrary, the net Lorentz force is the
same independently on whether an infinitely thin air gap is
introduced between the coating and the substrate. This can be
viewed as a limit case a finite air gap. The latter configuration
is also of interest for experimental studies.

Consider a slab of width d with dielectric constant ε1,
separated from a semi-infinite region of dielectric constant
ε2 by an air gap of width L. For this configuration, the electric
field is given by

Ex = (eikvz + Re−ikvz)E0 z > 0,

Ex = (Aeik1z + Be−ik1z)E0 0 < z < d,
(73)

Ex = (Ceikvz + De−ikvz)E0 d < z < L + d,

Ex = Teik2zE0 L + d < z.

It is not difficult to show that for this configuration, the
force reduces to

〈FL〉 = ẑ 1
2Sε0|E0|2{1 + |R|2 − (|C|2 + |D|2)}. (74)

This expression can be obtained by either direct integration
of the Lorentz force density or by considering the total force
on the body in air as given by (8). The general expression (74)
is consistent with an intuitive corpuscular momentum balance
similar to the one in Eq. (60). Indeed, the conservation of the
momentum gives

F = h̄k [Ni − NC + (NR − ND)]

= h̄k Ni (1 + |R|2 − |C|2 − |D|2 )

= 1
2ε0|E0|2(1 + |R|2 − |C|2 − |D|2), (75)

where the wave vector k is in vacuum, and Ni = w/ (h̄ω),
w = ε0|E0|2/2.

The amplitude of the force oscillates according to the phase
k1d and kvL. A plot of the total force on the slab as a function of
the phase kvL due to the air gap is shown in Fig. 6. Depending
on the value of kvL the force may become positive or negative,
with periodicity of π/2, starting from kvL = π/4. In the
limit L → 0, the force reduces to the negative value given
by (64). In Fig. 7, the force on the dielectric layer is drawn as
a function of the width of the layer for different values of the
phase kvL.

IX. THE FORCE ON A SEMI-INFINITE REGION AND ON
A FINITE SLAB WITH DISSIPATION

It has already been noted in Sec. VI when analyzing the
force on a coating, that the force density in the semi-infinite
substrate was zero. This may lead to a number of superficial
paradoxes.
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FIG. 6. (Color online) Total force on the dielectric layer as a
function of the separation between the slab and the substrate; ε1 =
1.5, ε2 = 2.25 and k1d = π/2.

Let us calculate the force on a semi-infinite region by
using the results of the previous section [e.g., the force on a
semi-infinite region can be obtained by generalizing the result
for the Lorentz force in Eq. (63)]. Setting ε1 = ε2 makes the
coating and substrate equivalent so that whole system extends
to infinity. In this case, B = 0, A = T = 2/(1 + √

ε2), R =
(1 − √

ε2)/(1 + √
ε2), and the Lorentz force from Eq. (63)

becomes zero,

〈FL〉 = 0. (76)

This result is consistent with a zero force density calculated
using Eq. (53) (see also Fig. 4). The apparent paradox of this
result is in the fact that for ε1 = ε2 �= 1 there exists a wave
reflected from the semi-infinite region and one expects a finite
positive force applied to the semi-infinite dielectric. Another
superficial paradox occurs with the Helmholtz force calculated
for the semi-infinite region. Using Eq. (70) and setting ε2 = ε1

one finds the negative force [25,26],

〈FH 〉 = −ẑ
ε2 − 1

(
√

ε2 + 1)2
Sε0 |E0|2, (77)

applied to the dielectric boundary.
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FIG. 7. (Color online) Total force on the dielectric layer as a
function of the width of the layer for different values of the distance
between the slab and the substrate.
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At first sight, the results in Eq. (76) and in Eq. (77) are
obviously inconsistent with each other. This inconsistency
occurs due to the nonregular nature of the semi-infinite
dielectric case without dissipation due to failure to properly
account for the wave momentum at infinity. This is also
apparent from the expression in Eq. (57): This expression
remains oscillatory for any d → ∞. A finite length slab
without dissipation cannot be extended to infinity without
explicit specification of the boundary condition for the wave
amplitude (and the wave momentum) at the opposite end of
the slab.

The natural way used to deal with the z → ∞ behavior in a
semi-infinite region is to assume an infinitely small dissipation
in the dielectric [7,8,11,23,24]. In a semi-infinite medium, even
with an infinitesimally small dissipation, all the momentum
transmitted to the dielectric will be absorbed, thus generating
a finite force on the dielectric, while the force density goes
to zero. Such calculations can easily be done starting from
the case of a finite length slab with dissipation, with vacuum
regions on both sides. Assuming that the wave vector and
the dielectric constant are complex such that k = kr + iki and
ε = εr + i εi , the Lorentz force density is given by

〈fL〉 = ẑ
ε0

2
{(ki − εrki + εikr )(|A|2e−2kiz − |B|2e2kiz)

− 2(kr − εiki − εrkr )Im(A∗Be−2ikr z)}. (78)

The force density is localized in the region of the order of k−1
i

and decays away from the boundary. Note that in the absence
of dissipation (ki = εi = 0), Eq. (78) becomes equivalent to
Eq. (54). The Lorentz force on the slab with dissipation is then
obtained by integrating Eq. (78) over the length of the slab.
The result of the integration for a slab of finite length with
dissipation can be written in the form,

〈FL〉 = ẑ
Sε0|E0|2

2
(1 + |R|2 − |T |2). (79)

This expression is similar to the one obtained for the case of
the nondissipative slab, Eq. (57), however, in the presence of
dissipation, the equality |R|2 + |T |2 = 1 is no longer valid,
where T is the transmission coefficient defined for the wave
transmitted into the vacuum region on the right of the slab.

It is important to note that the expression in Eq. (17) for the
Helmholtz force is valid only for the case of real ε and μ and
thus cannot be used to analyze the dissipative case. We need to
generalize the expression for the Helmholtz force to account
for finite dissipation. From (16) one finds

f H
i = 1

2
Dj

∂

∂xi

Ej − 1

2
Ej

∂

∂xi

Dj . (80)

Assuming, as for the Lorentz force, a complex dielectric
constant in the form ε = εr + i εi and the constitutive relation
D = ε0εE, the time average of Eq. (80) reduces to

〈
f H

z

〉 = −1

2
εi Im

(
Ex

∂

∂z
E∗

x

)
− 1

4
|Ex |2 ∂εr

∂z
. (81)

It follows from (81) that in the general case of a complex ε,
in addition to the surface part that depends on the real part of
the dielectric constant, the Helmholtz force density acquires a
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FIG. 8. (Color online) Lorentz force density and volume part of
the Helmholtz force density for the case of a dissipative slab as given
by Eqs. (78) and (81); εr = 2.25.

bulk (volume) part that depends on the imaginary part of the
dielectric constant.

The cumulative integral of the Helmholtz force density in
the dissipative case, given by

〈FH (z)〉 = ẑS
∫ z

0
f H (z′)dz′, (82)

has jumps at the points z = 0 and z = d, which correspond to
the effects of the surface contributions in the Helmholtz force
density as can be seen in Fig. 9.

The total force on the dissipative slab is calculated by
integrating the expression in Eq. (81) over the length of the
slab. By solving for the fields inside the slab and applying
boundary conditions, the Helmholtz force on a slab with
dissipation immersed in vacuum can be shown to be equal
to

〈FH 〉 = ẑ
Sε0|E0|2

2
(1 + |R|2 − |T |2). (83)

An important result is that this expression is identical to the
total Lorentz force, Eq. (79). It is worth noting that while the
total force applied to the slab are the same in both formulations,
the spatial profiles for the Lorentz force and Helmholtz
expressions are dramatically different. A comparison of the
Lorentz force density and the volume part of the Helmholtz
force density for the dissipative slab is shown in Fig. 8. Note
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FIG. 9. (Color online) Integral of Helmholtz force density in a
dissipative slab as given by Eq. (82); ε = 2.25 + 0.1i.
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FIG. 10. (Color online) Force per unit area on a dissipative slab
as given by Eqs. (79) and (83); ε = 2.25 + 0.1i. As can be seen, for
kid � 1, the force tends to a constant value.

that the Helmholtz force has additional surface contribution
not shown Fig. 8.

An example of the total force on a slab with dissipation as
calculated in Eqs. (79) and (83) is given in Fig. 10 as a function
of the slab length. At small kid, the force amplitude oscillates
and saturates to a constant value for large kid.

In the limit of large length (or strong dissipation), when
kid � 1, we have that |T |2 → 0 and the problem of a finite
slab with dissipation and a semi-infinite medium (with in-
finitely small dissipation) are equivalent. In this case, Eqs. (79)
and (83) give [7]

〈FL〉 = 〈FH 〉 = ẑ
Sε0|E0|2

2
(1 + |R|2). (84)

This force corresponds to the momentum of the electro-
magnetic field transmitted into the dielectric and eventually
absorbed over the large (infinite) length. When the dissipation
is absent, the wave momentum is carried to infinity. The
expression in Eq. (84) is consistent with simple corpuscular
momentum balance similar to (60), assuming that all the
momentum inside the medium is eventually absorbed at
infinity. The conservation of the momentum gives

F = h̄k [Ni + NR]

= h̄k Ni (1 + |R|2)

= 1
2ε0|E0|2(1 + |R|2), (85)

where the wave vector k is in vacuum, and Ni = w/ (h̄ω),
w = ε0|E0|2/2 .

X. DISCUSSION AND SUMMARY

Maxwell equations lead to several possible forms of the
conservation equation for a momentumlike quantity, as in
Eqs. (14), (18), (28), and (41). All these forms are mathe-
matically equivalent within the Maxwell macroscopic electro-
dynamics. However, the separation between the material and
field parts of the momentum is not always clearly defined. As
a result, the exchange term in these equations is not clearly
identifiable as the density of the electromagnetic force acting
on the medium. It is shown here that different expressions for
the force density with different structure have substantially
different spatial profiles (e.g., the Helmholtz force density

given by Eq. (17)], in the absence of dissipation, is exclusively
a surface force density and is localized at the boundaries, while
the Lorentz force density given by Eq. (31) is a oscillating
volume force density as can be seen in Fig. 1. It has been
shown here that different expressions for the force density
correspond to different assumptions on the averaging length
scale inherently assumed in any macroscopic model.

The identical transformations between different forms of
the momentum conservation (respectively, between different
forms of the force density) involve transformations between
volume and surface terms. The volume terms in the force
density correspond to the internal stress (pressure) forces.
Volume averaging leads to cancellation of internal forces so
that only the surface (with respect to the averaging volume size)
remains. Obviously, the assumed ordering of the averaging
length scales and the length scales for the electric charge
and electromagnetic field distribution affect the structure of
the internal forces and eventually the expressions for the
force density. Such difference is demonstrated explicitly via
the direct averaging of microscopic forces as in Sec. IV.
This derivation is also valid for a dispersive medium, as in
plasma.

Two different expressions for the force density, dipole force
(40) and Lorentz force (31), are derived directly in Sec. IV
by making different assumptions on involved length scales
for the electromagnetic field and charge distribution. For the
transverse electromagnetic waves, these two expressions are
identical and produce the force density that follows a standing
wave pattern inside the body as it is illustrated in Fig. 1. It is
worth noting here that, on the contrary, the Helmholtz force
density for a nondissipative media is given by delta-function
surface force. One can argue therefore that the Helmholtz force
density corresponds to the averaging sample of the size of the
whole body. While the total force acting on a body immersed
in vacuum is the same for different forms of the momentum
conservation, the difference in force density profiles and in
internal stresses as discussed in this paper, in principle, can
be measured experimentally. The experimental measurements
of the internal stress (together with the mechanical stress
properties of the material) may provide the information on the
actual force density. The measurements conducted at different
resolutions can be used to confirm the point of view advocated
in this paper: Different expressions for the force density exist at
different length scales corresponding to the different averaging
(sampling) volumes.

The total force on the dielectric plane slab was calculated
in this paper for several configurations. For a single dissipative
slab, this force is given by

F = ε0|E0|2
2

(1 + |R|2 − |T |2). (86)

Here T is the wave transmission coefficient for the outgoing
wave in vacuum region on the right outside of the slab. This
expression applies both for dissipative and nondissipative
cases. We have shown that the same result can be obtained
from the Helmholtz force generalized to the dissipative case.
In the nondissipative case, the condition |R|2 + |T |2 = 1
can be used, so that the force reduces to the expression
F = ε0|E0||R|2. Equation (86) is valid for arbitrary properties
of the plane slab dielectric, including those of metamaterials
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and negative refraction media. The net force always remains
positive (pushes the slab away).

Equation (86) can also be used to determine the force on
a semi-infinite region. In a semi-infinite case, one needs to
specify the fate of the momentum flux at infinity. For any real-
istic conditions, even an infinitesimal dissipation will lead to
an eventual damping of the outgoing wave in the semi-infinite
region, so that T = 0 in Eq. (86). The resulting net force
F = ε0|E0|(1 + |R|2)/2 is consistent with the corpuscular mo-
mentum balance as discussed in Sec. IX: The total force is due
to the absorption of the net wave momentum in the medium. It
is worth noting that the force density is infinitesimally small for
vanishing (but finite) dissipation, while the integral for the total
force remains finite. We have generalized the expression for
the Helmholtz force density to include dissipation and have
shown that the resulting Helmholtz force is identical to the
Lorentz force. In addition to the negative delta-function surface
contribution at the boundary, the Helmholtz force density has
also a bulk contribution, which is positive, so the net force
becomes positive as shown in Fig. 10. Without dissipation,
the Helmholtz force has only a negative part localized at the

boundary, arising from the break in the homogeneity of the
space caused by the interface (the discontinuity in ε). The fact
that this inhomogeneity is accompanied by a surface force
is a clear indication that the Helmholtz force corresponds to
the conservation of a pseudomomentum [27]. The striking
difference in the force density profiles of the Lorentz and
Helmholtz forces would result in different distributions of the
internal stresses that can be potentially detected in experiment.

We have calculated the total force on the dielectric slab
coating as well as in the case of the slab separated from the
substrate by a finite air gap. For this case, the force amplitude
oscillates and can be both positive or negative depending on
the slab width and distance from the substrate. This effect
may possibly be used for aggregation and separation of
nanoparticles.
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