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Resonant transparency of a two-layer plasma structure in a magnetic field
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Transparency of a two-layer plasma structure in an external steady-state magnetic field, perpendicular
to the wave incidence plane, is studied. The case of the p-polarized electromagnetic wave is considered.
The electromagnetic wave is obliquely incident on the two-layer structure and is evanescent in both
layers. The conditions for total transparency of the two-layer structure are found. The parametric dependencies
of the transparency coefficient on the plasma slab widths, the magnitude of the wave number component, as well
on the magnetic field magnitude are obtained.
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I. INTRODUCTION

The problem of the interaction of electromagnetic radiation
with overcritical plasmas with ω < ωpe, where ω and ωpe are
the wave and plasma frequencies, respectively, is of interest for
a number of areas in magnetically confined and laser plasmas,
in particular for plasma heating, plasma diagnostics, radio
communications, and radar applications. Recently, there has
been a growing interest in this subject in new areas of photonic
technologies such as plasmonics [1–4].

Normally, an overcritical density plasma layer is opaque
to electromagnetic waves. However, the transparency can be
achieved by including on each side of the overcritical density
plasma with negative permittivity (ε < 0) a boundary layer
of plasma with positive permittivity 0 < ε < 1. The resonant
transmission of a p-polarized electromagnetic wave through a
symmetrical three-layer structure composed of a medium with
negative dielectric permittivity, that was placed between layers
with positive permittivity, was demonstrated both theoretically
and experimentally [5]. Lately [6], it was shown that symmetry
of the system is not a necessary condition, and resonant
transparency of an asymmetric two-layer system is also
possible. In these configurations, transparency of a dense
plasma slab is possible due to resonant excitation of surface
waves, which supports energy transport through the opaque
region [5].

The general conditions for resonant wave transmission
through two- and three-layer configurations were analyzed
in [7,8]. It was shown that the resonant transparency can also
be achieved by placing the dense plasma layer between two
boundary layers of a material with a dielectric permittivity
ε > 1 [9]. In this case, resonant wave transmission takes
place without the surface mode excitation but by exploiting
the standing-wave resonances [9]. Anomalous plasma trans-
parency can also be achieved due to nonlinear interactions [10].
The effects of electron temperature on the transparency of
an overcritical density plasma layer were studied in [7]. It
was demonstrated that in warm plasmas the excitation of the
propagating longitudinal electrostatic modes is possible that
facilitates the total transparency of an opaque plasma slab by
creating additional resonances in the system [7].

Resonant transmission is strongly affected by absorption
effects. A detailed study of the effects of absorption in
transition metamaterials was carried out in [11]. It was shown

that resonant absorption can be controlled by changing the
parameters of the transition layer and more generally by spatial
profiles of the material parameters. In [12], general expressions
for the reflection, transmission, and heating coefficients were
obtained for a plane electromagnetic wave obliquely incident
on a warm bounded plasma by solving the coupled Vlasov-
Maxwell set of equations.

There has been a growing recent interest in resonant
transmission through composite metamaterial structures; e.g.,
the transmission response of a subwavelength metal mesh
structure symmetrically cladded between the dielectric layers
has been experimentally measured and explained using a
combination of numerical and analytical modeling [13]. The
experimentally observed broad, high-transmission band was
shown to be due to the superposition of two noninteracting
modes. The transmission of the s-polarized electromagnetic
waves through different metal, dielectric, and plasma struc-
tures has been also studied by many authors [1,14,15]. While
it was shown that incident p-polarized photons can resonantly
tunnel through a silver film with narrow-grooved zero-order
gratings on both sides via exciting standing-wave surface
plasmon-polariton modes, for the s-polarized photons the film
acted as a nearly perfect mirror [16].

The effects of an external magnetic field on the transparency
of plasmas were also studied in various contexts [17–21].
In [17], the absorption, reflection, and transmission of elec-
tromagnetic waves by a nonuniform plasma slab immersed
in uniform magnetic field were investigated. It was shown
that more than 90% of the electromagnetic wave power
can be absorbed in high-density and high-collision plasma.
The reflection, absorption, and transmission of microwaves
by a magnetized, steady-state, two-dimensional, nonuniform
plasma slab were studied in [18]. The total reflected, absorbed,
and transmitted powers were calculated and their functional
dependencies on the number density, collision frequency,
and propagation angle were obtained [18]. In [19], it was
shown that the transmission and reflection coefficients, and
the distribution of the electromagnetic field in a magnetized
plasma layer, can be found from a two-point boundary
value problem. The characteristics of electromagnetic wave
propagation through a magnetized plasma slab with linear
electron density profile were also analyzed in [20]. The effects
of the external magnetic field on radio wave transmission were
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studied with application to radio communication through the
overdense plasmas [21]. Most of the authors, however, dealt
with single-layer plasma structures.

In this paper, we study the propagation of a p-polarized
electromagnetic wave through a two-layer plasma structure
immersed in the external magnetic field. We analyze dispersion
properties of surface waves localized at the interface between
two semi-infinite layers of the magnetized plasmas. These
properties are fundamental to the transparency of the two-
layer structure. We determine the conditions for the resonant
transparency and investigate the effects of the magnetic field
magnitude and the slab width. The transmission character-
istics and the dispersion properties are studied by using the
impedance matching technique described in [8].

II. BASIC EQUATIONS

Consider a two-layer plasma structure in a vacuum (Fig. 1).
The structure is immersed in the external steady-state magnetic
field H0 directed along the z axis. It is assumed that the density
of the first plasma slab layer Pl1 is small (0 < ε10 < 1, where
ε10 is the dielectric permittivity of the layer in the absence
of a magnetic field), while the second slab Pl2 is dense with
ε20 < 0 (here ε20 is the dielectric permittivity of the second
layer at H0 = 0).

An electromagnetic wave is obliquely incident from a
semi-infinite vacuum (air) region V1 at the plasma layer Pl1 on
the left. The transmitted wave propagates into a semi-infinite
vacuum (air) region V2 on the right. The wave is assumed
to be p-polarized with the wave vector k = kxex + kyey; i.e.,
the electric field vector E is in the incidence xy plane. In
general, there are incident (with kx > 0) and reflected (with
kx < 0) waves in the region V1, but there is no reflected
wave in the region V2. In the plasma regions Pl1 and Pl2,
which have widths a1 and a2, correspondingly, the waves are
evanescent (with Rekx = 0). It is assumed that the plasma slabs
are uniform in y and z directions. We neglect the nonlinear
effects; i.e., it is assumed that the wave phase velocity is larger

x
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k
E

θ a1 a2

ε > 0 ε < 0

H0

H

V1 Pl1 Pl2 V2

FIG. 1. Schematic representation of the propagation of an elec-
tromagnetic wave through the two-layer structure.

than the electron oscillatory velocity. This condition translates
into the condition of the intensity of the electric wave field
E: |E| � meω

2/(ke), where e and me are the electron charge
and mass, respectively.

We assume that ions are immobile, the magnetic per-
mittivity of a plasma slab is μ = 1, the phase velocity of
the electromagnetic wave is larger than the electron thermal
velocity, and the electron collision frequency is smaller than
the wave frequency. Taking into account these assumptions,
the dielectric permittivity tensor in the external steady-state
magnetic field has the following nonzero components:

ε11 = ε22 = ε = 1 − ω2
p

ω2 − ω2
c

,

ε12 = −ε21 = ig = iωcω
2
p

ω
(
ω2 − ω2

c

) ,

ε33 = 1 − ω2
p

ω2
,

where ωc is the electron cyclotron frequency.
The electromagnetic field of the p-polarized wave is

represented by

E = (Ex(x),Ey(x),0) exp(ikyy − iωt),

H = (0,0,Hz(x)) exp(ikyy − iωt).

From Maxwell’s equations, one finds the following equa-
tions for the field components Ex , Ey , and Hz in the Voigt
geometry:

Ex(x) = − 1

k(ε2 − g2)

(
kyεHz + g

dHz

dx

)
, (1)

Ey(x) = − i

k(ε2 − g2)

(
kygHz + ε

dHz

dx

)
, (2)

d2Hz

dx2
+ κ2Hz = 0, (3)

where κ2 = k2
y − (ε2 − g2)k2/ε, k = ω/c, and c is the speed

of light.
The local wave impedance is defined as

Z(x) = Ey(x)

Hz(x)
. (4)

Using Eqs. (2) and (3), one finds the wave field components
Ey and Hz in the vacuum region V1:

Ey = kxAv

k
[exp(ikxx) − �v exp(−ikxx)], (5)

Hz = Av[exp(ikxx) + �v exp(−ikxx)], (6)

where the first terms in the brackets on right-hand side of
Eqs. (5) and (6) account for the incident wave and the second
terms account for the reflected wave, Av is the amplitude of
the incident wave, and �v is the reflection coefficient.

Then the local impedance for the electromagnetic wave
field in the region V1 is

Zv1(x) = Zv

exp(ikxx) − �v exp(−ikxx)

exp(ikxx) + �v exp(−ikxx)
, (7)

where Zv = kx/k is the characteristic impedance of the
vacuum region.
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Using Eq. (7), one finds that the reflection coefficient �v is
determined by the following relation:

�v = Zv − Zv1(0)

Zv + Zv1(0)
, (8)

where Zv1(0) is the impedance at the plasma-vacuum interface
(x = 0).

Since there is only a transmitted (kx > 0) wave in the
vacuum region V2, the wave impedance in the region is inde-
pendent of spatial coordinates and is equal to the characteristic
impedance

Zv2 = Zv.

For the electromagnetic wave field determined by
Eqs. (1)–(3), the local wave impedance in the plasma layer
is

Z = Ey

Hz

= − i

k(ε2 − g2)

(
kyg + ε

1

Hz

dHz

dx

)
. (9)

Solving Eq. (3), one finds that the magnetic field in a plasma
layer can be represented in the form

Hz = A[exp(−κx) + � exp(κx)], (10)

and the wave impedance becomes

Z(x) = −iψ + iξ
exp(−κx) − � exp(κx)

exp(−κx) + � exp(κx)
, (11)

where

ξ = κε

k(ε2 − g2)
,

ψ = kyg

k(ε2 − g2)
,

A is the amplitude of the wave, which is incident on a plasma
slab, and � is its reflection coefficient.

It is convenient to introduce Z(x0) and Z(xa) as the
impedances at the left (x = x0) and right (x = xa) boundaries
of the plasma layer. From Eq. (11) one has

Z(x0) = −iψ + iξ
exp(−κx0) − � exp(κx0)

exp(−κx0) + � exp(κx0)
, (12)

Z(xa) = −iψ + iξ
exp(−κxa) − � exp(κxa)

exp(−κxa) + � exp(κxa)
. (13)

We can eliminate the reflection coefficient � in Eqs. (12)
and (13), expressing the impedance Z(xa) in terms of the
impedance Z(x0) (or vice versa):

Z(xa) + iψ = iξ
(Z(x0) + iψ) − iξL

iξ − (Z(x0) + iψ)L
, (14)

Z(x0) + iψ = iξ
(Z(xa) + iψ) + iξL

iξ + (Z(xa) + iψ)L
, (15)

where L = tanh(κa).
Equations (14) and (15) provide us with the relations

between the impedances Z1(a1) and Z1(0) for the first plasma
layer Pl1, as well as the relations between Z2(a1 + a2) and
Z2(a1) for the second layer Pl2.

Since the tangential electric and magnetic field components
are continuous at interfaces, the wave impedance is also

a continuous function. Matching the impedances at each
interface, we get

Zv1(0) = Z1(0), (16)

Z1(a1) = Z2(a1), (17)

Z2(a1 + a2) = Zv. (18)

Using the boundary conditions (16) and (18) and the
relations (14) and (15), one can obtain the impedance Zv1(0)
at the first plasma-vacuum interface, x = 0. Then, substituting
Zv1(0) = Z1(0) in Eq. (8), one calculates the reflection
coefficient

�v = Zv − Z1(0)

Zv + Z1(0)
, (19)

where

Z1(0) = −iψ1 + iξ1
[Z2(a1) + iψ1] + iξ1L1

iξ1 + [Z2(a1) + iψ1]L1
,

(20)

Z2(a1) = −iψ2 + iξ2
(Zv + iψ2) + iξ2L2

iξ2 + (Zv + iψ2)L2
.

The transmission coefficient T is determined from the
reflection coefficient:

T = 1 − �2
v . (21)

The total transparency of the two-layer structure is achieved
for �v = 0. In this case, the impedance at x = 0 is precisely the
vacuum impedance; i.e., Z1(0) = Zv . From this condition and
Eq. (21), we obtain the following condition for the resonant
transparency of the two-layer structure:

ψ1 − ξ1
Zv + i(ψ1 − ξ1L1)

iξ1 − (Zv + iψ1)L1
= ψ2 − ξ2

Zv + i(ψ2 + ξ2L2)

iξ2 + (Zv + iψ2)L2
,

(22)

where L1 = tanh(κ1a1) and L2 = tanh(κ2a2). This complex
equation is equivalent to the system of two real equations

Z2
vL2(L1ψ1 + ξ1) − L1

(
ψ2

1 − ξ 2
1

)
(L2ψ2 + ξ2)

= Z2
vL1(L2ψ2 − ξ2) − L2

(
ψ2

2 − ξ 2
2

)
(L1ψ1 − ξ1), (23)

(L1ψ1 + ξ1)(L2ψ2 + ξ2) + L1L2
(
ψ2

1 − ξ 2
1

)
= (L1ψ1 − ξ1)(L2ψ2 − ξ2) + L1L2

(
ψ2

2 − ξ 2
2

)
. (24)

The system of equations (23) and (24) determines the condi-
tions for the resonant transparency (T = 1) of the two-layer
structure.

In the case of thick layers, Li ≈ 1 − exp(−2κiai), where
i = 1,2, and condition (22) reduces to

(ψ1 + ξ1) − (ψ2 − ξ2) = −2ξ1
ψ1 + ξ1 − iZv

ψ1 − ξ1 − iZv

e−2κ1a1

− 2ξ2
ψ2 − ξ2 − iZv

ψ2 + ξ2 − iZv

e−2κ2a2 . (25)
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In the limit of a thick layer, the complex relation (25) is
equivalent to the system of two real equations

(ψ1 + ξ1) − (ψ2 − ξ2) = − 2ξ1
ψ2

1 − ξ 2
1 + Z2

v

(ψ1 − ξ1)2 + Z2
v

e−2κ1a1

−2ξ2
ψ2

2 − ξ 2
2 + Z2

v

(ψ2 + ξ2)2 + Z2
v

e−2κ2a2 , (26)

ξ 2
1

(ψ1 − ξ1)2 + Z2
v

e−2κ1a1 − ξ 2
2

(ψ2 + ξ2)2 + Z2
v

e−2κ2a2 = 0.

(27)

III. DISPERSION PROPERTIES OF SURFACE WAVES
AT THE INTERFACE BETWEEN TWO SEMI-INFINITE

MAGNETIZED PLASMAS

In the lowest order (κ1,2a1,2 → ∞), one can neglect the
right-hand side of Eq. (25), in which case it simplifies to

ψ1 + ξ1 = ψ2 − ξ2. (28)

Note that the resonance condition (28) for the case of
infinitely thick layers coincides with the dispersion relation for
the surface waves propagating in the y direction at the interface
between two semi-infinite magnetized plasma layers.

Equation (28) may be represented in more explicit form:

kyg1 + ε1κ1

ε2
1 − g2

1

= kyg2 − ε2κ2

ε2
2 − g2

2

. (29)

Dispersion of the surface waves at the plasma-plasma
interface has some interesting features. Contrary to the case
of surface waves propagating at plasma-vacuum and dielectric
interfaces [22,23], where the surface waves are always slow
(vph < c, where vph is the wave phase velocity), propagation of
both fast (vph > c) and slow (vph < c ) waves is possible at the
interface of plasmas with ε < 1 [24]. Thus, in the plasma layers
Pl1 and Pl2, the fast surface modes can couple to the incident
or reflected electromagnetic waves, which are evanescent in
the plasmas.

The surface waves in magnetized plasmas are nonrecipro-
cal; i.e., the wave frequency depends on sign of the wave vector
component ky . We term the wave with ky > 0 a positive branch
and the wave with ky < 0 a negative branch. The positive and
negative branches exist in different frequency ranges (Fig. 2).

To find the upper limit of the frequency range for both
positive and negative branches, we let |ky | � k, and Eq. (29)
gives us

g1 ∓ ε1 = g2 ± ε2, (30)

2 − ω2
p1

(ω ∓ ωc)ω
− ω2

p2

(ω ± ωc)ω
= 0. (31)

Here, the upper and lower signs are for the positive and
negative branches, correspondingly. In the case of a weak
magnetic field (ωc � ωp1,2), Eq. (30) has the following
solution:

ω∞ = ω(0)
∞ ± ωc

2

ω2
p1 − ω2

p2

ω2
p2 + ω2

p1

, (32)

ω
/ω

p2
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FIG. 2. Dispersion of the surface waves at the plasma-
plasma interface. The curves are obtained for ωp1/ωp2 = 0.5 and
ωc/ωp2 = 0.2.

where ω
(0)
∞ =

√
(ω2

p1 + ω2
p2)/2 is the asymptotic frequency (at

|ky | � k) for the case of nonmagnetized plasma.
The amplitude of the electromagnetic field of the surface

mode decays away from the plasma-plasma interface; i.e., the
decay constant κ is a real number. Requiring κ2 > 0, one
determines the onset frequency. For the wave propagating in
the positive direction, the onset frequency can be found from
the inequality ky � k

√
εV 1, where εV 1 = (ε2

1 − g2
1)/ε1 is the

Voigt dielectric constant for the plasma slab Pl1. The negative

branch starts at the hybrid frequency ωH1 =
√

ω2
p1 + ω2

c (see

Fig. 2), which is smaller than the onset frequency for the
positive branch. Below ωH1, the Voigt dielectric constant is
large and positive, implying that κ2

1 < 0 for a finite propagation
vector; i.e., no surface magnetoplasmon is allowed.

IV. TRANSPARENCY OF THE TWO-LAYER STRUCTURE

In this section we study the dependence of transmission
properties of the two-layer structure as a function of the wave
number ky , the electron cyclotron frequency ωc, and the slab
widths. First, consider the case without a magnetic field. For
H0 = 0, the resonance transparency condition (22) yields the
system of two equations [6]

κ1

ε10
= − κ2

ε20
, (33)

κ1a1 = κ2a2. (34)

Equation (33) coincides with the dispersion relation for
the surface waves propagating at the interface between two
semi-infinite unmagnetized plasmas. Equation (34) determines
the relationship between the slab widths. Under this condition
the amplification of the field amplitude in one layer is offset
by the attenuation of the field in the other layer [6]. Under
these resonance conditions, one gets the absolute transparency
(T = 1) of the two-layer structure.

The transparency of an unmagnetized two-layer structure
depends on the wave number component ky . In Fig. 3, the
transparency coefficient T as a function of the normalized wave
vector component ky/k is shown. The solid curve in Fig. 3 is
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T

0

0.2

0.4

0.6

0.8

1

kyc/ω
−1 −0.5 0 0.5 1

FIG. 3. The dependence of the transparency coefficient on the
normalized wave vector for H0 = 0 and different layer widths:
a1 = 11.5401δ, a2 = 2δ (solid line); a1 = 5.8264δ, a2 = 2δ (dashed
line); a1 = 11.5401δ, a2 = 3δ (dotted line), where δ = c/ωp2. Here,
ω/ωp2 = 0.6007 and ωp1/ωp2 = 0.5.

obtained for the normalized wave frequency ω/ωp2 = 0.6007,
the ratio of plasma frequencies ωp1/ωp2 = 0.5, and the widths
of the plasma layers a1 = 11.5401δ, a2 = 2.0δ, where δ =
c/ωp2. In the absence of the magnetic field, the surface waves
are reciprocal, and the transmission coefficients T for the
positive (ky > 0) and negative (ky > 0) branches are identical.
Therefore, the transparency dependence is symmetrical with
respect to the axis, ky/k = 0.

If the widths of the plasma slabs do not satisfy the resonance
condition (34), then the transparency of the system is reduced.
[See the dashed and dotted curves in Fig. 3, which are obtained
for the same external conditions as the solid curve in Fig. 3,
except for a different width of the first layer in the dashed
curve case (a1 = 5.8264δ), and a different width of the second

T

0.4

0.5

0.6

0.7

0.8

0.9

1

(a1-a10)c/ωp2

−7.5 −5 −2.5 0 2.5 5 7.5

FIG. 4. The dependence of the transparency coefficient on the
deviation of the first layer width a1 from the resonant width a10

(=11.5401δ) for H0 = 0, ky/k = 0.6095, and a2 = 2δ. The other
parameters are the same as in Fig. 3.

T

0

0.2

0.4

0.6

0.8

1

kyc/ω
−1 −0.5 0 0.5 1

FIG. 5. The transparency coefficient dependence for ky < 0,
a1 = 5.717δ (solid curve) and ky > 0, a1 = 19.3824δ (dashed curve).
The other parameters are a2 = 2.985δ, ω/ωp2 = 0.67, ωp1/ωp2 =
0.5, and ωc/ωp2 = 0.2.

layer in the dotted curve case (a2 = 3.0δ).] The transparency
coefficient decreases with increasing deviation of the layer
width from the resonant value (see Fig. 4).

By eliminating the inverse skin depth parameters κ1 and
κ2 from Eqs. (33) and (34), the resonance condition equations
can be obtained in the form

ky = ±
√

ε10ε20

ε10 + ε20
, (35)

ε̄ = ε10a1 + ε20a2 = 0, (36)

where ε̄ is the effective dielectric width for the two-layer
structure at H0 = 0.

Now, we analyze the effects of the magnetic field on
the transparency of the two-layer structure. In the presence

T

0

0.2

0.4

0.6

0.8

1

kyc/ω
−1 −0.5 0 0.5 1

FIG. 6. The dependence of the transparency coefficient on the
normalized wave vector for different values of the magnetic field:
ωc/ωp2 = 0.1 (solid line), ωc/ωp2 = 0.2 (dashed line), and ωc/ωp2 =
0.02 (dotted line). The other parameters are the same as those
corresponding to the dashed line in Fig. 3.

016407-5



IVKO, SMOLYAKOV, DENYSENKO, AND AZARENKOV PHYSICAL REVIEW E 84, 016407 (2011)
T

0

0.2

0.4

0.6

0.8

1

kyc/ω
−1 −0.5 0 0.5 1

FIG. 7. The dependence of the transparency coefficient on the
normalized wave vector. Solid and dashed lines are for ωc/ωp2 = 0.1
and ωc/ωp2 = 0, correspondingly. The other parameters correspond
to the dashed curve in Fig. 3.

of the external steady-state magnetic field, the resonance
conditions are described by Eqs. (23) and (24), which are
different from those for the case H0 = 0 [see Eqs. (33) and
(34)]. At H0 	= 0, the transparency coefficient dependence
on ky/k is asymmetrical with respect to the axis ky/k = 0
(see Fig. 5). The asymmetry is due to nonreciprocity of the
waves propagating in magnetized plasmas (see Sec. III). The
resonance conditions and transparency of the two-slab system
depend on sign of ky . At H0 	= 0, it is impossible to get the
resonance transparency for both positive and negative ky

and the same slab parameters simultaneously (see Fig. 5).
However, the resonance transparency may be reached for the
ky > 0 and ky < 0 cases at different sets of the parameters,
for example at different widths of the first slab (Fig. 5).

The transparency coefficient is sensitive to the magnitude
of the external magnetic field. To show this, we calculated the
transparency coefficient dependence of the normalized wave
vector component ky/k for different cyclotron frequencies.
In Fig. 6, the T dependencies are presented for ωc/ωp2 = 0.1
(solid line), 0.2 (dashed line), and 0.02 (dotted line). Note that,
applying the external magnetic field, one can control the trans-
parency of the two-layer structure. The transparency can even
be improved for cases when the slab parameters initially are not
chosen to satisfy resonant conditions (see, for example, Fig. 7).

V. CONCLUSIONS

We have studied the transparency of two-layer plasma
structures in the external steady-state magnetic field H0.
The case of the electromagnetic wave obliquely incident on
this structure has been considered with an electromagnetic
field which is evanescent in both layers. The wave has been
assumed to be p-polarized, and the external magnetic field is
perpendicular to the wave incidence plane (Voigt geometry).

Conditions (23) and (24) for total transparency of the two-
layer structure have been found. The effects of the plasma
layer widths, the magnitude of the wave number component
ky , as well as the magnetic field magnitude (Fig. 6) on the

transparency have been studied. It has been found that the
difference in the two peaks of the transmission coefficient T

becomes larger if the magnetic field increases (see Fig. 6). It
has been also shown that the structure, which is not totally
transparent in the absence of a magnetic field, can become
totally transparent at H0 	= 0 (see Fig. 7).

The dispersion properties of the surface waves are crucial
for the phenomenon of resonant transparency studied in this
paper. It is worth noting that, in the absence of the magnetic
field, one of the resonant transparency conditions coincides
with the dispersion relation for the surface waves propagating
at the interface of two semi-infinite plasmas. For a finite
magnetic field, the surface waves are nonreciprocal. The
frequency ranges for both positive (ky > 0) and negative
(ky < 0) branches have been found. Due to the nonreciprocity,
the dependence of the transparency coefficient on the wave
number is different for positive (ky > 0) and negative (ky < 0)
branches, contrary to the case of H0 = 0.

For thick plasma layers, one of the conditions for total trans-
parency at H0 	= 0 is the same as the dispersion relation for the
surface waves propagating at the interface between two semi-
infinite regions. However, for finite widths, general Eqs. (23)
and (24) have to be used instead of the dispersion relation (28).

Note that in our study we have used some simplifications. In
particular, the plasma densities have been assumed to be uni-
form. However, in many laboratories and in naturally occurring
plasmas, the electron density is nearly uniform only in central
regions, not near boundaries. Therefore, the plasma uniformity
assumption is applied only if the plasma nonuniformity scale,
which in laboratory low-pressure plasmas is about a few Debye
radii, is smaller than the skin depths 1/κ1 and 1/κ2. The
nonuniformity effects may increase energy dissipation in the
structure [22,25]. In our study, however, we have neglected all
dissipation effects, which may affect the transparency of the
system. Moreover, we also neglected nonlinear effects, as well
as the thermal motion of electrons. These effects can influence
the transparency of the structure [7,10,26], even increasing it
at certain conditions [10].

In conclusion, we have shown that a two-slab structure
of optically opaque material can be totally transparent to a
p-polarized obliquely incident electromagnetic wave in the
external magnetic field. The anomalously high transparency is
explained through the energy transport by two (decaying and
growing) evanescent waves which are excited by the incident
electromagnetic wave. Two waves are efficiently excited at
the resonance in the two-layer structure. If the layers are
thick or an external magnetic field is absent, the waves in the
layers are the surface waves with the dispersion described
by the dispersion relation for surface waves propagating at
the interface of two semi-infinite plasmas. At H0 	= 0 and
arbitrary plasma widths, the dispersion properties of the
waves in the slabs are different from those at the interface of
the semi-infinite plasmas. The results obtained in this paper
can be used in laboratory plasma experiments, as well as in
plasmonic and communications applications.
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