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The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons

and ions) are in different collisionality regimes. A typical example is a partially magnetized E� B

plasma discharge supported by the energy released from the dissipation of the current in the direc-

tion of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so

they respond to the fluctuations of the electric field ballistically on the inertial time scale. In con-

trast, the electron current in the direction of the applied electric field is dissipatively supported

either by classical collisions or anomalous processes. The instability occurs due to a positive feed-

back between the electron and ion current coupled by the quasi-neutrality condition. The theory of

this instability is further developed taking into account the electron inertia, finite Larmor radius and

nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent struc-

tures resembling breathing mode oscillations in Hall thrusters. Published by AIP Publishing.
https://doi.org/10.1063/1.5017521

I. INTRODUCTION

Systems which are away from the equilibrium naturally

evolve back toward the equilibrium state by compensating

the deviation from the equilibrium. In plasmas which support

many different wave eigen-modes, the deviations from the

equilibrium often result in the development of various insta-

bilities. The nature of such instabilities depends on the type

of plasma state and its deviation from the equilibrium. One

class of instabilities results from the non-equilibrium which

can be characterized by gradients in the velocity space, e.g.,

plasma-beam instabilities or instabilities due to plasma pres-

sure anisotropy.1 The non-equilibrium states with relative

streaming of electrons and ions are often unstable too.

Buneman type instabilities2 occur due to the relative motion

of electrons and ions in collisionless plasma. In strongly col-

lisional plasmas, the electron drift gives the Farley-Buneman

instability.3,4 Simon-Hoh type instabilities (both the colli-

sional5,6 and collisionless version7–9) result from the relative

motion of electrons and ions in crossed electric and magnetic

fields E� B. The Simon-Hoh instability is typically studied

for modes propagating in the direction of the E� B drift and

typically requires a density gradient (and/or a magnetic field

gradient8,9) for the excitation.

Here, we discuss the axial instability of the modes along

the direction of the current flow. Essentially, instabilities of

this type were considered in Refs. 10 and 11. The basic insta-

bilities in Refs. 10 and 11 exist in neglect of the electron

inertia. The resistive instability of the lower-hybrid mode,

which requires the electron inertia (but no density gradient)

considered in Ref. 12, can also be referred to as the current

flow instability of this type. Such instabilities occur due to

the phase shift in the response of electrons and ions to the

quasi-neutral perturbation of the electric field. In this paper,

we consider the axial flow instability in conditions typical of

the E� B discharge, such as in Hall thrusters and magnet-

rons. In this case, the axial current is due to the dissipative

flow of electrons and the flow of accelerated ions, both in the

direction of the externally applied electric field. We consider

the linear and nonlinear regimes of this instability and show

that it results in nonlinear quasi-coherent structures. It was

earlier suggested10 that this instability mechanism plays an

important role in breathing mode oscillations.13

II. INSTABILITY MECHANISM

Most simply, the mechanism can be described on the

example of the current flow in the E� B device such as a

Hall thruster. Considering the configuration supported by the

electric current in the axial direction (along z) due to the

electric field E ¼ Eẑ applied across the magnetic field. We

generally characterize the electron current in the z direction

in the form Je ¼ rE, where r can be simply collisional

electron conductivity across the magnetic field, rc

¼ e2n0�en=ðmex2
ceÞ, or some anomalous conductivity which

may include as well the effects of near wall conductivity.13

In the rest of the paper, we do not specify the mechanism of

the electron transport, generally parameterizing it with r (or

� introduced latter). The ion current Ji¼ envi is supported by

free streaming of unmagnetized ions. We consider quasi-

neutral oscillations so that

@

@z
Je þ envið Þ ¼ 0: (1)
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The dynamics of unmagnetized ions is described by standard

equations

@

@t
nþ @

@z
nvið Þ ¼ 0; (2)

@

@t
vi þ vi

@

@z
vi ¼

e

mi
E: (3)

Linearizing equations (1)–(3) for perturbations (denoted by

tilde) in the form ð~n; ~E;~vi; ~JeÞ � exp ð�ixtþ kzÞ, and tak-

ing into account that ions have the equilibrium velocity vi0,

one easily finds the dispersion relation

1

x� kv0ið Þ2
¼ i

x
rmi

e2n0

: (4)

The right hand side of the dispersion equation can also be

written as

rmi

e2n0

¼ �

x2
LH

; (5)

where x2
LH ¼ xcexci and � is either the frequency of the

electron-neutral collisions, or parametrization of combined

effects of anomalous collisions and near-wall conductivity.

This dispersion relation was obtained in Ref. 10 by using the

kinetic theory for ions and later in Ref. 11 from the fluid

model.

The axial modes described by the dispersion relation (4)

are unstable due to the phase shift between the perturbed

electron and ion currents, which can be seen from the follow-

ing expressions:
~Je ¼ r ~E; (6)

~Ji ¼
e2n0

mi

ix

x� kvi0ð Þ2
~E: (7)

The delay introduced by the finite ion flow results in the pos-

itive feedback loop leading to the amplification of the initial

perturbation. In the absence of the flow vi0 ¼ 0, the disper-

sion relation (4) describes a damped mode with

x ¼ �i
x2

LH

�
: (8)

However, in the presence of a large equilibrium ion flow,

kvi0 > x, one has the negative-diffusion-type instability.

From Eq. (4), the growth rate scales with the wave vector as

c � �k2v2
i0=x

2
LH for small kv0i � x2

LH=� and as c � xLHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvi0=ð2�Þ

p
for large kv0i � x2

LH=�. These asymptotics are

valid for small kqe � 1, but for larger values kqe � 1, other

effects become important as discussed in Sec. III. The solu-

tion to (4) is shown in Fig. 1(a).

III. MODE STABILIZATION AT SHORT WAVE-LENGTHS
DUE TO THE EFFECTS OF DIFFUSION, INERTIA, AND
FINITE LARMOR RADIUS

The instability with c � k2 (or �
ffiffiffi
k
p

) in combination

with nonlinear effects may produce explosive growth of the

(a) (b)

(c) (d)

FIG. 1. Solutions to dispersion equations (4), (11), (13), and (14) for different electron transport models are shown for typical Hall thruster parameters:

vi0 ¼ 4:45xLHqe; ve0 ¼ �1:33xLHqe; � ¼ 0:25xLH . (a) Simplest electron transport model Je ¼ rE; c � k2 Eq. (4), (b) Eq. (11) with electron diffusion, (c) Eq.

(13) with electron diffusion, inertia, and finite Larmor radius, and (d) Eq. (14) with electron diffusion, inertia, finite Larmor radius, and finite electron velocity.
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perturbations. However, the unlimited growth rate (with k) is

unphysical and it also presents a problem in numerical simu-

lations because the instability will occur at the largest possi-

ble wave-vectors (kmax � 1=Dx, where Dx is the smallest

resolution length scale, e.g., mesh size). This will result in

piling up of the energy at the smallest resolution length scale.

Therefore, the simulation results will never converge to a

single solution. It is therefore important to incorporate phys-

ics which is relevant on smaller scales, thus limiting the

growth at large wave-vectors. One of such effects is the dif-

fusion flux which was first added in Ref. 11. The effects of

the diffusion can be included via the pressure driven electron

current in the generalized Ohm’s law

Je ¼ rEþ eD
@n

@z
; (9)

where

D ¼ �q2
e : (10)

Once again, the � should be understood either as the classical

electron-neutral, near-wall or anomalous collisional fre-

quency. Repeating the derivations in (1)–(3), one can get the

following dispersion equation which takes into account both

electron mobility and diffusion:

1

ðx� kv0iÞ2
¼ i�

x2
LH xþ i�k2q2

e

� � : (11)

The solution of this equation is shown in Fig. 1(b). One can

see from (11) that the diffusion does not stabilize high kqe

completely, but limits the mode growth at the constant level

c � xLHðv0i � xLHqeÞ
2�qe

: (12)

Therefore, it is important to incorporate higher order effects

such as electron inertia and related effects of the electron

finite Larmor radius (FLR), which bring in the lower-hybrid

modes.12,14 These effects may be included following the der-

ivations in Ref. 9. The respective equation that includes the

electron inertia, mobility, diffusion, and FLR reads

1

ðx� kv0iÞ2
¼ xþ i�ð Þ

x2
LH xþ k2q2

e xþ i�ð Þ
� � : (13)

The solution to Eq. (13) is shown in Fig. 1(c), which shows

that electron inertia and FLR effects stabilize the modes for

high kqe. It is important to note that the electron inertia and

FLR effects alone (without electron transport �¼ 0) do not

make the system unstable.

Our derivations so far have fully neglected the effect of

the equilibrium electron velocity. It can be easily included in

the consideration, resulting in the dispersion equation

1

ðx� kv0iÞ2
¼ x� kv0e þ i�ð Þ

x2
LH x� kv0e þ k2q2

e x� kv0e þ i�ð Þ
� � : (14)

The results for the final dispersion equation (14) are shown

in Fig. 1(d). Note that in the absence of dissipation, this

equation describes stable lower-hybrid modes modified by

the Doppler shift and the effects of the finite electron Larmor

radius.9 The addition of the electron equilibrium velocity

results in the Doppler shift kv0e in the electron response

which has a significant impact on the real part of the fre-

quency of unstable modes: for v0e has the opposite sign to

v0i, the account of the equilibrium electron flow reduces the

phase velocity of unstable modes and may even result in the

change of the sign of the phase velocity.

The final dispersion equation (14) depends on three

important parameters: ion equilibrium velocity v0i, electron

equilibrium velocity v0e, and electron collision frequency �
(classical or anomalous). Therefore, to complete the physical

picture of effects discussed in this section, we demonstrate

how external parameters change the frequency and growth

rate of the unstable mode. The effect of collisional frequency

is shown in Figs. 2(a) and 2(b), where we varied the parame-

ter from the typical Hall thruster classical value � � 0:1xLH

up to the anomalous � ¼ 2:5xLH. One can see that the

increase of the collision frequency enhances the linear insta-

bility and moves the most unstable wave number to the

shorter wavelengths. At larger values, the collisions suppress

the instability, as shown in Figs. 2(c) and 2(d). It is worth

noting that the results for high (anomalous) collisionality

� � xLH, should be viewed as the illustration of a general

trend rather than a quantitative description of the nonlinear

effects (anomalous mobility). Though the often used Bohm

diffusion would correspond to anomalously high values of

the electron collision frequency (as large as xce), the form of

the nonlinear (anomalous) mobility and its proper parametri-

zation is still unknown at this time. Next, we investigate the

effects of the ion equilibrium velocity, which is shown in

Fig. 3. To see the effect more clearly, the electron equilib-

rium velocity was set to zero. The ion flow velocity enhances

the instability moving the maximum growth rate to the lon-

ger wavelengths, where the effects of a finite length of the

system may become important.15,16 We will employ the cor-

rect boundary conditions in Sec. IV. The experimental data

indicates17 that typically the electron flow is a fraction of the

ion flow (v0e � �ð0:3� 0:5Þv0i). The larger values of the

equilibrium electron flow shift the maximum of the growth

rate toward the longer wavelengths and also reverse the

phase velocity to the negative direction for the most unstable

modes, as is shown in Fig. 4.

IV. NONLINEAR EVOLUTION AND STRUCTURES

The linear theory described in Sec. III predicts axial

flow instability with a maximal growth rate which is deter-

mined by the competition of the instability and stabilizing

effects of the diffusion, inertia, and FLR effects. To investi-

gate the nonlinear evolution of these modes, we perform

nonlinear simulations using the model which was developed

in Ref. 9 and includes the nonlinear equations for ion density

(continuity) and velocity in addition to the electron dynamics

equation. In the one dimensional case, the nonlinear ion con-

tinuity and momentum balance equations (2) and (3) have

the form

011604-3 Koshkarov et al. Phys. Plasmas 25, 011604 (2018)



(a) (b)

FIG. 3. Solution to the dispersion equation (14) for different values of equilibrium ion velocity, zero equilibrium electron velocity, and collision frequency

� ¼ 0:25xLH . (a) Frequency and (b) growth rate.

FIG. 2. Solution to the dispersion equations (14) for different values of electron collision frequency � and typical Hall thruster parameters: vi0 ¼ 4:45xLHqe

and ve0 ¼ �1:33xLHqe. (a) Frequency, (b) growth rate, (c) frequency, and (d) growth rate.

(a) (b)

FIG. 4. Solution to the dispersion equa-

tion (14) for different values of equilib-

rium electron velocity and typical Hall

thruster parameters vi0 ¼ 4:45xLHqe;
� ¼ 0:25xLH. (a) Frequency and (b)

growth rate.
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@

@t
þ v0i

@

@z

� �
~n ¼ n0

@2~v
@z2
þ ~n

@2~v
@z2
þ @~n

@z

@~v
@z
; (15)

@

@t
þ v0i

@

@z

� �
~v ¼ e

mi

~/ þ 1

2

@~v
@z

� �2

; (16)

where the potential was introduced for the ion velocity

~vi ¼ �@~v=@z. The electron transport model includes the

electron diffusion, inertia, and FLR effects. In the

Boussinesq approximation, the electron dynamics is linear

and described by the equation

@

@t
þ v0e

@

@z

� �
~g ¼ ��ð~g � ~nÞ (17)

with the electron generalized vorticity defined as

~g ¼ ~n þ n0q
2
e

@2

@z2

e~/
Te
� ~n

n0

 !
: (18)

The typical Hall thruster axial length is around

L � ð25–100Þqe; therefore, for modes with the wave number

kqe � 0:1, the realistic boundary conditions are important.

We use boundary conditions corresponding to the absence of

perturbation at the left (z¼ 0) and open boundary at the right

(z¼L)

~nð0Þ ¼ ~n0ðLÞ ¼ ~vð0Þ ¼ ~v0ðLÞ ¼ ~gð0Þ ¼ ~g0ðLÞ ¼ ~/ð0Þ

¼ ~/ðLÞ ¼ 0; (19)

where prime denotes the spatial derivatives.

We performed the nonlinear simulations of the system

(15)–(19) using the BOUTþþ plasma fluid simulation

framework,18 which was modified for the case of partially

magnetized plasma9 and extensively benchmarked. The non-

linear simulations are monitored with energy like functionals

En ¼ E
~n

n0

	 

; Eg ¼ E

~g
n0

	 

; E/ ¼ E

e~/
Te

" #
; (20)

with

E½f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

ðL

0

dzjf ðzÞj2
s

: (21)

The time evolution of (20) is shown in Fig. 5 for typical Hall

thruster parameters: � ¼ 0:25xLH; v0i ¼ 4:45xLHqe;
v0e ¼ �0:3v0i; and L ¼ 106qe. One can see a distinct linear

growth phase in the initial stage txLH � 0–70. The maxi-

mum theoretical growth rate obtained from Eq. (14) is shown

in the Fig. 5 by a purple solid line, which shows a good

agreement between the theory and simulations. At later times

txLH 	 70, when En � Eg � 1, nonlinear dynamics start to

dominate and fluctuations saturate at constant values. The

evolution of density ~n and generalized electron vorticity ~g in

time and space is shown in Figs. 6 and 7. As shown in Fig. 6,

in the linear stage (~n=n0 � ~g=n0 � 1), density and vorticity

perturbations are growing and slowly moving to the right.

This corresponds to the linear picture shown in Fig. 1(d),

where the most unstable modes have a small positive phase

velocity. As amplitude fluctuations increase (~n=n0

� ~g=n0 � 1), the nonlinear effects become important result-

ing in the formation of strongly nonlinear quasi-periodic

waves, see Fig. 7. It is interesting to note that as the mode

amplitude grows and nonlinear effects become more impor-

tant, the velocity of nonlinear waves reduces and eventually

FIG. 5. The dashed lines represent time evolution of energy like functionals

(20) for parameters: � ¼ 0:25xLH , v0i ¼ 4:45xLHqe; v0e ¼ �0:3v0i;
L ¼ 106qe; the purple solid line is the maximum theoretical growth rate

obtained from Eq. (14).

(a) (b)

FIG. 6. Linear dynamics of density ~n and generalized vorticity ~g spatial profiles. (a) Density and (b) vorticity.
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becomes negative, so they start moving in the opposite direc-

tion (to the left). This effect is attributed to the electron equi-

librium flow, which is in the negative direction (to the left).

The nonlinear evolution in the case of zero electron flow

v0e ¼ 0 is similar, with the exception that the velocity of

nonlinear structures does not change the direction.

V. CONCLUSION

We have analyzed the axial instability of the current

flow due to the phase shift in the electron and ion response to

the perturbations of the electric field. This is a particular

example of a general class of instabilities for the modes

propagating along the direction of the current flow, which do

not need a density gradient as is required for Simon-Hoh

instabilities.5,6 The dispersion relation similar to (4), was

obtained in Ref. 10, where it was concluded that this instabil-

ity is an important ingredient of breathing oscillations.19 A

similar dispersion equation was also obtained in Ref. 11,

where the effects of the diffusion was added. As was noted

in Ref. 10, the dispersion relation (4) is analogous to the one

obtained in Ref. 12 for the resistive instability of the azi-

muthal modes driven by the E� B flow.

Our model for the instability additionally includes the

effects of the electron inertia and finite Larmor radius which

are important for the correct description of the modes at high

k values.

It is important to note that the discussed instability

occurs due to the phase shift between the inertial response of

ions and dissipative electron response. The exact mechanism

of electron current (classical collisional) or anomalous (tur-

bulent)20 is not so critical as long as the perturbations of the

electron current are in phase with the electric field. Thus, one

can expect that this mechanism will be operative when the

electron flow is anomalous and some scale/time separation

exists between fast electron processes that determine anoma-

lous transport and slow the evolution of this instability.

The axial flow instability discussed in this paper has a

relatively low growth rate compared to azimuthal modes of

higher frequencies which are driven by collisions and density

gradients.8,9 Its significance, however, is in the high ampli-

tude of the saturated modes. The mode saturation occurs due

to ion dynamics resulting in the appearance of high ampli-

tude quasi-coherent structures resembling the cnoidal

waves.21 The theory of such highly nonlinear (non-perturba-

tive) waves is described in Ref. 21. The nonlinear coherent

structures observed in our simulations appear to be an exam-

ple of such large amplitude waves born out of the instability.

The electron nonlinearity is weak as it appears in the higher

order polarization drift and only for the non-Boussinesq

approximation. In this paper, we consider the Boussinesq

approximation so the electron dynamics is linear while, all

explicit nonlinear effects originate in ion dynamics. The

electron inertia and FLR effects are important here as a

mechanism of stabilization of the instability at large k (due

to coupling to lower-hybrid dynamics).

It has been suggested10 that the instability of this type is

a crucial ingredient of breathing oscillations often observed

(a) (b)

(c) (d)

FIG. 7. Nonlinear dynamics of density ~n and generalized vorticity ~g spatial profiles. (a) Density, (b) vorticity, (c) density, and (d) vorticity.
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in Hall thruster discharges supported by the axial electron

current. Our basic model given by Eqs. (1)–(3) is a subset of

the full systems of equations typically considered for the

description of the breathing mode.13,17,22 Our simulations

show that the considered instability results in the formation

of nonlinear quasi-coherent structures which are indeed simi-

lar to those observed in the breathing mode.19,23 The slow

moving coherent structures formed as a result of axial flow

instability discussed here could also be the sources of non-

monotonous profiles of the electric field observed experi-

mentally in Ref. 24.

The finite velocity of ions plays a critical role in the

axial current flow instability discussed in our paper. The

characteristic time scale associated with ion velocity,

x ’ vi=L, where L is the characteristic length, is typically

considered to be in the range of the so called transit instabil-

ities,25,26 which have higher frequencies compared to the

breathing oscillations. In our model, the real part of the

unstable modes is considerably lower than x ’ vi=L; in part

due to inclusion of the electron flow velocity. One should

note though that in the present paper, we consider the case of

constant ion velocity v0i, while in real configurations, the

effects of the axial dependence vi0ðxÞ could be impor-

tant.25,26 In consideration of this, a more general case, is left

for future publication.
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