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ABSTRACT

The interaction of the drift wave (DW) turbulence and zonal flow (ZF) is investigated with the modified Hasegawa–Mima equation taking
into account the backreaction of ZF velocity on DW turbulence. It is shown that the y-averaged enstrophy of DW turbulence and the velocity
of ZF are intrinsically related. By utilizing this feature, a nonlinear stage of DW modulational instability is considered within the framework
of the wave kinetic equation. It is shown that in this approximation, the nonlinear stage of the modulational instability results in the collaps-
ing solutions, accompanied by the “wave breaking” phenomenon. Numerical simulations based on the Hasegawa–Mima equation show that
for a weak DW turbulence, ~U ¼ ðe~u=TeÞ ðLn=qsÞ�1, the collapsing-like features on both ZF and y-averaged enstrophy of DW turbulence
decay in time and then re-emerge again at different locations. For the case of a strong DW turbulence, ~U > 1, where nonlinear interactions
of DW harmonics dominate, stable spatial structures of ZF and y-averaged enstrophy of DW turbulence emerge.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031301

It is widely accepted that the zonal flow (ZF) plays an important
role in anomalous cross field plasma transport in fusion devices and
the nonlinear evolution of geophysical flows.1–3 In general, the genera-
tion of large-scale zonal flows is viewed as a consequence of the inverse
cascade in which energy tends to concentrate in the long-wavelength
part of the spectrum. The inverse cascade itself is a result of the two
quadratic conserved quantities usually called “energy” and
“enstrophy,” which exist in two-dimensional systems such as inviscid
incompressible fluid, magnetized plasmas, and rotating geophysical
fluids.4–7 However, both energy and enstrophy are spatially
“homogeneous” and, therefore, cannot show the preferential forma-
tion of ZFs. However, in Ref. 8, it was shown that for both drift wave
(DW) and Rossby wave (RW) turbulence, there also exists an aniso-
tropic approximately conserved quadratic form, later called
“zonostrophy.” The (although approximate) conservation of zonostro-
phy shows the preferential transfer of DW/RW energy into ZFs (see
Ref. 3 and references therein).

The modulational instability of both DW and RW turbulence has
long been studied,9,10 as a specific mechanism for the generation of
ZFs. Despite a long history, the nonlinear coupling and interplay
between dynamics of DW and large scale ZF (in particular, with
Hasegawa–Wakatani12,13-based models) is still a hot topic of ongoing
research.3,12–15

In this Letter, we consider the coupled DW and ZF dynamics
using the modified Hasegawa–Mima equation.16 We show that the
enstrophy of DW turbulence16 and ZF are directly related to each
other and derive the local relation between the amplitude of the zonal
flow and intensity of the quadratic enstrophy integral. This newly
derived relation allows us to extend the analysis of modulational insta-
bility into the nonlinear regimes taking into account the impact of
finite-amplitude ZF.16 We also show the results of numerical simula-
tions confirming our analytical results for weak turbulence regimes
and extending them into the strong turbulence case.

We consider a standard slab plasma model, with cold ions and
constant uniform electron temperature, Te, a uniform magnetic field
~B ¼~ezB, and inhomogeneous background plasma density n0ðxÞ.
Coupled dynamics of ZF and drift waves is described by the modified
Hasegawa–Mima equation and the equation for the evolution of the
ZF in standard form (e.g., see Ref. 10),
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Here, / ¼ eu=Te � �/ þ ~/ is the normalized electrostatic potential
describing both ZF, �/ðx; tÞ, and DW turbulence, ~/ðx; y; tÞ,

F̂ð/Þ � ~/ � q2
sr2/; ~VE�B ¼ �r/�~ez; (3)

where the operator h…i means the averaging over the y-coordinate so
that the ZF part is defined as �/ðx; tÞ ¼ h/ðx; y; tÞi and DW compo-
nents as ~/ ¼ /� �/. The other notations are DB¼ cTe=eB and ~V �
¼~eyCsqs=Ln, where L�1n ¼�d‘nðn0Þ=dx¼ const:>0, Cs¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=M

p
,

with M being the ion mass, and qs¼Cs=XBi, with XBi being the ion
cyclotron frequency, which, depending in the sight of B, can be both
positive and negative.

It is convenient to re-cast Eq. (1) in fully dimensionless form by
using the dimensionless variables U � ~U þ �U ¼ / ðLn=qsÞ,
~n ¼~r=qs, and s ¼ t ðV�=qsÞ,

@

@s
~U �r2

~n
U

� �
þr~n � ð~ez �r~nUÞ ~U �r2

~n
U

� �n o

¼ �r~n � ~ey ~U
� �

: (4)

From Eq. (4), one can easily see that for the characteristic wave-
numbers kqs � 1, or, in dimensionless form r~n � 1, the nonlinear
term on the left side dominates for jU j� 1. In this limit, Eq. (4) will
be used below for numerical simulations. For analytical considerations
in the weak turbulence regime, jU j < 1, we will use Eq. (1) to empha-
size the physical parameters that define the applicability region.

It is known that Eq. (1) in the absence of ZF, V0ðx; tÞ ¼ 0, con-
serves two quadratic (over ~/) forms: the effective energy, E, and enstro-
phy, J.10 For the case where V0ðx; tÞ 6¼ 0, it is easy to show that Eq. (1)

conserves energy and enstrophy, defined as Eð/Þ ¼ ~/
2 þ q2

s ðr/Þ2

and Jð/Þ ¼ ½F̂ð/Þ�2, for any spatiotemporal variation of V0ðx; tÞ.
For our further analysis of the nonlinear stage of the modula-

tional instability, it is useful to introduce Ĵ ðx; tÞ ¼ hJð/Þi. Then, from
Eq. (1), we find the following equation describing the evolution of
Ĵ ðx; tÞ:
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where

CĴ ¼ �DB
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F̂ð/Þ
	 
2�

(6)

plays the role of the x-component of a nonlinear flux of the enstrophy
averaged over the y-coordinate. Then, combining Eqs. (2) and (5), we
find

@

@t
Ĵ ðx; tÞ � 2

MV�V0ðx; tÞ
Te

� �
þ
@CĴ

@x
¼ 0: (7)

Thus, as we see from Eq. (7), the temporal growth of ZF and Ĵ ðx; tÞ is
related.

If we separate the contributions from zonal flow and DW turbu-
lence in both Ĵ ðx; tÞ and CĴ ðx; tÞ, then Eq. (7) can be written as follows:
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� 2
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V� þ q2
s
@2V0
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� �
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þ
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¼ 0; (8)

where

~̂Jðx; tÞ ¼ h~J ð~/Þi �
D
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h i2E

; C~̂J
¼ �DB

D @~/
@y

F̂ð~/Þ
h i2E

;

and F̂ð~/Þ � ~/ � q2
sr2~/: (9)

Equation (8) plays a crucial role in our further analysis of the nonlin-
ear stage of the modulational instability.

To make a qualitative evaluation of coupled dynamics of DW
and ZF, we will assume the spatiotemporal scale lengths of ZF,
ðT;KÞZF , are much larger than those of DW turbulence, ðx�1; kÞDW .
Therefore, we neglect the term / @2V0=@x2 in Eq. (8). In addition,

since C~̂J
/ j~/j3 and ~̂Jðx; tÞ / j~/j2, for the case of weak turbulence,

implying that j~/j 	 1, C~̂J
is a higher order term in comparison with

~̂Jðx; tÞ and can be neglected. Neglect of the enstrophy flux C~̂J
/ j~/j3

in Eq. (8) is consistent with the growth rate of the modulational insta-
bility/ j~/j in the hydrodynamic limit.10 As a result, within these sim-
plifications, Eq. (8) is reduced to

~̂Jðx; tÞ � 2
MV�V0ðx; tÞ

Te
¼ ~̂J ðx; t ¼ 0Þ � ~̂J 0 ¼ const:; (10)

where we assume an initially homogeneous profile of ~̂Jðx; t ¼ 0Þ.
From Eq. (10), we see that the generation of ZF is directly related

to the departure of ~̂Jðx; tÞ from its original value. Assuming that
kDW � qs and estimating the amplitude of ZF from Eq. (10), we find

V0=V� � ~/
2ðLn=qsÞ2. Therefore, the term/ @2V0=@x2 in Eq. (8) can

be neglected for

j ~/ j�KZF=Ln < 1 ! j ~U j�KZF=qs: (11)

For KZF � qs, we find that relation (10) holds for j ~U j�1, whereas
for the higher amplitude of DW turbulence, all terms in Eq. (8) should
be retained.

We notice that for the case where ðT;KÞZF are much larger then
ðx�1; kÞDW , the enstrophy ~J ð~/Þ becomes an adiabatic invariant,17,18

and to describe the interactions of DW with ZF, we can use the
“kinetic” equation for the spectral density of ~J ð~/Þ (e.g., see Ref. 10).
Although the wave kinetic approximation is valid only for limited
range DW and ZF parameters, it gives further insights into the nonlin-
ear features of DW and ZF interaction.

The kinetic equation for the spectral density of DW enstrophy
has the form11

@~J~k
@t
þr � ~V~k

~J~k

� �
þr~k � ~W~k

~J~k

� �
¼ 0; (12)

where ~J~kð~r ; tÞ ¼ ð1þ q2
s k

2Þ2I~kð~r ; tÞ, I~kð~r ; tÞ is the normalized DW
turbulence spectral function written in Wigner’s form I~kð~r ; tÞ
¼
Ð
d~q ~/�~kþ~q=2

~/~kþ~q=2 expði~q �~rÞ, and ~/~k is the Fourier component

of normalized electrostatic potential. In what follows, we assume that
I~kð~r ; tÞ only depends on the x-coordinate.

To find the expressions for the velocities of the wave packet in
real, ~V~k , and k-space,

~W~k , we use the following expression for the fre-
quency of DW in the presence of ZF:

x ¼ V�ky
1þ q2

s k
2
þ V0ðx; tÞky: (13)
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Then, we find the x-component of the “quasi-particle” velocity in real
space, dx=dt (group velocity of the wave packet Vgr),

dx
dt
� ~V~k

� �
x
� Vgr ¼

@x
@kx
¼ �2V�

kxky

1þ q2
s k

2
� �2 ; (14)

and k-space,

dkx
dt
¼ ~W~k

� �
x
¼ � @x

@x
¼ � @V0

@x
ky: (15)

Equation (2) for V0ðx; tÞ, expressed in terms of I~kð~r ; tÞ, has the form
@V0

@t
¼ C2

s q
2
s
@

@x

ð
kxkyI~kð~r ; tÞd~k

� �
: (16)

Then, integrating kinetic equation (12) over ~k and using expression
(14), we arrive to Eq. (10) written in terms of spectral density of the

enstrophy, ~̂J ðx; tÞ ¼
Ð

~J~kd
~k.

Equation (10), which is a “subset” of exact Eq. (8), is valid for the
case of relatively weak DW turbulence defined by inequality (11). In
the weak turbulence regime, the magnitude of ZF is smaller than V�,
which allows us neglect the term / @2V0=@x2 in both Eq. (8) and in
the derivation of kinetic equation (12). In this regime, the effective
“self-collisions” of the small-scale DW fluctuations (e.g., see Ref. 5),
which correspond to the enstrophy flux term in Eq. (8), are the higher
order terms with respect to j~/j and also can be neglected.

Let us take V� > 0 and consider the wave packets having the
wave number~k ¼~k0 and the initially homogeneous intensity profile
I~k0ðxÞ. Assume now that I~k0ðxÞ and ~̂JðxÞ experience some spatial per-
turbations. In the first order, if we ignore an impact of ZF on the
dynamics of DW, the spatial structures of ~̂JðxÞ and V0ðxÞ will propa-
gate into the positive direction along x with group velocity Vgrð~k0Þ (we
assume kxky < 0). In the next order, when the ZF effects on the wave-
packet propagation are included, one obtains the linear stage of the
modulational instability, which can be interpreted based on Eq. (10).
From Eq. (15), one can see that the spatial variation of the magnitude
of ZF velocity causes the variation of kx and, therefore, the group
velocity ðV~kÞx . In other words, the wave packet will experience the
acceleration agr � d2x=dt2. From Eqs. (14) and (15), we find

agr ¼ 2V�
q2
s k

2
y

1þ q2
s k

2
� �3 1þ q2

s k2y � 3k2x
� �h i @V0

@x
: (17)

One can see from (17) that for the wave packet with the localized per-
turbation of V0ðxÞ and provided that

1þ q2
s k2y � 3k2x
� �

> 0; (18)

the region with @V0ðxÞ=@x < 0 is decelerated, while the region with
@V0ðxÞ=@x > 0 is accelerated. This leads to shrinking of the wave

packet perturbation. Since ~̂JðxÞ is constant on the characteristic equa-
tions (14) and (15), shrinking of the wave packet leads to the enhance-

ment of the perturbation of ~̂JðxÞ and, according to Eq. (10), to the
enhancement of the ZF perturbation V0ðxÞ. Alternatively, the increase
in the perturbation ~̂JðxÞ due to the wave packet shrinking can be seen

as a result of the conservation of the total integral
Ð

~̂JðxÞdx [which fol-

lows from Eq. (12)]. As a result, the ~̂JðxÞ amplitude (hence the

amplitude of V0ðxÞ) increases when the wave packet becomes nar-
rower. This picture describes the modulational instability in the DW
and ZF system10 and inequality (18) ensures such instability in a
hydrodynamic limit.

Equation (10) also allows us to describe a nonlinear stage of the
modulational instability of the initially homogeneous profile of the
enstrophy for the wave packet with the wave number~k ¼~k0. To sim-
plify the algebra, we will consider the case q2

s k
2 	 1 so that inequality

(18), predicting modulational instability, holds. Then, introducing the
dimensionless variables Uðx; tÞ ¼ Vgrðx; tÞ=�Vgr � 1, and Sðx; sÞ
¼ ð~̂Jðx; sÞ=4ÞðLn=qsÞ2q�2s ðk0Þ

�2
x , Eqs. (12) and (15) can be written as

@S
@s
þ @

@x
USð Þ ¼ 0; (19)

@U
@s
þ U

@U
@x
¼ @S
@x
; (20a)

respectively, where s ¼ �Vgrt and �Vgr ¼ �2V�q2
s ðk0Þxðk0Þy . The evo-

lution of Uðx; tÞ � Vgrðx; tÞ in Eq. (20a) is related to the evolution of
the wavevector kx in Eq. (15) and the relation �Vgr / �2V�q2

s kxky

from Eq. (14). We have also used the relation between ~̂Jðx; tÞ and
V0ðx; tÞ from Eq. (10) and transformed to the frame moving with
velocity �Vgr .

Equations (19) and (20a) belong to the wide class of the so-called
“quasi-Chaplygin” media having negative compressibility and, there-
fore, intrinsically unstable.19 For the first time, an example of the gas
with negative compressibility was considered in 1896 by Chaplygin.20

For such gas, the S variable in (19) is related to the density, and the
momentum equation for the gas velocity U takes the form of Eq. (20a)
where gas pressure was assumed with c ¼ �1 adiabat, i.e., the follow-
ing relation between the pressure P and density q: P ¼ P0q0=q. Many
instabilities in plasmas and fluids, in the nonlinear regime (typically in
the long wavelength limit), can be reduced to the nonlinear quasi-
Chaplygin gas equations in the form of Eq. (19) and more general
equation in the form

@U
@s
þ U

@U
@x
¼ 1

p
@Sp

@x
; (20b)

with different values of the parameter p. Examples of such instabilities,
characterized by different values of p, can be found in Ref. 19 and
references therein.

In Ref. 19, it was shown that using the hodograph transforma-
tion, one can transform nonlinear equations (19) and (20b) to the lin-
ear equations for the functions x ¼ XðU; Sp=2Þ and s ¼ TðU; Sp=2Þ.
In Ref. 19, different solutions for quasi-Chaplygin equations, corre-
sponding to Uðx; s!�1Þ ¼ 0 and Sðx; s! �1Þ ¼ S0 (in our
case, S0 ¼ ð~̂J 0=4ÞðLn=qsÞ2q�2s ðk0Þ

�2
x ) were obtained corresponding,

in particular, to the soliton-like and periodic structures in the x-
direction. The implicit expressions for such solutions for Uðx; sÞ and
Sðx; sÞ can be found in Ref. 19. An example of such solutions describ-
ing nonlinear development of the modulational instability is shown in
Fig. 5 from Ref. 20. In all cases considered in Ref. 19, the evolution of
Sðx; tÞ / Ĵ ðx; tÞ at t ¼ tcrit ends up with the appearance of singulari-
ties at some points in space, x ¼ x0, where Sðx0Þ ¼ 0, whereas
jdS=dxjx¼x0 j ¼ 1 so that strictly speaking no physically meaningful
solution exist at t > tcrit . We note that the formation of the singulari-
ties in the coupled ZF and RW evolution was also reported in Ref. 4.
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We should note, however, that unlike quasi-Chaplygin solutions
considered in Ref. 19, in our case Uðx; sÞ cannot fall below�1 since it
corresponds to the “reflection” of the wave packet and after that we
have to deal with a multi-valued flow, which cannot be described any-
more with Eqs. (19) and (20a). As a result, the applicability of the solu-
tions of Eqs. (19) and (20a) is limited by the inequality

Uðx; sÞ 
 �1: (21)

The wave packet approximation for DW evolution cannot be
applied for the case of sharp gradients of ~̂Jðx; tÞ. Therefore, the solu-
tions found in Ref. 19 only can be used for t < tcrit . On the other
hand, outside of the points x ¼ x0, our wave packet approximation is
still valid and, therefore, the nonlinear stage of the modulational insta-
bility accompanied by the increase in the amplitudes and sharpening
of spatial profiles of ~̂Jðx; tÞ and V0ðx; tÞ can still be described by Eqs.
(19) and (20a).

So far, we consider the nonlinear evolution of the wave packets
having initially the same group velocity, which implies that kxð0Þ is
either positive or negative. However, for example, the growth rate of
resistive drift waves does not depend on the sign of kx and, therefore,
it is interesting to consider the nonlinear stage of the modulational
instability where the wave packets of the same intensity propagate into
opposite directions. In this case, considering q2

s k
2 	 1, we arrive at

the following system of equations describing the nonlinear evolution
of the modulational instability:

@Sð6Þ
@s
þ @

@x
Uð6ÞSð6Þ
� � ¼ 0; (22)

@Uð6Þ
@s
þ Uð6Þ

@Uð6Þ
@x

¼
@ SðþÞ þ Sð�Þ
� �

@x
; (23)

where s ¼ j�Vgr jt, Uð6Þðx; sÞ ¼ Vð6Þgr ðx; sÞ=j�Vgr j are the normalized
group velocities of the wave packets moving to x ! 61,

Sð6Þðx; sÞ ¼ ð~̂J ð6Þðx; sÞ=4ÞðLn=qsÞ2q�2s ðk0Þ
�2
x are their normalized

intensities, and j�Vgr j ¼ 2jV�q2
s ðk0Þxðk0Þyj.

We consider the solutions of Eqs. (22) and (23) with the follow-
ing initial conditions: Uð6Þðx; s ¼ 0Þ ¼ 61 and Sð6Þðx; s ¼ 0Þ
¼ S0=2, where S0 is some constant. A small initial perturbation with
fixed periodic boundary conditions was added to initiate the evolution.
The linear stability analysis of two counter-propagating monochro-
matic drift waves against the modulational instability was considered
in Ref. 21. The results found in Ref. 21 can be easily obtained from the
linearized system of equations (21) and (22). However, actually the
results of Ref. 16 are only valid for the case corresponding to S0 < 1,
when one can neglect a broadening, DðjX=qjÞ �

ffiffiffiffiffi
S0
p

, of the reso-
nance jX=qj ¼ 1, where X and q are the normalized frequency and
the wave number of the modulational instability, respectively. In order
to separate two wave packets, the same restriction, S0 < 1, holds for
the applicability of Eqs. (22) and (23).

For the case of two wave packets propagating in opposite direc-
tions, the nonlinear stage of the modulational instability, which causes

FIG. 1. The evolution of Sð6Þðx; sÞ (left) and Uð6Þðx; sÞ (right), from numerical solution of Eqs. (22) and (23), shows the growth of perturbations due to the modulational insta-
bility and wave breaking. The arrows show the directions of the propagation for Sð6Þðx; sÞ and Uð6Þðx; sÞ.
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the variation of the group velocities, is accompanied by the wave
breaking phenomenon. It is well known that the wave breaking results
in a local spatial increase in the effective “density” (in our case,
Sð6Þðx; sÞ), which, in some sense, facilitates the effect of the modula-
tional instability.

The results of numerical solution of Eqs. (22) and (23) with peri-
odic boundary conditions, illustrating the effects of the growth of the
modulational instability and the wave breaking, are shown in Fig. 1.

These results again show the “collapsing”-spatial profiles of
Sð6Þðx; sÞ, which limits the applicability of our wave packet based
approximation, only valid for kxDð6Þ < 1, where Dð6Þ are the charac-
teristic widths of Sð6Þðx; sÞ.

To verify our analytical and semi-analytical considerations and
go beyond the weak DW turbulence approximation, we perform addi-
tional studies based on numerical integration of Eq. (4) with a pseudo-
spectral Fourier code. The computation domain in our simulation was
a square box with the size Lx ¼ Ly ¼ 20pqs so that the lowest wave-
number is qskmin ¼ 0:1 and the number of the modes is 5282. We use
doubly periodic boundary conditions and the fourth-order
Runge–Kutta method as the time integration algorithm. For the simu-
lations, we use the dimensionless variables: U ¼ / ðLn=qsÞ,~n ¼~r=qs,
and s ¼ t ðV�=qsÞ. The time step of the integration was
Ds ¼ 5� 10�3. The seed for DW turbulence for our numerical
solution of Eq. (4) was obtained from the simulation of fully

turbulent stage of the Hasegawa–Wakatani model with no zonal
components.

In Fig. 2, one can see the time evolution of normalized ~̂Jðx; tÞ,
V0ðx; tÞ, and the ~̂Jðx; tÞ � 2MV�V0ðx; tÞ=Te quantity found from
numerical simulations for different amplitudes of initial dimen-
sionless DW turbulence: j~Uj � 10�2, j~Uj � 0:3, and j~Uj � 3.
Such magnitudes of initial dimensionless DW turbulence corre-
spond, according to Eq. (11), to the transition from a weak to a
strong DW turbulence where a nonlinear term in Eq. (4) starts to
dominate. The relative deviations of total energy and enstrophy in
these simulations were, respectively, within 10�8 and 10�5 for
j~Uj � 10�2, 3� 10�6 and 10�4 for j~Uj � 0:3, and 6� 10�6 and
2� 10�4 for j~Uj � 3.

From Fig. 2, one can see that in accordance with our qualitative
physical picture, for the case of a weak DW turbulence, j~Uj � 10�2 and

j~Uj � 0:3, the difference ~̂Jðx; tÞ � 2MV�V0ðx; tÞ=Te is conserved
rather well over entire simulation time. However, for the j~Uj � 0:3

case, these is some initial phase of adjustment of ZF and ~̂Jðx; tÞ. The spa-
tiotemporal variation of ~̂Jðx; tÞ and V0ðx; tÞ is rather coherent. The
results of the simulations show the forming of the “peaks” of spatial dis-

tributions of ~̂Jðx; tÞ and V0ðx; tÞ, which then decay later. Such events
happen intermittently at different locations along the x-coordinate.

FIG. 2. Time evolution of normalized DW enstrophy ~̂Jðx; tÞ (left), the velocity of the zonal flow velocity V0ðx; tÞ (center), and the difference ~̂Jðx; tÞ � 2MV�V0ðx; tÞ=Te (right)
for different initial amplitudes of DW turbulence j~Uj � 10�2 (top panel), j~Uj � 0:3 (central panel), and j~Uj � 3 (bottom panel).
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For the case of a strong DW turbulence, j~Uj � 3, where nonlin-
ear interactions of DW harmonics dominate, in the beginning of the

simulation, there is some adjustment between ~̂Jðx; tÞ andV0ðx; tÞ after
which a rather stable ZF spatial structure, which entrains the DW tur-

bulence, is formed and the difference ~̂Jðx; tÞ � 2MV�V0ðx; tÞ=Te

remains largely constant after that.
In conclusion, we have considered the interaction of the DW tur-

bulence and ZF within the modified Hasegawa–Mima equation10 tak-
ing into account nonlinear feedback effects from ZF.5 One of our
principal results is a finding that y-averaged enstrophy of DW turbu-

lence, ~̂Jðx; tÞ, and the velocity of ZF, V0ðx; tÞ, are related [see Eq. (8)].
This relation shows that the generation of ZF by DW turbulence is

accompanied by the local growth of the averaged enstrophy, ~̂Jðx; tÞ,
which is redistributed in space. Recall that the enstrophy is conserved

globally. By utilizing the relation between ~̂Jðx; tÞ and V0ðx; tÞ, we have
considered the nonlinear stage of DW modulational instability in the
framework of wave packet approximation relevant for a weak DW tur-
bulence satisfying the inequalities (11). We show that the nonlinear
evolution of DW and ZF proceeds to the formation of narrow spatially

localized structures in ~̂Jðx; tÞ and V0ðx; tÞ (collapsing solutions). This
analytical result is confirmed by our numerical simulations of the
extended Hasegawa–Mima equation in the weak turbulence limit.

Our simulations, which go beyond the wave packet approxima-

tion, also show that collapse of the spatial profiles of ~̂Jðx; tÞ and
V0ðx; tÞ is terminated at some level, with the subsequent spreading in
space and further re-occurrence at different spatial locations. We sug-
gest that this is a result of the breaking down of the quasi-classical
approximation (wave packet) in the collapsing stage with the narrowly
localized structures so our analytical theory is no longer applicable.
Our numerical simulations also show that for strong DW turbulence,
j ~U j�1, the nonlinear interactions of DW harmonics result in the

generation of standing DW in the vicinity of the peaks of ~̂Jðx; tÞ and
V0ðx; tÞ, which prevents their decay. These results provide the infor-
mation of the nonlinear saturated states (amplitude and spatial length
scales) of the zonal flow from the nonlinear evolution of the developed
turbulence. The next steps would be to investigate these solutions in
the unstable regimes with continuing energy input from the instabil-
ities, which is left for future studies.
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