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The asymmetry of inner and outer divertors, which cause the inner divertor to detach first, while

the outer one is still attached, results in the large temperature difference between the vicinities of

inner and outer targets and the onset of large electric potential drop through detached plasma of the

inner divertor. A large potential drop along with the inhomogeneity of the resistivity of detached

plasma across the divertor leg drives the current convective instability in the inner divertor and

subsequent fluctuations of radiation loss similar to that observed in experiments. The estimates

of the frequency of plasma parameter fluctuations due to the current convective instability are in

a reasonable agreement with experimental data. Once the outer divertor also detaches, the

temperature difference between the vicinities of inner and outer targets disappears, and the driving

force for the current convective instability, and resulting oscillations of radiation loss, vanishes.

This feature is indeed observed in experiments. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962568]

I. INTRODUCTION

Large heat and particle fluxes on divertor targets, envi-

sioned in magnetic fusion reactors, make the detached

regime of divertor operation in future reactors virtually man-

datory. Therefore, it is very important to have a clear under-

standing of both transition to the detached regime and the

physics of the detached plasma. Detached divertor regimes

are characterized by large radiation loss, reduction of plasma

flux to the targets, and cold recombining plasma in signifi-

cant part of divertors.1 Experimental data show that the tran-

sition to detachment can have bifurcation-like character,

while the operation in the detached regime can exhibit rather

strong fluctuations of the radiation loss and enhanced cross-

field plasma transport (e.g., see Refs. 2–5). Although simpli-

fied analytical models and numerical simulations demon-

strate the possibilities of such phenomena (e.g., see Refs.

6–8 and the references therein), the physics of experimen-

tally observed bifurcations and fluctuations is still not clear.

In this paper, we present a plausible explanation of ori-

gin of radiation fluctuations in the AUG tokamak reported in

Ref. 3. These fluctuations, with the frequencies �10 kHz,

were observed for the case where only the inner divertor was

detached and both the detachment and radiation fronts were

located close to the X-point. However, radiation fluctuations

disappear when the outer divertor also detaches.

We show that the origin of the radiation oscillations can

be attributed to current convective instability9 developing in

the cold plasma in the inner divertor. It is widely accepted

that current convective instability, which in the tokamak

related literature also called “rippling mode” (e.g., see Refs.

10–12), does not play a significant role in anomalous plasma

transport in the hot core region due to the high plasma heat

conduction along the magnetic field and the magnetic shear

effect,13 although it might be important in relatively cold

edge plasma.11,12 However, on the closed flux surfaces, the

parallel electric field driving the parallel current causing the

rippling instability is small, �10�3 V=cm, while in the

scrape off layer (SOL) plasma (see Fig. 1), it can be much

larger, �1 V=cm. The reason for this is that in the SOL, the

parallel current is largely driven by the difference of electron

temperatures T
ðoutÞ
d and T

ðinÞ
d in the vicinity of outer and inner

divertor targets, respectively.14 This is because the drop of

electrostatic potential through the sheath is �4Td for the case

where no current flows through the sheath. For the case where

T
ðoutÞ
d 6¼ T

ðinÞ
d and inner and outer divertor targets are electri-

cally connected (which is the case in current tokamaks), the

current will flow through the SOL plasma. The magnitude of

the current will be determined by the difference T
ðoutÞ
d � T

ðinÞ
d

and the SOL plasma resistivity.14 When the inner (outer)

divertor is detached (attached), we have T
ðoutÞ
d � T

ðinÞ
d and

the SOL resistivity is largely determined by the resistivity of

cold, �1 eV, plasma in the inner divertor. As a result, virtu-

ally the whole potential drop, U � 4T
ðoutÞ
d , driving the SOL

current will be localized within the detached plasma, creating

a large parallel electric field. This high electric field in the

FIG. 1. Schematic view of the poloidal cross-section of a tokamak and a

scrape off layer shown in a straight flux tube approximation.
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SOL, in conjunction with a very low plasma temperature in

the detached divertor region, which strongly decreases the

stabilizing role of electron heat conduction, can cause robust

current convective instability in the detached plasma.

Fluctuation of plasma parameters, including pressure, in

the detached inner divertor will cause the bursts of plasma

outflow from the radiation region (located beyond the

detachment front) towards the target and subsequent fluctua-

tion of the radiation losses. Once the outer divertor also

detaches, a strong asymmetry between T
ðoutÞ
d and T

ðinÞ
d , caus-

ing a large potential drop through the inner divertor, disap-

pears. As a result, when both divertors are detached, the

drive for the current convective instability in the inner diver-

tor and the subsequent fluctuations of the radiation losses do

not exist anymore. This qualitative physical picture agrees

with experimental observations.3 We will show later in the

paper that the expected frequency range of current convec-

tive instability is also consistent with the experimental data.

The rest of the paper is organized as follows: in Section

II, we discuss and justify the simplified physical model of a

detached plasma we will be using here, and present the gov-

erning equation describing the current convective instability

as well as some important estimates of the growth rate, char-

acteristic wavelengths, and the instability threshold; in

Section III, we analyze and solve this equation and find the

conditions for current convective instability and correspond-

ing growth rate. In Section IV, we summarise the results and

compare them with the available experimental observations.

II. PHYSICAL MODEL

We will consider a slab approximation for a detached

inner divertor plasma assuming periodic boundary conditions

along the “toroidal” z-coordinate (see Fig. 2). In the poloidal

direction (Tcold � few eV, we assume that electron and ion

temperatures are equal), the cold plasma region extends at

the distance L? � 10 cm up to the detachment front where it

contacts with warm (�few tens of eV) SOL plasma. The

characteristic scale-length of temperature and, therefore,

conductivity variation along “radial” coordinate x we assume

a � 2 cm. We assume the potential drop, U, between the

detachment front and the target, to be eU � Ue � 4T
ðoutÞ
d

� 30 eV� Tcold � 3 eV, where e is the electron charge. In

our estimates, we will assume that the plasma density in the

detached region, ndet � 3� 1014 cm�3, the magnitude of

magnetic fields Bz � 3 T and By � 0:1� Bz, and the effec-

tive magnetic shear length Ls � 1 m (we assume that the

detachment front is not too close to the X-point where the

magnetic shear is much stronger).

First, we notice that the potential drop through the

detached plasma causes E� B drift in the radial direction.

As a result, the detached plasma parameters are determined

by two competing processes: radial E� B drift, which is

characterized by the frequency �
ðxÞ
E�B � ðUe=MÞ=ðXiaL?Þ

(where M and Xi are the ion mass and gyro-frequency) and

parallel plasma flow having a characteristic time-scale

sjj � L?=ðby

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tcold=M

p
Þ, where ~b ¼ ~B=B (b2

z � b2
y) and

Ljj ¼ L?=jbyj � 1 m. For the parameters of the interest, we

have sjj�
ðxÞ
E�B � 0:3 ~<1, so that in a ballpark we can assume

rather well defined kernel of the detached plasma layer with

electron temperature and, therefore, electric conductivity sig-

nificantly different from the surrounding plasma, which is

shown in light blue color in Fig. 2.

Then, neglecting the effects of parallel electron heat con-

duction (corresponding estimates will be given below) and

taking the parallel electric current Jjj ¼ r0ðxÞEjj and perpen-

dicular one determined by ion inertia, from r �~J ¼ 0, we find

the following linearized equation for electrostatic potential

U / uð~rÞe�ixt describing the current-convective instability:

x
xA

r2
?uþ irjj

xr

x
~ex �~b
� �

� r þ rjj
� �

u ¼ 0; (1)

where xA ¼ 4pr0ðVA=cÞ2, xr ¼ �iðcEjj=BÞ½d‘nðr0Þ=dx	,
Ejj ¼ Ue=ðeLjjÞ is the parallel component of electric field,

r0ðxÞ is the plasma electric conductivity determined by elec-

tron temperature (�3 eV) of detached plasma, and c and

VA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pMndet

p
are the light and the Alfven speeds,

respectively. We notice that for the parameters of interest

xA � 1011 s�1 � jxrj � 103 s�1 (we assume here that

jd‘nðr0Þ=dx j � 2=a).

Generally speaking, frequency x should be found as an

eigenvalue of the solution of Eq. (1). Therefore, we need to

specify the boundary conditions for the function uð~rÞ. We

will assume uðj x j ! 1Þ ! 0 and the periodic boundary

conditions along the z-coordinate ð:::Þz¼0 ¼ ð:::Þz¼2pR. To

find the boundary conditions for uð~rÞ at the target (y ¼ 0)

and at the detachment front (y ¼ L?), we take into account

that: (i) The resistivity of warm plasma beyond the detach-

ment front is much larger than the resistivity of the cold

detached plasma in the inner divertor; (ii) on the other hand,

effective sheath resistivity becomes smaller than the resistiv-

ity of the detached plasma if kC=Ljj <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=M

p
15 (here, kC is

the coulomb mean free path and me is the electron mass). For

the parameters of interests, we have kC=Ljj � 10�3 
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=M

p
� 2� 10�2 and an impact of effective sheath resis-

tivity, which could be responsible for some specific plasma

instabilities (e.g., see Refs. 15 and 16), can be ignored. As a

result, we can apply the following boundary conditions:

uy¼0 ¼ uy¼L? ¼ 0.

Before going into detail analysis of the solution of Eq.

(1), we consider it by using the eikonal approximation

assuming uð~rÞ / expðik?‘? þ ikjj‘jj þ ikxxÞ, where the

coordinates ‘? and ‘jj are shown in Fig. 2, while k?, kjj, andFIG. 2. Schematic view of the inner divertor plasma in a slab approximation.
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kx are the corresponding wave numbers. Then, from Eq. (1),

we find the following dispersion equation:

�i
x
xA

k2
? þ k2

x

k2
jj
þ xr

x
k?
kjj
þ 1 ¼ 0: (2)

First, we consider the case kx ¼ 0. Then, from Eq. (2), we

find that for jk?=kjj j < ðxA=jxr jÞ1=3
, the first term in Eq.

(1) can be neglected and the growth rate of the instability, c,

increases with increasing jk?=kjj j as

x ¼ ic ¼ i xr
k?
kjj

����
���� (3)

reaches the maximum value

c � jReðxÞ j � xðAÞmax � xAjxr j2
� �1=3

(4)

at jk?=kjj j � jk?=kjj j ðAÞmax � ðxA=jxr jÞ1=3
, when all terms

in Eq. (1) are of the same order, and then decreases with

increasing jk?=kjj j > jk?=kjj j ðAÞmax as

c � jRe xð Þj � xAjxrj
jk?=kjjj

 !1=3

: (5)

In this limit, only the first and second terms in Eq. (1) matter.

Thus, we see that for the parameters of interest, the maxi-

mum growth rate is of the order of xðAÞmax � 5� 105 s�1.

However, so far, we neglected the stabilizing effect of paral-

lel electron heat conduction, which can flatten electron tem-

perature and, therefore, electric conductivity perturbation

driving instability. This is only valid (e.g., see Refs. 10

and 13 and the references therein) for c > aek2
jj, where ae

¼ ð2=3Þðje=ndetÞ is the electron heat diffusivity. However,

taking as an estimate of the smallest jkjj j � 2p=Ljj, we

find that aek2
jj � 2� 104 s�1 
 xðAÞmax and the instability

cannot be stabilized by parallel electron heat conductivity.

As a matter of fact, from Eq. (3), we find that the thresh-

old for the instability is determined by the inequality

ðk?Þthr
~> aek3

jj=jxrj; (6)

which for jkjjj � 2p=Ljj corresponds to ðk?Þthr ¼ 2pðk?Þ�1
thr

~< 5 cm. We also notice that for the parameters of interest

kmax � 0:2 cm (kðAÞmax ¼ 2p=ðk?ÞðAÞmax) and jðk?ÞmaxjqiðTcoldÞ
� 0:1
 1, where qiðTcoldÞ is the ion gyro-radius for ion

temperature Tcold, so that the finite Larmor radius effects can

also be ignored.

Let us now discuss an impact of kx. Based on the pre-

ceding analysis, we find that within the eikonal approxima-

tion, any sizable effect of kx on the growth rate is possible

for k2
x

~> ðk2
?Þ
ðAÞ
max. Estimating k2

x � ð2p=aÞ2 and noticing that

kðAÞmax � 0:2 cm
 a � 2 cm, we conclude that within a long

wavelength eikonal approximation kx does not alter the

results of our analysis of the instability growth rate.

III. SOLUTION OF GOVERNING EQUATION

Unfortunately, we are not able to solve Eq. (1) and find

x as an eigenvalue of the solution. Therefore, first we will

find the solution of Eq. (1) and proper boundary conditions

on the (y, z) plane assuming that uð~rÞ ¼ uðy; zÞ expðikeff
x xÞ,

where keff
x is some effective wave number.

Then, expanding uðz; yÞ in the Fourier series uðz; yÞ
¼
P

n unðyÞ expðiknzÞ, where kn ¼ n=R, from Eq. (1), we

find

x
xA

bz

@

@y
� iknby

� 	2

� keff
x

� �2

( )
un

þ i by

@

@y
þ iknbz

� 	(
xr

x
bz

@

@y
� iknby

� 	

þ by

@

@y
þ iknbz

� 	)
un ¼ 0: (7)

Taking unðyÞ / expðgyÞ, we find the following equation for g:

g2f2 þ gf1 þ f0 ¼ 0; (8)

where

f2 ¼
x
xA

b2
z þ i

xr

x
bz þ by

� 	
by

f1 ¼
x
xA

2ibzby �
xr

x
b2

z � b2
y


 �
� 2bzby

� �
kn

f0 ¼ � x
xA

b2
y þ

keff
x

� �2

k2
n

 !
þ i

xr

x
bzby � b2

z

� 	( )
k2

n:

(9)

As a result, we have

g 6ð Þ ¼ �
f1

2f2

6
f1

2f2

� 	2

� f0

f2

( )1=2

; (10)

and can express unðyÞ as follows:

unðyÞ ¼ uðþÞn expðgðþÞyÞ þ uð�Þn expðgð�ÞyÞ; (11)

where uðþÞn and uð�Þn are some constants. Then, from the

boundary conditions unðy ¼ 0Þ ¼ unðy ¼ L?Þ ¼ 0, we find

uðþÞn ¼ �uð�Þn and arrive to the following equation for the

eigenvalue x:

2
f1

f2

� 	2

� f0

f2

( )1=2

¼ i
2pm

L?
� ikm; (12)

where m is the integer number. Using expressions (9), we

can re-cast Eq. (12) as

1

4

x
xA

2ibzby �
xr

x
b2

z � b2
y


 �
� 2bzby

x
xA

b2
z þ i

xr

x
bz þ by

� 	
by

8>><
>>:

9>>=
>>;

2

�
� x

xA

b2
y þ

keff
x

� �2

k2
n

 !
þ i

xr

x
by � bz

� 	
bz

x
xA

b2
z þ i

xr

x
bz þ by

� 	
by

¼ � 1

4

k2
m

k2
n

:

(13)
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We start our analysis of Eq. (13) assuming that x
 xA.

Then, simplified Eq. (13) gives

xr

x
b2

z � b2
y


 �
þ 2bzby

xr

x
bz þ by

� 	
by

8>><
>>:

9>>=
>>;

2

þ 4

xr

x
by � bz

� 	
bz

xr

x
bz þ by

� 	
by

¼ k2
m

k2
n

:

(14)

From Eq. (14), we find

xr

x
¼ gm;n6 gm;nð Þ2 þ

by

bz

gm;n

� �1=2

; (15)

where

gm;n ¼
b3

ybz km=knð Þ2

1� bybzð Þ2 km=knð Þ2
: (16)

From Eq. (15), we see that for jgm;nj ~< jby=bzj, which corre-

sponds to ðbybzÞ2ðkm=knÞ2 ~<1, the growth rate decreases as

x ¼ ijxrj j by=bz

� �
gm;nj

n o�1=2

ffi i

����xr

by

����
���� kn

bykm

���� ~> i

����xr

by

����;
(17)

with increasing jgm;nj and saturates at

x ¼ ijxrj jbz=byj; (18)

for jgm;nj ~>jby=bzj.
To get some insights in expression (17) and to compare

it with the results of Section II, let us evaluate effective

ðk2
jjÞeff ¼ jbygð6Þ þ ibzknj2 and ðk2

?Þeff ¼ jbzgð6Þ � ibyknj2.

Estimating gð6Þ from Eq. (10) and taking into account Eq.

(12), we find

g 6ð Þ ¼ �i

xr

x
b2

z � b2
y


 �
þ 2bzby

2
xr

x
bz þ by

� 	
by

kn6i
km

2
: (19)

For the most interesting case of large growth rate,

ðbybzÞ2ðkm=knÞ2 ~< 1, using Eq. (17), we find

g 6ð Þ ¼ �i
bz

by

� 1

2b2
y

xr

x

 !
kn6i

km

2
¼�i

bz

by

knþ idmkm; (20)

where jdmj � 1. We notice that under conditions of interest,

ðbybzÞ2ðkm=knÞ2 ~< 1, the term �iðbz=byÞkn dominates in Eq.

(15), which keeps effective parallel wave number, ðkjjÞeff ,

small and effective perpendicular wave number, ðk?Þeff ,

large. As a result, we have

k2
jj


 �
eff
ffi ðbykmÞ2; k2

?
� �

eff
ffi ðb2

z=byÞ2k2
n � k2

jj


 �
eff
:

(21)

Therefore, expression (17) can be written in a way similar to

Eq. (3)

x ¼ ic ¼ i

����xr
k?ð Þeff

kjj
� �

eff

����: (22)

In order to keep stabilizing impact of the parallel electron

heat conduction small, we should take m ¼ 1, which gives

ðk2
jjÞeff ffi ðby2p=L?Þ2 ¼ ð2p=LjjÞ2 as we have estimated in

Section I. Thus, we see that our eigenvalue/eigenfunction

solution of Eq. (1) on the (y, z) plane gives us virtually the

same dependencies for the growth rate of the instability as

the eikonal approximation does.

Let us now consider how nonlocal effects in the

x-direction can alter our eikonal approximation results. As

in Section I, we will assume that uð~rÞ ¼ uðxÞ expðik?‘?
þikjj‘jjÞ and adopt the following dependence of plasma

conductivity:

r0ðxÞ ¼
�r0; for j x j > a=2

�r0 þ D�r0ð1� 2j x j =aÞ; for j x j < a=2:

(
(23)

Then, assuming D�r0 
 �r0, from Eq. (1) we find the follow-

ing equation for uðxÞ:

x
xA

d2

dx2
� k2

?

� 	
u

� ik2
jj sign xð Þ

~xr

x
k?
kjj

1� H 1� 2j x j =að Þð Þ þ 1

( )
u ¼ 0;

(24)

where ~xr ¼ iðD�r0=�r0Þð2cEjj=BaÞ signðxÞ ¼ x=j x j and

HðxÞ is the Heaviside function. One can easily see that the

solution of Eq. (24) with the boundary conditions uðj x j !
1Þ ! 0 can be written in a piecewise form

uðxÞ ¼

uðþÞ expð�k0ðx� a=2ÞÞ; for x > a=2

uðþþÞ expðkðþÞxÞ þ uðþ�Þ expð�kðþÞxÞ; for 0 < x < a=2

uð�þÞ expðkð�ÞxÞ þ uð��Þ expð�kð�ÞxÞ; for –a=2 < x < 0

uð�Þ expðk0ðxþ a=2ÞÞ; for x < �a=2;

8>>>>><
>>>>>:

(25)

where
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k2
0 ¼ k2

? þ ik2
jj
xA

x
Re k0ð Þ > 0ð Þ and

k2
6ð Þ ¼ k2

06i
~xrxA

x2
kjjk?; (26)

while the constants uðþÞ, uðþþÞ, uðþ�Þ, uð�þÞ, uð��Þ, and

uð�Þ should be found from the continuity of both uðxÞ and

its derivative. As a result, after some algebra, we arrive to

the following dispersion equation:

ð1þ vðþÞÞð1� vð�ÞÞðvðþÞ � vð�ÞÞ expfðkðþÞ � kð�ÞÞa=2g
�ð1þ vðþÞÞð1þ vð�ÞÞðvðþÞ þ vð�ÞÞ expfðkðþÞ þ kð�ÞÞa=2g
þð1� vðþÞÞð1� vð�ÞÞðvðþÞ þ vð�ÞÞ expf�ðkðþÞ þ kð�ÞÞa=2g
�ð1� vðþÞÞð1þ vð�ÞÞðvðþÞ � vð�ÞÞ expf�ðkðþÞ � kð�ÞÞa=2g ¼ 0; (27)

where vð6Þ ¼ kð6Þ=k0. By analyzing Eq. (27), we find that

taking kðþÞ ¼ i4pjðþÞ=a � ikeff
ðþÞ (kð�Þ ¼ i4pjð�Þ=a � ikeff

ð�Þ)
and assuming Reðkð�ÞÞa=2� 1 (ReðkðþÞÞa=2� 1), where

jðþÞ (jð�Þ) is some integer number results, for the case

jkeff
ð6Þ=kjj j ~< jk?=kjj jmax, in the cancelation of all leading

order terms in Eq. (27) and the dispersion equation similar to

Eq. (2)

�i
x
xA

k2
? þ keff

6ð Þ


 �2

k2
jj

6
~xr

x
k?
kjj
þ 1 ¼ 0: (28)

Thus, the growth rate of the instability in nonlocal approxi-

mation in the x-direction for the case where we can neglect

the first term in Eq. (28) is

x ¼ ic ¼ i

����~xr
k?
kjj

����: (29)

This is not surprising since in this case, where

Reðkð�ÞÞa=2� 1 and ReðkðþÞÞa=2� 1, we could use an

eikonal approximation, which would result in a local disper-

sion equation (2). We notice that the opposite case

j kð6Þja=2
 1 has a very small applicability range.

Let now discuss an impact of the shear of the magnetic

field on current convective instability. As we have mentioned

above, both spatial localization and the growth rate of the

“rippling mode” crucially depend on magnetic shear.10–13

However, while for the “rippling mode” developing on some

closed rational magnetic flux surface, the effective length of

the magnetic field line and, therefore, the stabilizing effect of

parallel heat conduction are determined solely by the mag-

netic shear, in our case the length of the magnetic field line

between the target and detachment front does not vary much.

Indeed, assuming that byðxÞ ¼ byð0Þf1þ x=Lsg, we find that

the variation of LjjðxÞ � L?=j byðxÞ j within unstable region

is about dLjj � ða=2ÞðLjj=LsÞ 
 Ljj (we assume here that

Ljj � Ls � 1 m). But, taking into account that the effective

parallel wave number ðk2
jjÞeff ¼ jbygð6Þ þ ibzknj2 is sensitive

to the value of gð6Þ, which almost cancels the large term

ibzkn (recall expression (20)), we find that magnetic shear

can be important. To estimate an impact of magnetic shear,

we assume that the effective value of gð6Þ is determined at

x ¼ 0 and is given by Eq. (20) so that

gð6Þ ¼ �iðbzð0Þ=byð0ÞÞkn þ idmkm. Then, we find

k2
jj


 �
eff
� jfx=½byð0ÞLs	gkn þ dmkmj2: (30)

Thus, from Eq. (30), one sees that a strong increase in the

effective parallel wave number, caused by magnetic shear

and resulting in the reduction of the growth rate, starts at

jkn=ðbykmÞj ~> jk?=kjjjsh � 2Ls=a: (31)

We notice that for the parameters of interest, jk?=kjjjsh

< jk?=kjjjðAÞmax and the maximum growth rate, cmax, is, actu-

ally, determined by the magnetic shear effect, which gives

cmax � ð2Ls=aÞjxrj � 105 s�1: (32)

Assuming jkjjjsh � 2p=Ljj, we find the low bound of the

current convective instability wavelength jk?jsh � ða=2Þ
ðLjj=LsÞ � 1 cm. Thus, we find that the development of the

current convective instability is limited within the range of

wave numbers jk?jthr
~<jk?j~<jk?jsh and the growth rates

aeð2p=LjjÞ~<c~<ð2Ls=aÞjxrj by parallel electron heat conduc-

tion and magnetic sheath effects.

IV. CONCLUSIONS

Thus, we see that the asymmetry of the inner and outer

divertors, which cause the inner divertor to detach first, while

the outer one is still attached, results in the large temperature

difference between the vicinities of the inner and outer tar-

gets and the onset of large electric potential drop through

detached plasma of the inner divertor. This large potential

drop along with inhomogeneity of the resistivity of detached

plasma across the divertor leg drives the current convective

instability in the inner divertor. This instability causes the

fluctuations of plasma pressure in the detached plasma along

the magnetic field lines, which result in bursts of plasma

flow from the radiation region beyond the detachment front

down to the divertor targets and, therefore, subsequent

fluctuations of radiation losses similar to that observed in

experiments.3 Assuming that in a nonlinear regime, the char-

acteristic angular frequency of plasma parameter fluctuations

is of the order of the growth rate of current convective
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instability (�104–105 s�1), we find a reasonable agreement

with experimental data showing �10 kHz oscillation fre-

quency of the radiation loss. Once the outer divertor also

detaches, the temperature difference between the vicinities

of inner and outer targets disappears and the driving force

for the current convective instability, causing the oscillation

of radiation losses, vanishes. This feature is indeed observed

in experiments.3
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