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Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale

fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes.

Modulational instability of lower-hybrid frequency modes is investigated in this work for typical

conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the

dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the exter-

nal magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown

that such lower-hybrid modes are unstable with respect to the secondary instability of the large

scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in

a number of Hall plasma devices may be explained as a result of such secondary instabilities.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964724]

I. INTRODUCTION

Oscillations in a wide range of frequencies from 10 kHz

to 500 MHz observed in Hall thrusters (see, e.g., Refs. 1 and 2)

are inherent to these devices and can play a decisive role in set-

ting the performance and efficiency by regulating the accelera-

tion processes and the anomalous transport (in particular, the

anomalous electron mobility).1,3 Magnetron devices, operating

in similar physical parameter regimes,4 also exhibit a range of

fluctuations and self-organized structures.5

Theoretical studies revealed the existence of a number of

linear plasma instabilities which are considered as the sources

of fluctuations and turbulence in Hall plasma devices. One of

the main features of these devices is the presence of station-

ary, externally applied electric field E0, which is perpendicular

to the external equilibrium magnetic field B0. The strength of

the magnetic field is chosen such that electrons are magne-

tized, qe� L, and ions are not, qi� L, where L is the charac-

teristic length scale of the plasma region and qe,i are electron

and ion Larmor radii. Such conditions are defined here as Hall

plasma regime. This configuration results in the equilibrium

E0�B0 electron drift which is a source of free energy for a

number of instabilities.6,7 In combination with gradients of the

magnetic field and plasma density, the electron drift results in

the instability which was identified experimentally and studied

theoretically.8,9 Recently, a linear theory of this instability was

revisited in Ref. 10 correctly taking into account, compressibil-

ity of the electron flow in inhomogeneous magnetic field and

the electron temperature perturbations. Later theoretical studies

revealed the other mechanisms due to electron collisions with

neutral atoms and plasma ionization.11–13 The reviews of dif-

ferent kinds of oscillations and instabilities in Hall thrusters

with the corresponding references to original works are given

in several references such as Refs. 1, 2, and 13.

Among the various fluctuations observed in Hall thrust-

ers, the low-frequency large scale structures, called spokes

or spikes, have long attracted the interest since initial experi-

mental studies in the 1960s and the 1970s. Despite a number

of publications devoted to theoretical studies of oscillations

and instabilities, the nature of low-frequency long wave-

length structures is not well understood. Here we suggest a

new mechanism of instability which can be responsible for

long-wavelength, low-frequency oscillations observed in

Hall plasma devices. The proposed mechanism is based on

the modulational instability of high-frequency, short-wave-

length lower-hybrid gradient drift waves.

The problem of parametric and modulational instabil-

ities of lower hybrid (LH) waves has a long history. The

interest in them was motivated by such different problems as

the problem of plasma heating and current drive generation

in tokamaks and stellarators by the electromagnetic waves

with the frequency near lower hybrid resonance,14–16 by the

problem of RF-discharges in low-pressure plasmas in the

magnetic field,17 by the problems of acceleration and heating

of charged particles in space (ionospherical and magneto-

spherical) and astrophysical plasmas.18–24

In general, the modulational instability is sensitive to the

wave dispersion. The dispersion of LH waves depends on the

angle between the wavevector k and the external magnetic field.

For LH waves propagating strictly perpendicular to the magnetic

field, the dispersion is due to the thermal motion of plasma par-

ticles: either due to the electron Larmor radius effects (for dense

plasma, xpe� xBe, where xBe¼ eB0/mec is the electron cyclo-

tron frequency, e is the proton charge, B0 is the magnetic field

strength, c is the speed of light, me is the electron mass,

xpe ¼ ð4pe2n0=meÞ1=2
is the electron plasma frequency, n0 is

the electron density) or due to the ion Debye length effects (for

strong magnetic field, xBe � xpe) or the small electromagnetic

correction to the LH frequency.17,22,25–27 For oblique propaga-

tion of LH waves such that ðme=miÞ1=2 � kk=k � 1, the disper-

sion is due to the perturbed electron motion along the magnetic

field.14,22,28 Here mi is the ion mass and kk is the component of

the wavevector along the equilibrium magnetic field.

To study the parametric and modulational instabilities of

LH waves, both the fluid14,22–27 and kinetic models15,16,19,28,29
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were used. A parametric decay of LH wave has been consid-

ered in a number of papers. The decay into another lower-

frequency LH waves with kk 6¼ 0 in a cold homogeneous

plasma was considered in Ref. 14; into the electromagnetic

waves—in Ref. 30; into another LH wave and kinetic Alfv�en

wave—in Refs. 20–24, into the ion acoustic wave with for-

mation of LH solitary structures—in Ref. 24; and into the

LH wave and electron-drift mode in inhomogeneous

plasma—in Ref. 16. The modulational instability of the LH

waves has also been intensively studied. The process can be

described as follows: a low-frequency quasi-mode (X, q)

with the phase velocity equal to the group velocity of pump

LH wave couples with the primary (pump) wave (x0, k0) to

produce two high-frequency LH sidebands (x0 6 X, k0 6 q);

these sidebands beat with the pump wave to produce a pon-

deromotive force driving low-frequency quasi-mode. The

low-frequency quasi-mode is not a linear eigen-mode and is

only driven nonlinearly. The modulational instability of LH

waves propagating strictly perpendicular to the magnetic

field has been studied in Refs. 17, 25–27. The case of

obliquely propagating monochromatic LH waves has been

considered in Refs. 28, 29, and 31–33 and modulational

instability of the broad spectra of LH waves—in Ref. 34.

The equilibrium state of most Hall plasma devices is

characterized by fast azimuthal rotation of electrons due to

their E0�B0-drift and the presence of plasma density and

magnetic field inhomogeneity in the (non-periodic) direction

perpendicular to the magnetic field (the axial direction in case

of the Hall thruster). In this paper, we show that in these con-

ditions, the dispersion of the waves in the lower-hybrid fre-

quency range propagating perpendicularly to the external

magnetic field is due to the above noted gradients of the mag-

netic field and density. Here, we study the stability of such pri-

mary waves of finite amplitude (the pump wave) with respect

to long-wavelength, low-frequency modulations.

The paper is organized as follows. The basic equations

and dispersion properties of linear perturbations are dis-

cussed in Sec. II. The modulational instability of the lower-

hybrid like primary wave is considered in Sec. III. The

concluding remarks are presented in Sec. IV.

II. BASIC EQUATIONS AND LINEAR DISPERSION

We consider the perturbations in the local Cartesian coor-

dinates (x, y, z) with the z coordinate along the equilibrium

magnetic field, the y coordinate in the periodic azimuthal

direction, and x coordinate in the direction of the inhomogene-

ity. Adopted for the coaxial Hall thrusters, in which the exter-

nal magnetic field is assumed to be predominantly in the

radial direction B0 ¼ BðxÞez þ BxðzÞex; B� Bx, the local z
coordinate is in the radial direction, the x coordinate is in the

axial direction, and the y coordinate is in the symmetrical azi-

muthal direction. The equilibrium electric field E0¼E0ex is in

the axial direction. For the cylindrical magnetrons (Penning

discharge configuration) with axial magnetic field, the local z
coordinate is axial, the x coordinate is radial, and the y coordi-

nate is azimuthal, and the electric field is radial. We restrict

ourselves to cold plasma approximation in the frame of the

two-fluid plasma model.

We consider electrostatic perturbations, E0 ¼ �r/,

propagating strictly perpendicular to the magnetic field. The

electrons are assumed magnetized, x � xBe (x is the oscil-

lation frequency), and their motion across the equilibrium

magnetic field is described by the standard expression

v0e ¼
c

B

1

B
B0 �r/þ 1

xBe

�

� @

@t
þ VE

@

@y
þ c

B
ez �r/ð Þ � r

� �
r/

�
: (1)

Here / ¼ /ðx; yÞ is the electrostatic potential of the pertur-

bations, VE¼�cE0/B is the equilibrium azimuthal velocity

of electrons. The first term corresponds to E0 � B0-drift and

the second is due to the electron inertial velocity across the

external magnetic field. Substituting this expression in the

electron continuity equation, we obtain the following equa-

tion for the electron density perturbation n0e:

@

@t
þ VE

@

@y
þ c

B
ez �r/ð Þ � r

� �

� n0e þ
cn0

BxBe
r2/

� �
� cn0

B
jn � 2jBð Þ @/

@y
¼ 0; (2)

where n0 is the equilibrium plasma density, jn ¼ d ln n0=dx;
jB ¼ d ln B=dx. Plasma in the equilibrium state is assumed

to be quasineutral. The term proportional to jB is due to

compressibility of the electron E0 � B0-drift related to the

magnetic field gradient. The compressibility is calculated

taking into account that the equilibrium plasma current in the

low-pressure plasmas can be neglected, r�B0¼ 0 (see the

discussion in Ref. 10).

The ions are supposed to be unmagnetized, so that the

ion dynamics is described by the equations

@n0i
@t
þr � n0 þ n0i

� �
v0i

� �
¼ 0; (3)

@v0i
@t
þ v0i � r
� �

v0i ¼ �
e

mi
r/; (4)

where n0i is the ion density perturbation and v0i is the ion

velocity perturbation.

To close the set of Equations (2)–(4), we use the

Poisson equation

4peðn0e � n0iÞ ¼ r2/: (5)

Linearization of the set of Equations (2)–(5) results in

the dispersion relation

1þ
x2

pe

x2
Be

�
x2

pi

x2
� ky

k2
?

x2
pe jn � 2jBð Þ

xBe x� xEð Þ
¼ 0; (6)

where xE ¼ kyVE; xpi ¼ ð4pe2n0=miÞ1=2
is the ion Langmuir

frequency. In general, this dispersion relation describes the

lower-hybrid gradient drift perturbations. The first two terms

which are related to electron inertia and charge separation are

important only for short-wavelength perturbations. In the long-

wavelength limit, these terms are negligible. The dispersion
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relation in this limiting case has been studied, e.g., in Ref. 10

in the context of gradient drift instability. It can be strictly

proven that the perturbations described by Eq. (6) are unsta-

ble if and only if the modified Simon-Hoh condition35 is

satisfied

l � E0 � r
n0

B2

� �
> 0: (7)

In the frame of dispersion relation (6), this instability

condition is valid for the perturbations of an arbitrary

wavelength—for long-wavelength perturbations with the fre-

quency x� xlh and for short-wavelength perturbations

with x ’ xlh (here xlh ¼ xpixBe=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe þ x2
Be

q
is the lower-

hybrid frequency). In the long-wavelength limit, this condi-

tion has been derived and discussed in detail in Ref. 10. We

will be interested in the modulational instability of short-

wavelength (high frequency) lower-hybrid gradient drift

waves. Hereafter, we assume that l< 0 and the perturbations

are linearly stable.

For typical Hall thrusters parameters with the equilib-

rium xenon plasma density n0¼ 1012 cm�3 and the magnetic

field B¼ 100 G, the following estimates for the relevant fre-

quencies apply:

xpe ¼ 5:6� 1010 s�1; xpi ¼ 1:1� 108 s�1;

xBe ¼ 1:8� 109 s�1; xlh ¼ 3:5� 106 s�1:

Typical values of the equilibrium electron azimuthal velocity

are VE	 107 cm/s. It means that for channel radius a¼ 4 cm

even for the lowest azimuthal mode with m¼ 1, we have

ky¼ 1/a and xE � kyVE ’ xlh. For high-m, short-

wavelength modes, the E�B-drift frequency xE exceeds the

lower-hybrid frequency, xE � xlh. Thus, both the eigen-

frequency of the primary mode and the frequency of the

long-wavelength quasi-mode are well below the xE fre-

quency. Therefore, taking this into account, in application to

the Hall thrusters, dispersion relation (6) can be simplified

neglecting x in combination with xE in the denominator of

Eq. (6). Then dispersion relation (6) yields

x2 ¼ x2
lh �

k2
?k

2

1þ k2
?k

2
: (8)

Here k is the characteristic space scale length

k2 � xBiVE

jn � 2jBð Þx2
lh

: (9)

In the short-wavelength limit, k2
?k

2 � 1, Equation (8)

describes the lower-hybrid waves

x2 ¼ x2
lh 1� 1

k2
?k

2

 !
: (10)

Usually, the dispersion of lower-hybrid waves propagating

strongly perpendicular to the magnetic field is related either

with the electron Larmor radius (cold ions, dense plasma) or

with the ion Debye length (hot ions, strong magnetic field).

Here we see that their dispersion is due to plasma inhomogene-

ity and equilibrium azimuthal rotation of electrons.

In the opposite, long-wavelength limit, k2
?k

2 � 1,

Equation (8) describes the lower-frequency mode

x2 ¼ x2
lhk2
?k

2 ¼ k2
?xBiVE

jn � 2jB
: (11)

In what follows, we will study the stability of a finite-

amplitude short-wavelength lower-hybrid drift gradient

mode with k2
?k

2 ’ 1 with respect to long-wavelength low-

frequency modulations, q2
?k

2 � 1; X� xlh.

First of all, we can significantly simplify the starting

equations for further studies. Namely, under the above

assumption x� xE, it follows from Eq. (2) that the electron

density perturbation can be described by the following

expression:

n0e ¼
cn0

BxBe

jn � 2jBð ÞxBe

VE
/�r2/

� �
: (12)

Then, it follows from the Poisson equation (5) that the ion

density perturbation takes the form

n0i ¼
1

4pe
1þ

x2
pe

x2
Be

 !
�r2/þ 1

k2
/

� �
: (13)

Substituting this expression into Eq. (3), we obtain the fol-

lowing set of equations:

@

@t
U�r2Uð Þ þ r � Vþr � U�r2Uð ÞVð Þ ¼ 0; (14)

@V

@t
þ V � rð ÞV ¼ �rU: (15)

Here time is normalized to x�1
lh , space variables x, y – to k,

and the dimensionless ion velocity V and electrostatic poten-

tial U are introduced as follows:

U ¼ e/

mix2
lhk

2
; V ¼ v0i

kxlh
: (16)

The set of Equations (14) and (15) will be used for studying

the modulational instability of the lower-hybrid gradient drift

wave.

III. MODULATIONAL INSTABILITY OF LOWER-HYBRID
GRADIENT DRIFT WAVE

We assume the primary lower-hybrid gradient drift

wave in the form

ðUð0Þ;Vð0ÞÞ ¼ ðU0;V0Þ expð�ix0tþ ik0xÞ
þ ðU?

0;V
?
0Þ expðix0t� ik0xÞ; (17)

where f? implies a complex conjugate to f, x0 is the wave

frequency normalized to xlh, k0 is the wavevector normal-

ized to 1/k, and

x0 � x k0ð Þ ¼
k0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
0

p ; V0 ¼
k0

x0

U0: (18)
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We consider the long-wavelength, lower-frequency modula-

tion of the form

ðW;UÞ ¼ ðWq;UqÞ expð�iXtþ iqxÞ; (19)

where X and q are dimensionless frequency and wavevector

of the modulation normalized to xlh and to 1/k, correspond-

ingly. It is assumed that X� 1 and q� 1. Due to nonlinear

effects, the pump wave and long-wavelength perturbation

(quasi-mode) are coupled to two sideband lower-hybrid gra-

dient drift waves

ðUðsÞ;VðsÞÞ ¼ ðUþ;VþÞ expð�ixþtþ ikþxÞ
þ ðU�;V�Þ expðix�t� ik�xÞ: (20)

Here, x6 ¼ x06X; k6 ¼ k06q. One can easily check that

three-wave resonance

xðk6Þ ¼ xðk0Þ6xðqÞ; (21)

for eigenmodes with x(q)¼ q cannot be satisfied and only mod-

ulational instability with excitation of quasi-mode with the phase

velocity equal to the group velocity vg ¼ @x0=@k0 of the pump

lower-hybrid gradient drift wave X ¼ qvg is possible.

Let us consider the nonlinear interaction of the pump

wave, its long-wavelength modulation, and two sidebands.

We substitute

U ¼ Uð0Þ þ UðsÞ þW; V ¼ Vð0Þ þ VðsÞ þ U

in Eqs. (14) and (15), linearize the equations with respect to

the amplitude of the modulation and sideband waves, and

separate different spatio-temporal harmonics of the

perturbation.

Then two sideband waves are described by the equations

xþ 1þ k2
þ

	 

Uþ � kþVþð Þ

¼ U0 1þ k2
0

� �
kþUqð Þ þ

k0kþ
x0

Wq

� �
;

xþ kþVþð Þ � k2
þUþ

¼ U0

x0

k0kþð Þ k0Uqð Þ þ k0qð Þ kþUqð Þ
� �

; (22)

and

x� 1þ k2
�

� �
U� � k�V�ð Þ

¼ U?
0 1þ k2

0

� �
k�Uqð Þ þ

k0k�
x0

Wq

� �
;

x� k�V�ð Þ � k2
�U�

¼ U?
0

x0

k0k�ð Þ k0Uqð Þ � k0qð Þ k�Uqð Þ
� �

: (23)

The equations for the long-wavelength modulation are

XWq � ðqUqÞ ¼ ð1þ k2
0Þ½U0ðqV�Þ þ U?

0ðqVþÞ

þð1þ k2

þÞUþðqV?
0Þ þ ð1þ k2

�ÞU�ðqV0Þ;
XUq � qWq ¼ ðk0V�ÞV0 þ ðkþV?

0ÞVþ
�ðk0VþÞV?

0 � ðk�V0ÞV�: (24)

Now we solve Eqs. (22) and (23) for Uþ and for U–, corre-

spondingly. Then with the required accuracy, we obtain

Uþ ¼
k2

0U0

x0Dþ
x0Wq þ 2 k0Uqð Þð Þ;

U� ¼
k2

0U
?
0

x0D�
x0Wq þ 2 k0Uqð Þð Þ; (25)

where

D6 ¼ ð1þ k2
6Þðx06XÞ2 � k2

6: (26)

Solving Eqs. (22) and (23), we kept only the main order

terms on the right hand sides and neglected the terms which

are small as q/k0 and X/x0.

We have already mentioned that the decay instability is

impossible and therefore we will study the excitation of non-

eigenmodes with X � qvg. Taking this into account, we sim-

plify the expressions defining D6 near X ¼ qvg and obtain

D6 ¼ 2x0 1þ k2
0

� �
6 X� q

@x0

@k0

� �
þ D

� �
; (27)

where

vg ¼
@x0

@k0

� k0

k0 1þ k2
0

� �3=2
;

D � 1þ 4k2
0

� �
q2

2k0 1þ k2
0

� �5=2
cos2h� 1þ k2

0

1þ 4k2
0

( )
: (28)

Here cos h ¼ k0q=k0q.

The relation between the sidebands of the ion velocity

and potential can be simplified by neglecting the nonlinear

terms

V6 ¼
k6

x6

U6:

These relations are used in nonlinear terms on the right hand

sides of Equation (24). As above, we keep only the nonlinear

terms of the main order and neglect the terms of the order q/

k0 and X/x0. Then Eq. (24) takes the form

XWq � qUqð Þ ¼
2 k0qð Þ 1þ k2

0

� �
x0

U?
0Uþ þ U0U�

� �
;

XUq � qWq ¼
k2

0

x2
0

q U?
0Uþ þ U0U�

� �
: (29)

Solving these equations, we find that

k0Uq ¼
k0q

q2
qUq; qUq ¼ q2 Xk2

0 þ 2x0 k0qð Þ 1þ k2
0

� �
2x0X k0qð Þ 1þ k2

0

� �
þ q2k2

0

Wq:

(30)

Finally, we multiply the equation for velocity Uq in (29) by

q. and substitute expressions (25) and (27)–(30) in the result-

ing equation and in the equation for Wq in (29). Then we

finally arrive at the dispersion relation for long-wavelength,

low-frequency quasi-mode
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X� qvg

� �2 �D2 ¼ k0 1þ k2
0

� �5=2
D

�
1þ k2

0 þ 4 cos2h 1þ 1þ k2
0

� �2
h i

1þ k2
0

� �3 � cos2h
� jU0j2:

(31)

It follows from this equation that the modulational instabil-

ity, C¼ Im X> 0, can take place only when D< 0, i.e.,

according to Eq. (28), only if the condition

cos2h <
1þ k2

0

1þ 4k2
0

(32)

is satisfied. Since

D � � 1

2
qiqj �

@2x0

@k0i@k0j
;

the necessary condition of instability D< 0 is equivalent to

the well-known Lighthill criterion generalized in application

to the 2D-problem. The necessary and sufficient instability

condition for the modulational instability defines the ampli-

tude of the primary wave that can become unstable. This

condition takes the form

jU0j2 >
jDj

k0 1þ k2
0

� �5=2
� 1þ k2

0

� �3 � cos2h

1þ k2
0 þ 4 cos2h 1þ 1þ k2

0

� �2
h i :

(33)

Note that the dispersion relation has to be modified for

the perturbations with such q that D� 0. In this case, it

is necessary to take into account the terms of the order

q4 in D6.

The phase velocity of the quasi-mode is exactly equal to

the group velocity of the primary lower-hybrid gradient drift

mode, so that the real part of its frequency is: Re X ¼ qvg.

Returning to dimensional frequency and wavevectors and

using Eq. (28), we find that the real part of frequency of the

unstable low-frequency quasimode is

Re X ¼ xlh �
qk cos h

1þ k2
0k

2
	 
3=2

: (34)

It is worthy to notice that according to Eq. (34) for the pump

wave with k0k� 1, the real part of the quasimode frequency

is of the order

Re X ’ xlh � qkð Þ ¼ q
eE0

mi 2jB � jnð Þ

� �1=2

: (35)

This frequency is much smaller than xlh and weakly depends
on the amplitude of magnetic field. In some aspects—fre-

quency range and weak dependence on the magnetic field

strength—these properties remind the properties of spokes

observed in Hall thrusters,2,13 and whose origin is still poorly

explained. One can speculate that nonlinear effects like mod-

ulational instability described above could be responsible for

spokes in Hall thrusters.

Instability condition (33) in dimensional variables takes

the form

j/0j2 >
q2

2k2
0

� 1þ 4k2
0k

2

1þ k2
0k

2
	 
5

� 1þ k2
0k

2

1þ 4k2
0k

2
� cos2h

 !

�
1þ k2

0k
2

	 
3

� cos2h

1þ k2
0k

2 þ 4 cos2h 1þ 1þ k2
0k

2
	 
2

� �

� E0

2jB � jn

� �2

; (36)

where /0 is the electrostatic potential of the pump wave. For

the pump wave with k0k� 1, we find the estimate for the

modulational instability threshold

j/0j ’
q

k0

� E0

2jB � jn
: (37)

On the other hand, for shorter-length pump wave with

k0k� 1, the real part of quasimode frequency is much lower

and is of the order

Re X ’ xlh �
q

k3
0k

2
¼ x3

lh �
q

k3
0

� 2jB � jn

eE0=mi
: (38)

In dense plasmas such that x2
pe � x2

Be, this frequency scales

as B3.

It follows from dispersion relation (31) that the growth rate

of the low-frequency quasimode is described by the equation

C2 ¼ x2
lh � q2k2 D0ðajU0j2 � q2k2 D0 Þ: (39)

Here

a ¼ k0k 1þ k2
0k

2
	 
5=2

�
1þ k2

0k
2 þ 4 cos2h 1þ 1þ k2

0k
2

	 
2
� �

1þ k2
0k

2
	 
3

� cos2h
;

D0 �
1þ 4k2

0k
2

	 

2k0k 1þ k2

0k
2

	 
5=2

1þ k2
0k

2

1þ 4k2
0k

2
� cos2h

( )
: (40)

The growth rate has its maximum of

Cmax ¼
1

2
a

2jB � jn

E0

� �2

j/0j2 xlh; (41)

for the wavevector of the order of

q2
max ¼

a

2k2D0

2jB � jn

E0

� �2

j/0j2: (42)

For the pump wave with k0k� 1, the most unstable qua-

simode is characterized by the following growth rate and

wavevector:
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Cmax ’ k0k �
2jB � jn

E0

� �2

j/0j2 xlh;

qmax ’ k0 �
2jB � jn

E0

j/0j: (43)

The growth rate of modulational instability has maxi-

mum when the wavevector of perturbation is perpendicular

to the wavevector of the pump wave.

IV. CONCLUSION

Under typical conditions of Hall plasma devices, we

have considered the electrostatic perturbations propagating

perpendicular to the magnetic field with the frequencies in

the range xBi<x�xlh. We have derived a simplified set of

nonlinear equations (14) and (15) describing the electrostatic

perturbations in the above frequency range. We have used

these equations to study the modulational instability of

lower-hybrid gradient drift wave. We have found an instabil-

ity criterion described by inequalities (32) and (33). For the

primary lower-hybrid gradient drift waves with the wave-

number k0k� 1, the frequency of unstable quasimode given

by Eq. (35) is much lower than the frequency related to azi-

muthal electron E0 � B0 drift, which is consistent with the

frequency range of typically observed low frequency rotating

structures. It is also interesting that the unstable quasimode

frequency only slightly depends on the strength of external

magnetic field. These properties of unstable quasimode sug-

gest that the low-frequency large scale structures often

observed in Hall plasma devices, such as thrusters37 and

magnetrons,38,39 may be explained as a result of nonlinear

condensation (modulational instability) of small-scale fluctu-

ations of the lower-hybrid type. The background of primary

lower-hydrid waves can be directly excited by small scale

instabilities, such as that due to collisions of electrons with

neutral atoms,11 shear flows,36 or small scale electron cyclo-

tron E� B modes.1 In this study, the primary wave was

assumed to be neutrally stable. Such stationary state can be

achieved as a result of saturation due to nolinear interaction

of primary modes.

We should note that similar to Ref. 15, we consider the

simplest case of the modulational instability neglecting the

effect of inhomogeneity of plasma parameters. In fact, the

inhomogeneous magnetic field as well as the inhomogeneous

electric field itself may result in the shear of the E� B flow

that affects both the linear stability of primary modes36,40

and the nonlinear modulational instability. Shearing of the

E� B flow40 may also prevent the mode growth maintaining

its amplitude below the threshold for the instability. The

effect of the inhomogeneous profiles of E� B velocity on

the spectral stability of global (nonlocal) low-hybrid modes

was recently studied in Ref. 41, while the explicit shear flow

effects on standard drift waves were studied with the non-

modal approach in Ref. 40. While, in general, the full nonlin-

ear theory has to include all these effects, such analysis,

however, is outside the scope of our paper. For Hall thruster

configuration, in the central region of the ionization zone,

the electric field decay is accompanied by the decay of the

magnetic field, thus making the E� B velocity more

uniform. It was shown in Ref. 41 that in the short wavelength

regime, unstable low-hybrid modes destabilized by density

and magnetic field gradients are clustered into the local

wave-packets. It is also interesting to note that the structure

of the equations for gradient-drift modes in Eq. (6) is some-

what analogous to the equations for the diocotron mode.

Therefore, one can expect that some results of the non-modal

theory of the diocotron mode42 can be applicable to the sta-

bility of the lower-hybrid gradient drift modes.
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24D. €Uçer and V. D. Shapiro, Phys. Plasmas 12, 112312 (2005).
25V. I. Sotnikov, V. D. Shapiro, and V. I. Shevchenko, Fiz. Plazmy 4, 450

(1978).
26S. L. Musher and B. I. Sturman, JETP Lett. 22, 265 (1975).
27V. D. Shapiro and V. I. Shevchenko, in Handbook of Plasma Physics,

edited by R. N. Sudan and A. A. Galeev (Elsevier Publishers, Amsterdam,

1984), Vol. 2, p. 122.
28V. N. Tsytovich and S. V. Vladimirov, Phys. Scr. 46, 65 (1992).
29A. A. Veriaev and V. N. Tsytovich, Phys. Scr. 20, 346 (1979).
30H. Sanuki, H. Hojo, and G. Schmidt, Phys. Lett. A 60, 132 (1977).
31L. I. Rudakov and V. N. Tsytovich, Sov. Phys. JETP 48, 816 (1978).
32C. S. Liu and V. K. Tripathi, Phys. Rep. 130, 143 (1986).
33S. Konar, V. K. Jain, and V. K. Tripathi, J. Appl. Phys. 65, 3798 (1989).
34S. I. Popel, Plasma Phys. Rep. 24, 1022 (1998).

102304-6 Lakhin et al. Phys. Plasmas 23, 102304 (2016)

http://dx.doi.org/10.1063/1.1354644
http://dx.doi.org/10.1109/TPS.2006.874852
http://dx.doi.org/10.1063/1.3692172
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1063/1.1336531
http://dx.doi.org/10.1063/1.1634564
http://dx.doi.org/10.1063/1.4870963
http://dx.doi.org/10.1063/1.861190
http://dx.doi.org/10.1134/1.952833
http://dx.doi.org/10.1134/1.952833
http://dx.doi.org/10.1029/94JA01572
http://dx.doi.org/10.1017/S002237780999078X
http://dx.doi.org/10.1063/1.1896373
http://dx.doi.org/10.5194/angeo-27-1027-2009
http://dx.doi.org/10.1103/PhysRevLett.81.3415
http://dx.doi.org/10.1016/j.physleta.2004.06.023
http://dx.doi.org/10.1063/1.2135770
http://dx.doi.org/10.1088/0031-8949/46/1/013
http://dx.doi.org/10.1088/0031-8949/20/3-4/008
http://dx.doi.org/10.1016/0375-9601(77)90405-4
http://dx.doi.org/10.1016/0370-1573(86)90108-0
http://dx.doi.org/10.1063/1.343392


35A. Simon, Phys. Fluids 6, 382 (1963).
36A. A. Litvak and N. J. Fisch, Phys. Plasmas 11, 1379 (2004).
37J. B. Parker, Y. Raitses, and N. J. Fisch, Appl. Phys. Lett. 97, 091501

(2010).
38A. Anders, P. Ni, and A. Rauch, J. Appl. Phys. 111, 053304 (2012).
39D. Lundin, U. Helmersson, S. Kirkpatrick, S. Rohde, and N. Brenning,

Plasma Sources Sci. Technol. 17, 025007 (2008).

40V. V. Mikhailenko, V. S. Mikhailenko, H. J. Lee, and M. E. Koepke,

Plasma Phys. Controlled Fusion 55, 085018 (2013).
41I. V. Romadanov, A. I. Smolyakov, Y. Raitses, I. D. Kaganovich, T. Tang,

and S. V. Ryzhkov, “Structure of eignemodes of nonlocal gradient-drift

instabilities in Hall ExB discharges,” Phys. Plasmas (submitted).
42V. V. Mikhailenko, Hae Jun Lee, and V. S. Mikhailenko, Phys. Plasmas

19, 082112 (2012).

102304-7 Lakhin et al. Phys. Plasmas 23, 102304 (2016)

http://dx.doi.org/10.1063/1.1706743
http://dx.doi.org/10.1063/1.1647565
http://dx.doi.org/10.1063/1.3486164
http://dx.doi.org/10.1063/1.3692978
http://dx.doi.org/10.1088/0963-0252/17/2/025007
http://dx.doi.org/10.1088/0741-3335/55/8/085018
http://dx.doi.org/10.1063/1.4747506

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	s2
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	s3
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3
	d29
	d30
	d31
	d32
	s3
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	d40
	d41
	d42
	d43
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42

