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The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed elec-

tric and magnetic fields are investigated in the framework of the two-fluid model with finite elec-

tron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR)

effects are also included via the gyroviscosity tensor taking into account the magnetic field gradi-

ent. This model correctly describes the electron dynamics for k?qe > 1 in the sense of Pad�e
approximants (here, k? and qe are the wavenumber perpendicular to the magnetic field and the

electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma pertur-

bations with the frequency in the range between the ion and electron cyclotron frequencies and

propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes

the effects of the equilibrium E� B electron current, finite ion velocity, electron inertia, electron

FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of

stability is derived, and the stability boundary is found. It is shown that, in general, the electron

inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects

completely suppress the high-frequency short-wavelength modes so that only the long-wavelength

low-frequency (with respect to the lower-hybrid frequency) modes remain unstable. Published by
AIP Publishing. https://doi.org/10.1063/1.4996708

I. INTRODUCTION

Plasmas immersed in the external magnetic field B0 with

externally applied electric field E0 (perpendicular to B0) are

subject to many instabilities.1,2 Such instabilities with frequen-

cies x in the range between the ion cyclotron frequency xBi

and the electron cyclotron frequency xBe, xBi � x� xBe,

are of great importance to both laboratory and space plasmas.

In particular, they are important for magnetron plasma dis-

charges, Hall ion sources, Penning discharges, closed drift

thrusters (Hall thrusters) (see, e.g., Refs. 3, 4 and references

therein), open-mirror devices,5–7 as well as for a variety of

ionosphere and magnetosphere plasma conditions. These

instabilities are thought to be the source of turbulence and

anomalous transport phenomena such as electron resistivity

and turbulent plasma heating.5–8

In situations with the moderate magnetic field with

qi � L but qe � L, where qe and qi are the electron and ion

Larmor radii, respectively, L is the device length, and the

considered frequency range xBi � x� xBe, the influence

of the magnetic field on ions is negligible while the electrons

are magnetized and mainly drift perpendicular to the mag-

netic field. Such partially magnetized plasmas will be called

Hall plasma below. The standard drift waves of fully magne-

tized plasmas1 do not exist in plasmas with unmagnetized

ions, but plasma density gradients result in the appearance of

the so-called antidrift-mode.9

The externally applied electric field produces stationary

E0 � B0 electron drift which can result in destabilization of

the anti-drift mode. Combination of the magnetic field

and plasma density inhomogeneities results in a number of gra-

dient drift instabilities in Hall plasmas.1,2,10 In particular, such

an instability has been studied in the context of the magnetic-

mirror systems.5,6,11,12 The gradient drift instability has been

identified experimentally and studied theoretically13,14 in Hall

plasma thrusters, also see some recent works.15,16 The general

dispersion relation for perturbations with kk ¼ 0 (kk is the

component of a wavevector along the equilibrium magnetic

field) has been derived in Refs. 13 and 14. This dispersion rela-

tion, which is the third order in x, has been analyzed in Refs.

13–16 only in some limiting cases under simplifying assump-

tions (for the discussion of the simplifications, see Ref. 17).

As discussed in Refs. 13, 14, and 17, the gradient-drift

instability is traditionally thought to be responsible for high-

frequency short-wavelength oscillations in Hall plasmas. In

this paper, we show that electron inertia and finite Larmor

radius (FLR) effects stabilize the short-wavelength modes,

and for some parameters, only the low-frequency modes are

excited near the instability boundaries. Therefore, gradient-

drift instability can be considered as a possible mechanism of

low-frequency oscillations and structure formation in experi-

ments with Hall plasmas.13,18 Recently, a linear theory of this

instability in the long-wavelength limit has been studied in

Ref. 19 with the dispersion relation similar to Refs. 13 and
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14. The dispersion relation for long-wavelength perturbations

has been revised in Refs. 20 and 21. The authors of these

papers have taken into account the full compressibility of the

electron flow for the vacuum magnetic field. They have also

generalized the dispersion relation for long-wavelength

modes taking into account the electron temperature inhomo-

geneity and its perturbations. The influence of plasma den-

sity, temperature, and magnetic field gradients on shorter-

wavelength higher-frequency oscillations in the lower-hybrid

frequency range has been also studied in Refs. 22–26.

In this paper, we present an analysis of stability of

electrostatic plasma perturbations in the frequency range

xBi � x� xBe and propagating strictly perpendicular to

the magnetic field. Thus, we leave the modified two-stream

instability, which requires the finite value of kk, out of con-

sideration. Also, we neglect plasma ionization and electron

collisions with neutrals assuming that x exceeds the ioniza-

tion and collision frequencies. The low-frequency instabil-

ities in Hall thruster plasmas due to collisions and ionization

processes have been studied in Refs. 18, 27, and 28.

We use an advanced hydrodynamic model for electrons

which includes the effects of finite electron temperature and

FLR including the regime k?qe > 1. Another novel feature

of our model is that the magnetic field gradients are included

not only in the compressibility of the lowest order electron

flow (as in previous works) but also into the higher order

FLR terms. The temperature inhomogeneity and its perturba-

tion are neglected. Ions are considered to be cold. We show

that the local dispersion relation can be reduced to the cubic

equation in x with a general structure similar to the disper-

sion relation of Refs. 12–14. We derive an explicit analytical

stability criterion without making any additional assumptions

concerning the wave frequencies, wavenumbers, and equilib-

rium plasma parameters. Based on our analysis, we predict

the stabilization of the short-wavelength and high-frequency

modes in some practical cases.

This paper is organized as follows. In Sec. II, we present

the starting two-fluid equations, in particular, the equations

of electron dynamics that take into account the finite temper-

ature, inertia, and gyroviscosity. This model describes the

electron FLR effects in Pad�e approximation as well as the

effects of the magnetic field gradients. We also briefly dis-

cuss plasma equilibrium in the external magnetic field when

the external perpendicular electric field is applied to plasma.

In Sec. III, we derive the general dispersion relation for gra-

dient drift perturbations taking into account the finite elec-

tron Larmor radius effects and discuss its consistency in

various limiting cases with the dispersion relations derived

earlier.12,14,20 In Sec. IV, we present the stability analysis of

gradient drift perturbations. We obtain the stability criterion

in the explicit analytical form, present the stability diagram,

and discuss the role of the electron inertia and FLR effects.

A short summary is given in Sec. V.

II. INITIAL EQUATIONS

In this paper, we use a two-fluid model. The ions are

assumed to be unmagnetized and cold. Then, the ion motion

is described by the equation

@vi

@t
þ ðvi � rÞvi ¼

e

mi
E: (1)

The ion density satisfies the continuity equation

@ni

@t
þr � nivið Þ ¼ 0: (2)

Here, vi and ni are the ion velocity and density, E is the elec-

tric field, e is the proton charge, and mi is the ion mass.

For electrons, we use the momentum equation in the fol-

lowing form:

@ve

@t
þ ðve � rÞve ¼ �

e

me
Eþ 1

c
ve � B

� �
� rpe

mene
�r � pe

mene
;

(3)

where ve, pe, ne, and pe are the electron velocity, pressure,

density, and gyroviscosity tensor,1,29 c is the speed of light,

and B is the magnetic field. The electron density is defined

by the electron continuity equation

@ne

@t
þr � neveð Þ ¼ 0: (4)

The electron temperature Te ¼ pe=ne is assumed to be homo-

geneous, and its perturbation is neglected.

The set of Eqs. (1)–(4) is closed with the Poisson

equation

r � E ¼ 4peðni � neÞ: (5)

We consider a simplified slab model in Cartesian coordi-

nates (x, y, z) with the z coordinate along the predominant

magnetic field, the y coordinate in the periodic azimuthal

direction, and the x coordinate in the direction of the applied

electric field E0 ¼ E0ex (or the direction of plasma inhomoge-

neity). The magnetic field is assumed to be B0 ¼ B0xðx; zÞex

þB0zðx; zÞez and B0z � B0x, so that B0 ¼ ðB2
0x þ B2

0zÞ
1=2 �

jB0zj and mainly depends on x.

Adopted for the coaxial Hall thrusters, in which the

external magnetic field is assumed to be predominantly in

the radial direction, the local z coordinate is in the radial

direction, the x coordinate is in the axial direction, and

the y coordinate is in the symmetrical azimuthal direc-

tion. The equilibrium electric field E0 ¼ E0ex is in the

axial direction. For the cylindrical magnetrons (Penning

discharge configuration) with the axial magnetic field, the

local z coordinate is axial, the x coordinate is radial, the

y coordinate is azimuthal, and the electric field E0 is

radial.

An explicit expression for the gyroviscosity tensor

gradient r � pe in the curvilinear inhomogeneous mag-

netic field can be written in the coordinate-free vector

form. We start from the corresponding expression for the

gyroviscosity tensor derived in Ref. 29. It follows from

Eqs. (4.7), (4.14), and (4.15) of Ref. 29 that in the auxil-

iary Cartesian coordinate system, the gyroviscosity tensor

has a form
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pij ¼ �
pe

4xBe
ðdj� þ 3bjb�Þeicl þ ðdi� þ 3bib�Þejcl
� �

� bc
@vl

@x�
þ @v�
@xl

� �
; (6)

where b ¼ B=B is the unit vector in the direction of the

magnetic field, dij is the Kronecker symbol, and eijk is the

antisymmetric tensor. For simplicity, we have omitted the

subscript e and mean that pij and v are the electron viscosity

tensor and electron velocity.

Then, using the identity

@vj

@xi
� @vi

@xj
¼ eijkXk;

where X ¼ r� v, expression (6) can be represented in the

form (see details of calculation in Ref. 30)

pij ¼ �
@

@xl

pe

2xBe
eiclvj þ ejclvið Þbc

� �
þ pe

2xBe
ðX � bÞdij

� fivj � fjvi � aibj � ajbi:

Here, two new vectors f and a are defined as

f ¼ r� pe

2xBe
b

� �
;

a ¼ pe

2xBe
b� b�Xþ 3ðb � rÞv½ � þ 1

2
ðX � bÞb

� 	
: (7)

Now, directly applying a differentiation with respect to xj,

we obtain

@pij

@xj
¼ eilc

@

@xl
ðv � rÞ pe

2xBe
bc

� �
þ pe

2xBe
bcðr � vÞ

� �

þ @

@xi

pe

2xBe
ðX � bÞ

� �
� fiðr � vÞ � ðv � rÞfi

� ðf � rÞvi� ðB � rÞ
ai

B

� �
�Bir �

a

B

� �
� a

B
� r

� �
Bi:

Using another identity which takes place for any vectors

c ¼ r� C and d,

ciðr�dÞþðd �rÞciþðc �rÞdi	2ðc �rÞdiþðr�ðc�dÞÞi;

going to the vector notation, and returning the omitted sub-

script e, we finally obtain

r�pe ¼�meneðU?e �rÞveþr
pe

2xBe
b �X

� �
�2ðB �rÞ a

B

þr� pe

2xBe
2ðb �rÞveþ r�ve�3bðb �rÞveð Þb½ �

� 	
:

(8)

Here,

U?e ¼
1

mene
r� pe

xBe
b

� �
: (9)

Substituting expression (8) in the electron momentum equa-

tion (3) and taking into account Eq. (7), we arrive at the fol-

lowing equation:

mene
@

@t
þ ðve�U?eÞ � r

� �
ve

þr� pe

2xBe
2ðb � rÞve þ r � ve�3bðb � rÞveð Þb½ �

� 	

¼�ene Eþ 1

c
ve �B

� �
�r peþ

pe

2xBe
b �X

� �

þðB � rÞ pe

xBe
b� b�Xþ 3ðb � rÞv½ � þ 1

2
ðX � bÞb

� 	� �
:

(10)

Further, we assume that the plasma pressure is low and

neglect the perturbations of the magnetic field due to plasma

currents. Then, the magnetic field is assumed to be the vacuum

field created by external coils, r� B0 ¼ 0. Also, we assume

that the electron temperature is homogeneous, rTe ¼ 0.

Under the above assumptions, it follows from Eq. (9) that

U?e¼Vp�VD; Vp¼
cTe

eB0

rlnne�b; VD¼
2cTe

eB0

rlnB0�b:

(11)

We consider slow processes with characteristic frequency

scales x� x�1
Be . Then, Eq. (10) can be solved by an expan-

sion in the series over x�1
Be . In the leading order, one has

vð0Þe ¼ VE þ Vp; VE ¼
c

B0

E� b: (12)

In the next order, we take into account the electron inertia

and gyroviscosity effects. We restrict ourselves to plasma

motions perpendicular to the magnetic field and also neglect

any inhomogeneities along the magnetic field. Under these

assumptions, it follows from Eq. (10) that

vð1Þe ¼
1

xBe

@

@t
þ ðVE þ VDÞ � r

� �
vð0Þe

�

þ 1

mene
r� pe

2xBe
ðr � vð0Þe Þb

� �

þ 1

mene
r pe

2xBe
b � ðr � vð0Þe Þ

� �	
� b: (13)

We have taken into account Eqs. (11) and (12) to reproduce

a well-known gyroviscous cancellation in the first term on

the right hand side of Eq. (13). Unlike the case of the straight

homogeneous magnetic field, the electron magnetic drift

velocity VD appears in combination with E� B0 electron

drift, VE, in the convective derivative operator.

Substituting expressions (12) and (13) in the electron

continuity equation (4), we obtain

@

@t
þVE � r

� �
ne� 2neðVEþVpÞ �rlnB0

þr2
?

neTe

mex2
Be

ðVEþVpÞ �rlnB0

� �

� 1

mexBe
r neTe

xBeB0

r � ðVEþVpÞ�B0


 �� �
� b

� 	
� rlnB0

þr � ne

xBe

@

@t
þðVEþVDÞ �r

� �
ðVEþVpÞ

� �
� b

� 	
¼ 0:

(14)
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Equations (1), (2), (5), and (14) constitute a closed set of

equations which will be used below to study gradient drift

modes.

The magnetized electrons drift in the y direction with

the velocity

v0e ¼ ðV0E þ V?eÞey; V0E ¼ �
c

B0

E0; V?e ¼ �
cTe

eB0

dlnn0e

dx
;

where Te and n0e are the equilibrium electron temperature

and density.

Under the assumption of ballistic acceleration of ions in

the electric field, it follows from Eq. (1) that their velocity

v0i ¼ v0iðxÞex satisfies the condition

v0i
dv0i

dx
¼ e

mi
E0:

Then, according to Eq. (2), n0iðxÞv0iðxÞ ¼ const, and there-

fore, the ion motion results in density inhomogeneity

1

n0i

dn0i

dx
¼ � 1

v0i

dv0i

dx
	 V0ExBi

v2
0i

; (15)

so that the density inhomogeneity is related to the applied elec-

tric field. Plasma stability for such an equilibrium has been

considered in Ref. 14. Actually, the experimental data from

different Hall devices show that the assumption n0iðxÞv0iðxÞ
¼ const is not satisfied for the whole plasma channel. The

deviation of the equilibrium from the above described one may

be related to factors such as radial divergence of ion flow, ioni-

zation processes, electron collisions with neutral atoms, and

wall effects (see discussion in Ref. 21). Therefore, we will not

specify the equilibrium in such a way but just will assume that

in the equilibrium, ions move along the electric field with the

velocity v0i, electrons drift in the y direction, and plasma is

inhomogeneous and quasineutral, n0i ¼ n0e ¼ n0.

III. DISPERSION RELATION FOR ELECTROSTATIC
PERTURBATIONS

We consider the electrostatic, E0 ¼ �r/0, perturbations

which depend only on the perpendicular coordinates (x, y)

with respect to the predominant magnetic field. We restrict

ourselves to local analysis. Therefore, we assume the spatio-

temporal dependence of perturbations f in the Fourier form

f 
 exp ðikx� ixtÞ, where k ¼ ðkx; ky; 0Þ is the wave-vector

and x is the frequency. It is assumed that the wavelength in

the x direction is small compared to typical inhomogeneity

lengths L of the equilibrium density, magnetic and electric

fields, kxL� 1, and the frequency of perturbations is in the

range xBi � x� xBe, where xBa ¼ eB0=mac; a ¼ ði; eÞ
are the ion and electron cyclotron frequencies. Also, it is

assumed that x� kvTi, where vTi ¼ ð2Ti=miÞ1=2
is the ion

thermal velocity, and therefore, the cold ion approximation is

justified.

We represent the ion velocity and density as vi ¼ v0iex

þ v0i; ni ¼ n0 þ n0i, where v0i; n
0
i are small perturbations of

ion velocity and density such that ðjv0ij; n0iÞ � ðv0i; n0Þ. Then,

linearizing Eqs. (1) and (2) with respect to perturbations, we

obtain

ðx� kxv0iÞv0i ¼
ek

mi
/0; ðx� kxv0iÞn0i � n0ðkv0iÞ ¼ 0: (16)

Equations (16) give the following expression for the ion den-

sity perturbation:

n0i ¼
ek2
?n0

miðx� kxv0iÞ2
/0; (17)

where k2
? ¼ k2

x þ k2
y .

Linearizing Eq. (14) with respect to small-scale pertur-

bations, we obtain

x� xE � xD þ k2
?q

2
eðx� xE � 2xDÞ

� �
n0e

¼ x?e � xD þ k2
?q

2
eðx� xE � 2xDÞ

� � en0

Te
/0:

Here, n0e is the electron density perturbation, qe ¼ ðTe=

mex2
BeÞ

1=2
is the electron Larmor radius, and the correspond-

ing frequencies are defined as follows:

xE ¼ kyV0E; x?e ¼ kyV?e; xD ¼ kyVD;

where VD ¼ �ð2cTe=eB0ÞdlnB0=dx is the electron magnetic

drift velocity.

Then, the perturbed electron density can be written as

n0e ¼
1

1þ k2
?q

2
e

x?e � �xD

x� xE � �xD
þ k2

?q
2
e

� �
en0

Te
/0; (18)

where

�xD ¼
1þ 2k2

?q
2
e

1þ k2
?q

2
e

� xD:

For long-wavelength perturbations, k2
?q

2
e � 1, Eq. (18)

reduces to the expression given by Eq. (16) of Ref. 20 as

follows:

n0e ¼
en0

Te
� x?e � xD

x� xE � xD
/0:

In the limit of finite but small k2
?q

2
e , Eq. (18) is the asymptot-

ically exact approximation for the perturbed electron density

as compared to the kinetic expressions. In the short-

wavelength limit k2
?q

2
e � 1, the electron density perturbation

in Eq. (18) reduces to the Boltzmann form n0e ¼ ðen0=TeÞ/0
as also follows from the kinetic theory. Therefore, Eq. (18)

corresponds to the Pad�e approximation for the perturbed

electron density providing qualitatively correct description

of the perturbed density in the intermediate range of wave-

lengths k2
?q

2
e > 1.31

Substituting expressions for the ion and electron density

perturbations (17) and (18) in the perturbed Poisson equation

k2
?/
0 ¼ 4peðn0i � n0eÞ, we finally arrive at the dispersion

relation
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1þ
x2

pe

x2
Be

� 1

1þ k2
?q

2
e

�
x2

pi

ðx� kxv0iÞ2
þ 1

k2
?d2

e

� 1

1þ k2
?q

2
e

� x?e � �xD

x� xE � �xD
¼ 0: (19)

Here, de ¼ ðTe=4pe2n0Þ1=2
is the electron Debye radius. This

dispersion relation describes both the long-wavelength

modes studied earlier in Ref. 20 and short-wavelength modes

with the frequencies of the order of lower-hybrid frequency,

x ’ xlh 	 xpi ð1þ x2
pe=x

2
BeÞ
�1=2

. In the long-wavelength

limit, it transforms into the dispersion relation derived in

Ref. 20. In fact, taking a limit k2
?q

2
e ! 0 and neglecting the

first two terms in Eq. (19) corresponding to charge separation

and electron inertia, we reduce it to the form which coincides

with the dispersion relation derived in Ref. 20 as follows:

x?e � xD

x� xE � xD
� k2

?c2
s

ðx� kxv0iÞ2
¼ 0: (20)

Here cs ¼ ðTe=miÞ1=2
is the speed of sound. In the cold elec-

tron approximation, Te ! 0, dispersion relation (19) can be

written as

1þ
x2

pe

x2
Be

�
x2

pi

ðx� kxv0iÞ2
�

x2
pe

xBeðx� xEÞ
� kyðjn � 2jBÞ

k2
?

¼ 0;

(21)

where jn;B 	 dlnðn0;B0Þ=dx. Substituting in Eq. (21) jn cor-

responding to the ballistic acceleration of ions (15), one can

easily show that it takes a form similar to the dispersion rela-

tion of Ref. 14 with two differences: (1) the dispersion rela-

tion of Ref. 14 takes into account the electromagnetic effects

which are small for most Hall plasma devices [note, that the

electromagnetic effects are important only for the long-

wavelength perturbations with k2
?c2�x2

pe=ð1þ x2
Be=x

2
peÞ;

14

for typical parameters the electromagnetic effects cannot be

neglected for the perturbations with the wavelength compa-

rable to the device length scale]; (2) there is a difference in

the terms proportional to jB due to an incomplete account of

the electron flow compressibility in Ref. 14 (see a discussion

of this matter in Ref. 20). Also, it is necessary to mention

that for a straight homogeneous magnetic field, dispersion

relation (21) transforms into the dispersion relation derived

earlier in Refs. 1 and 12 in the context of experiments with

plasmas in the magnetic mirror system.

The instability of perturbations described by dispersion

relation (19) can be driven only by the equilibrium ion, v0i,

or electron, V0E, VD, flows perpendicular to the magnetic

field (in the denominators of the third and fourth terms,

respectively). Therefore, the gradient drift instabilities stud-

ied are sometimes called the instabilities driven by perpen-

dicular current.1 The instability driven by the ion current

alone was noted in Ref. 10.

IV. STABILITY ANALYSIS

The dispersion relation obtained in Eq. (19) is cubic

with respect to perturbation frequency x, and this signifi-

cantly complicates its direct analysis. We are unaware of any

detailed analytical studies of this dispersion relation in gen-

eral form which would allow to trace how a stability condi-

tion changes with the wavelength of perturbations. Usually,

only the limiting cases of this equation are studied analyti-

cally (see, e.g., Refs. 12, 14, and 20). We will show here that

this dispersion relation allows a sufficiently compact analyti-

cal criterion of stability.

For the analysis of stability, it is convenient to rewrite

the dispersion relation (19) in the normalized form

1� 1

X2
� aky

k2
?ðXþ kyrÞ

¼ 0; (22)

where

X ¼ x� kxv0i

x0

; x0 	 xpi
1þ k2

?q
2
e

1þ k2
?q

2
e þx2

pe=x
2
Be

 !1=2

;

a ¼ ðjn � 2�jBÞx0

xBið1þ k2
?q2

eÞ
; r ¼ 1

x0

c

B0

E0 þ
2Te

e
�jB

� �
þ kx

ky
v0i

" #
;

�jB ¼
1þ 2k2

?q
2
e

1þ k2
?q

2
e

� jB: (23)

The instability studied belongs to the class of instabilities

driven by the perpendicular current. The parameter r is pro-

portional to such a current. It consists of three parts—the

electron E0 � B0 and magnetic drift flows and the ion flow

parallel to the electric field—and characterizes the “drive” of

gradient drift instability. The parameter a is responsible for

plasma and magnetic field inhomogeneity.

Then, from Eq. (22), we obtain the following cubic

equation for X with real coefficients

X3 þ k�rX2 � X� �r ¼ 0; (24)

where

k ¼ 1� a

k2
?r

; �r ¼ kyr:

The parameter �r corresponds to the instability drive and, as

it will be shown below, the parameter k defines the necessary

condition for gradient-drift instability.

The perturbations described by this equation are stable

if and only if all its roots are real. Otherwise, there always

exists an unstable solution with Im X > 0. The condition

under which all roots of cubic equation (24) are real can be

written in the form

4k3�r4 þ ðk2 þ 18k� 27Þ�r2 þ 4 � 0: (25)

First of all, we notice that for k¼ 0, the first term on the

left hand side of inequality (25) disappears and stability con-

dition takes the form

�r2 � 4

27
; if k ¼ 0: (26)

Otherwise, on the left hand side of inequality (25), we have a

quadratic trinomial with respect to �r2. Therefore, condition

(25) can be rewritten in the form
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k3ð�r2 � l1Þð�r2 � l2Þ � 0; (27)

where l1;2 are the roots of quadratic equation

4k3l2 þ ðk2 þ 18k� 27Þlþ 4 ¼ 0: (28)

These roots are described by the expressions

l1;2 ¼
1

8k3
27� 18k� k27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27� 18k� k2Þ2 � 64k3

q� �
:

(29)

The asymptotes of the roots are as follows (l1 corresponds to

sign “–,” l2 – to sign “þ”):

l1 ! �
1

4k
; l2 ! �

4

k2
< 0; when k! �1;

l1 !
4

27
; l2 !

27

4k3
! 71; when k! 70;

ðl1; l2Þ ! 1; when k! 1:

Now we note that the determinant D of quadratic equa-

tion (28) [the expression under square root in Eq. (29)] can

be represented in a very simple and compact form

D ¼ ð27� 18k� k2Þ2 � 64k3 	 ðk� 1Þðk� 9Þ3:

It is clear that the roots l1 and l2 are real when D> 0, i.e.,

when k � 1 and k � 9. At the same time, when 1 < k < 9,

the roots are complex conjugates. Keeping this in mind, we

carry out an analysis of stability of plasma perturbations.

(1) When k � 9, both roots are real and negative because

l1 � l2 ¼
1

k3
> 0; l1 þ l2 ¼ �ðk2 þ 18k� 27Þ=4k3 < 0;

so that l1;2 ¼ �jl1;2j. Then, condition (27) takes the form

k3 �r2 þ jl1j

 �

�r2 þ jl2j

 �

� 0:

This condition is certainly satisfied for any �r. Thus, in

this range of k, the perturbations are stable.

(2) When 1 < k < 9, the roots of Eq. (28) are complex

conjugates and can be written in the form l1 ¼ A
þ iB; l2 ¼ A� iB. Then, condition (27) takes the form

k3 ð�r2 � AÞ2 þ B2
h i

� 0:

This condition is certainly satisfied for any value of �r, and

therefore, when 1 < k < 9, the perturbations are stable.

(3) When 0 < k � 1, both roots of Eq. (28) are real and posi-

tive because ðl1 � l2; l1 þ l2Þ > 0, and l1 < l2. Since

k > 0, stability condition (27) takes the form �r2 � l1;
�r2 � l2. In terms of k, these conditions can be written as

�r2 � 1

8k3
27� 18k� k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞð9� kÞ3

q� �
;

�r2 � 1

8k3
27� 18k� k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞð9� kÞ3

q� �
:

(30)

Notice that for k! 0, the first inequality in Eq. (30) trans-

forms into inequality (26).

(4) Finally, when k < 0, both roots are real and have differ-

ent signs: l1 is positive, l1 > 0, and l2 is negative,

l2 < 0. Then, it means that stability condition (27) takes

the form �r2 � l1. In an explicit form, it is written as

�r2 � � 1

8k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞð9� kÞ3

q
þ k2 þ 18k� 27

� �
: (31)

It follows from the above analysis that a sufficient condi-

tion of stability of considered plasma perturbations is k � 1.

It takes place when ar � 0, i.e., if

eE0

Te
þ 1þ 2k2

?q2
e

1þ k2
?q

2
e

� d

dx
lnB2

0 þ
kx

ky

xBi

cs

v0i

cs

 !

� d

dx
lnn0 �

1þ 2k2
?q

2
e

1þ k2
?q

2
e

� d

dx
lnB2

0

( )
� 0: (32)

We emphasize that this condition guaranties that both long-

wavelength, lower-frequency and short-wavelength, higher-

frequency (of order x0) perturbations are stable. For almost

azimuthal perturbations with kx � ky and negligible inhomo-

geneity of the magnetic field strength, this condition takes the

form E0 � rn0 � 0 which is complementary to the Simon-

Hoh (S-H) instability condition.32,33 Note that according to

this criterion, the equilibria with the ballistic ion acceleration,

described by Eq. (15), are always stable. Neglecting the FLR

effects and equilibrium ion velocity in Eq. (32), one can eas-

ily obtain the generalized S-H stability criterion for the inho-

mogeneous magnetic field: ðV0E þ VDÞðjn � 2jBÞ � 0.

In the long-wavelength region, the perturbations are

unstable if the inequality opposite to (31) is fulfilled. The

long-wavelength perturbations previously studied in Refs. 20

and 21 correspond to k2
? � ðq�2

e ; l�2
0 Þ, where

l2
0 	

xBi

x2
piðjn � 2jBÞ

� c

B0

E0 þ 2
Te

e
jB

� �
þ kx

ky
v0i

" #
:

In this case, l1 ! �1=4k and the instability takes place if

1

xBi

cE0

B0

þ 2cTe

eB0

jB þ
kx

ky
v0i

� �
d

dx
ln

n0

B2
0

� �
>

k2
?

4k2
y

: (33)

This instability condition for long-wavelength gradient drift

perturbations is previously derived in Ref. 20.

According to the above analysis, the necessary and
sufficient condition of gradient drift instability can be formu-

lated as

�r2 > l1; for k � 0;

l1 < �r2 < l2; for 0 < k < 1:

(
(34)

The full picture of instability is summarized in Fig. 1.

The boundaries of the instability region are described by the

curves �r2 ¼ l1;2—see Eq. (29). At k � 0, the instability

region is located above the curve �r2 ¼ l1 and at 0 < k
< 1—between the curves �r2 ¼ l1 and �r2 ¼ l2 which inter-

sect at the point k¼ 1. The region with k � 1 is stable.

012106-6 Lakhin et al. Phys. Plasmas 25, 012106 (2018)



Now let us examine the role of the inertia and FLR

effects, which can be understood from the above diagram. We

neglect the equilibrium ion velocity, since typically in the

experiments v0i � ðV0E; VDÞ (the equilibrium ion velocity

effects can be important for predominantly axial perturbations

with kx � ky, which are not the particular case of this paper).

First, we drop the inertia effect, setting k2
?q

2
e ! 0. In this lim-

iting case, the parameters a and r do not depend on the wave-

number, a0 ¼ ajk2
?q2

e!0; r0 ¼ rjk2
?q2

e!0 and are the functions

of plasma parameters only. In terms of k and �r, dispersion

relation (20) without the inertia effects takes the form

�rð1� kÞX2 þ Xþ �r ¼ 0:

The stability boundary for this dispersion relation is given by

the dependence �r2 ¼ 1=4ð1� kÞ [condition (33)] shown in

Fig. 1 with the dashed line. The instability region is above

this curve. Comparing the instability regions with and with-

out the electron inertia effect, one can easily see that the

inertia effect leads to the extension of the stability region for

large values of instability drive �r (�r2 > �r2
int) and extra desta-

bilization for small �r (�r2 < �r2
int), where �r2

int ¼ 1=2 5
ffiffiffi
5
p


�11Þ corresponds to the intersection point of the curves

�r2 ¼ l2 (upper stability boundary with the inertia effects)

and �r2 ¼ 1=4ð1� kÞ (stability boundary with no inertia).

Now, let us fix the equilibrium parameters a0 and r0 and

follow the parametric curve �r2ðkÞ defined by the wavenum-

ber k? on the stability diagram. For strictly azimuthal modes

(kx¼ 0) and without taking into account the FLR effects, the

curve is described by the relation �r2 ¼ a0r0=ð1� kÞ repeat-

ing the behavior of the stability boundary without electron

inertia, �r2 ¼ 1=4ð1� kÞ. As an example, in Fig. 1, the corre-

sponding curve for a0 ¼ �488:42 cm�1 and r0 ¼ �0:4024

cm is shown with the black line with green circles (no FLR):

k? grows along the curve (from the left to the right). These

values of a0 and r0 correspond to the following plasma

parameters: B0 ¼ 200 G, V0E ¼ 6� 106 cm/s, n0 ¼
0:5� 1012 cm–3, Te ¼ 3:125 eV, jn ¼ 1 cm–1, jB ¼ 1 cm–1

and xenon atoms; these parameters are specific to dense par-

tially magnetized plasmas typical for Hall plasma thrusters

and magnetron discharges. Thus, without electron inertia

effects, the whole spectrum of perturbations k? 2 ð0;1Þ is

unstable at a0r0 > 1=4; at a0r0 < 1=4, all modes are stable.

When we take into account the inertia effects, the cut-off of

the short-wavelength modes occurs with the maximal possi-

ble k?max defined by the relation a0r0=ð1� kÞ ¼ l2, at the

intersection with the l2 instability boundary in Fig. 1.

The contour-plots of frequencies and growth rates of

unstable modes in the plane �r2 � k calculated from Eq. (24)

with using the trigonometric Vieta’s formula are shown in

Fig. 2. Following the black line with green circles in Fig. 2(a),

one can easily observe the growth of the frequency with the

increase of k?—from low-frequency, x� xlh, to high-

frequency, x � xlh. The high-frequency short-wavelength

oscillations have larger growth rates than the low-frequency

long-wavelength ones—see Fig. 2(b). At large values of r0

(strong drive), the maximal growth rate corresponds to k¼ 0.

This condition uniquely defines the wavelength of the

most unstable mode, k2
?jk¼0 ¼ a0=r0 (note that according to

the necessary condition of instability (32), a0 and r0 are

always of the same sign in the instability region)

k?jk¼0 ¼
xlh

qe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xBexBi
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
e � VD

V0E þ VD

r
:

The stronger the drive, the longer the wavelength of the mode

with the maximal growth rate. Since at large �r2 the instability

threshold is defined by the point of intersection with the

upper instability boundary l2 near k¼ 0, in the model with-

out FLR effects, the wavelength of the most unstable mode is

close to the minimal admitted wavelength of unstable pertur-

bations (maximal k? in the instability region).

The frequency of unstable modes near the upper instabil-

ity boundary is of the order of xlh and higher—see Fig. 2(a).

Thus, without FLR effects, the maximal growth rate have the

high-frequency, long-wavelength perturbations [since k?jk¼0


 ða0=r0Þ1=2
].

The FLR effects make the picture much more complex,

since the parameters a and r not only depend on the equilib-

rium plasma state but are also functions of k?. As a result, at

fixed plasma parameters, the function �r2ðkÞ is not necessarily

an increasing monotonic function—see black line with red

circles (FLR) in Fig. 1, which is calculated for the same plasma

parameters as above but takes into account the electron FLR

effects, k?qe 6¼ 0. In the considered case, the FLR effects

totally change the behavior of �r2ðkÞ: from strictly monotonic

it becomes a multiple-valued function (note: dependence that

the presented is not universal and is shown just as an example).

In the instability region for k? exceeding some value,

both �r2 and k become decreasing functions of k?, thereby

cutting-off the curve from the region corresponding to high-

frequency oscillations. A complete stabilization of the short-

wavelength modes takes place when the curve �r2ðkÞ inter-

sects the lower instability boundary, l1 (in Fig. 2, the point

of this intersection is shown in a separate window).

FIG. 1. Stability diagram in the plane �r2–k. The dashed curve shows the sta-

bility boundary with no account of electron inertia; the corresponding insta-

bility region is dashed.
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The relative contribution of the inertia effects and the

electron FLR effects depends on the ratio between the scale

length ðr0=a0Þ1=2
at which the inertia effects become impor-

tant and the electron Larmor radius qe or, in other words, on

the dimensionless parameter D 	 a0q2
e=r0.

For weak instability drive (defined by the parameter r0)

such that D� 1, the instability is stabilized by the electron

FLR effects before the inertia effects become important. The

dependencies of the frequencies and the growth rates of unsta-

ble perturbations for such a case with r0 ¼ �0:12 cm corre-

sponding to V0E ¼ 3:4� 106 cm/s are presented in Fig. 3(a).

The other plasma parameters are taken as before (B0 ¼ 200

G, n0 ¼ 0:5� 1012 cm–3, Te ¼ 3:125 eV, jn ¼ 1 cm–1, jB

¼ 1 cm–1, xenon) so that a0 ¼ �488:4 cm–1, and D ’ 5:64.

One can clearly see a significant difference between the

curves calculated with the FLR effects and without FLR

effects. The FLR effects stabilize the instability at k?qe�0:3
and only relatively low-frequency perturbations with x
� 0:02xlh are unstable. The omission of the FLR effects

results in the instability at higher k? (up to k?qe�3:35). The

frequencies of the unstable smaller-wavelength perturbations

are also higher (up to x ’ 2:5 xlh). It is clear that the model

that does not take into account the FLR effects is not applica-

ble for such plasma parameters.

In the opposite case of strong instability drive r0

¼ �3:76 cm corresponding to V0E ¼ 3� 107 cm/s, we have

D ’ 0:06. In this case, the stabilization of instability by the

electron inertia effects takes place for the perturbations with

the wavelengths that are larger than the electron Larmor

radius (at k?qe ’ 0:25). Therefore, the FLR effects only

slightly influence the instability region, the frequencies, and

the growth rates of the unstable perturbations [see Fig. 3(b)].

Finally, in the intermediate case for the parameters used

before in Fig. 2 (r0 ¼ �0:40 cm, V0E ¼ 6� 106 cm/s), we

have D ’ 0:54 so that the inertia effects and the FLR effects

become important at the same wavelengths. The interaction

of these two effects essentially changes the results [see Fig.

3(c)]. The instability region extends up to shorter wavelengths

(up to k?qe ’ 3:3) compared to the model without FLR

effects. Also, one can see a sufficient reduction of the fre-

quency and the growth rate of unstable modes at 0:4�k?qe

�0:75. It means that the model without FLR effects becomes

inapplicable for the perturbations with k?qe � 0:4.

Here, we have demonstrated the influence of the elec-

tron FLR on gradient drift instability on several practical

examples. In the general case, gradient drift instability with

finite electron FLR effects becomes a complex multiparame-

ter problem and requires more analysis. A detailed treatment

of the general case for azimuthal perturbations with kx � ky

is presented in the separate paper.34

V. CONCLUSION

In this paper, we have developed the generalized fluid

model for the gradient drift instabilities of partially magnetized

plasmas in the frequency range xBi � x� xBe driven by the

equilibrium current perpendicular to the magnetic field. The

model takes into account the electron inertia, gradients of plasma

density and magnetic field, and effects of the finite electron tem-

perature—the electron diamagnetic drift and FLR effects. The

electron FLR effects in the inhomogeneous external magnetic

field are considered by taking into account the collisionless elec-

tron gyroviscosity. Our generalized model exactly describes

the electron dynamics for the long-wavelength motions with

FIG. 2. Contour-plots of frequencies (a) and growth rates (b) of unstable modes in the plane �r2 � k. In (a), the region of stable perturbation is shown in white

and the unstable modes with x > xlh are shown in black.
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k?qe � 1 and qualitatively correctly—in the sense of Pad�e
approximants—for the short-wavelength modes with k?qe ’ 1

and higher (up to k?qe � 1).

We have derived a dispersion relation that generalizes

earlier known dispersion relations of Refs. 1, 12–14, 17,

and 20. In addition to the dispersion relations of Refs. 1,

12–14, and 17, it takes into account the electron tempera-

ture effects (electron magnetic drift and FLR effects) and

in addition to the dispersion relation of Ref. 20—the elec-

tron inertia and FLR effects. Our model for the first time

includes the effects of the magnetic field gradient in the

higher order FLR terms.

On the basis of dispersion relation (19), the stability

properties of electrostatic oscillations are studied. The suffi-

cient condition of stability (32) is analytically obtained.

Also, the necessary and sufficient condition for gradient drift

instability in terms of the plasma equilibrium parameters and

the wavenumber of oscillations is formulated [see Eq. (34)].

It is shown that the electron inertia stabilizes the short-

wavelength perturbations setting the upper limits for the

FIG. 3. The dependencies of frequencies (left column) and growth rates (right column) of unstable modes on k? for different V0E: (a) V0E ¼ 3:4� 106 cm/s;

(b) V0E ¼ 3� 107 cm/s; (c) V0E ¼ 6� 106 cm/s. Here B0 ¼ 200 G, n0 ¼ 0:5� 1012 cm–3, Te ¼ 3:125 eV, jn ¼ 1 cm–1, jB ¼ 1 cm–1, and xenon atoms are

considered.
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growth rate and for the wave-number of unstable modes.

Near the instability threshold, the FLR effects can stabilize

high-frequency short-wavelength modes so that only the

long-wavelength oscillations remain unstable.

The detailed stability analysis of azimuthal modes with

electron FLR effects is presented in Ref. 34 where the gradi-

ent drift instability is studied for the plasma equilibrium with

the negligibly weak electric field jeE0=ðjBTeÞj � 1 and for

the general case of the moderate or strong electric field,

jeE0=ðjBTeÞj� 1.
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