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The detailed analysis of stability of azimuthal oscillations in partially magnetized plasmas with

crossed electric and magnetic fields is presented. The instabilities are driven by the transverse

electron current which, in general, is due to a combination of E� B and electron diamagnetic

drifts. Marginal stability boundary is determined for a wide range of the equilibrium plasma

parameters. It is shown that in some regimes near the instability threshold, only the low-frequency

long-wavelength oscillations are unstable, while the short-wavelength high-frequency modes are

stabilized by the finite Larmor radius effects. Without such stabilization, the high-frequency modes

have much larger growth rates and dominate. A new regime of the instability driven exclusively by

the magnetic field gradient is identified. Such instability takes place in the region of the weak elec-

tric field and for relatively large gradients of plasma density (qs=ln > 1, where qs is the ion-sound

Larmor radius and ln is the scale length of plasma density inhomogeneity). Published by AIP
Publishing. https://doi.org/10.1063/1.4996719

I. INTRODUCTION

Partially magnetized plasma in crossed electric and

magnetic fields is subject to gradient drift instabilities1–7

which are driven by the azimuthal equilibrium electron flow.

Such instabilities are of interest for a number of applications

in electric propulsion devices, magnetic filters, and plasma

processing devices.8–13 In this paper, we present the results

of a detailed quantitative analysis of plasma stability with

respect to azimuthal perturbations for a wide range of equi-

librium plasma parameters taking into account finite electron

temperature effects. The free energy source of instability is

provided by the electron flow across the magnetic field

which is a combination of the electron E� B and the dia-

magnetic drifts. In the latter, the compressible part parame-

terized by the electron magnetic drift velocity VD plays the

key role. Overall, the instability is controlled by the inhomo-

geneities of plasma density and the magnetic field. We show

that, in general, the characteristics of the instability are

defined by the three dimensionless parameters characterizing

the plasma equilibrium (see Sec. II). These parameters are

proportional to the equilibrium azimuthal electron drift, the

plasma density gradient, and the magnetic field gradient. We

analyse plasma stability separately in the case of moderate

and strong electric field VE � VD (Sec. III) and for a some-

what special case of negligibly weak electric field, VE � VD

(Sec. IV). As it is shown below, the instability is possible

only inside a finite interval of the magnetic drift velocity lim-

ited both from below and from above.

It has been shown in Ref. 14 that the threshold value of

the electron drift velocity for the instability depends on the

wavenumber of perturbations. Here, we derive analytically the

minimal value of the instability drive for all possible ranges of

equilibrium plasma parameters. The investigation of the mar-

ginal stability conditions is of interest in relation to the concept

of the self-organized criticality of the anomalous transport in

which it is assumed that the plasma organizes itself into the

state in which the plasma parameters are maintained at mar-

ginal stability.15–17 Such anomalous transport driven by the

gradient drift modes was studied in Refs. 15–17 in application

to open-mirror systems. In application to the Hall thruster, the

marginal stability due to gradient-drift modes and some experi-

mental evidence were discussed in Ref. 3.

When the instability drive exceeds the critical value, the

oscillations with the largest growth rate take place and domi-

nate. Therefore, in Secs. III and IV, we analyze the maximal

growth rates of oscillations and corresponding to them fre-

quencies for all ranges of the equilibrium plasma parameters

for strong and negligibly weak electric field, respectively.

We combine some analytical studies with numerical calcula-

tions. In Sec. V, the conclusions are presented.

II. DISPERSION RELATION

The gradient drift instabilities are studied here employ-

ing the two-fluid model. We restrict ourselves to the electro-

static perturbations with the frequency x in the range

xBi � x� xBe and with the wavevector k perpendicular to

the external magnetic field such that x� kvTi, where

xBa; a ¼ ði; eÞ are the ion and electron cyclotron frequen-

cies, vTi ¼ ð2Ti=miÞ1=2
is the ion thermal velocity, and Ti, mi

are the ion temperature and mass.

Under the above assumptions, the ions are unmagnetized

and cold. They are described by the following equations:
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@vi

@t
þ ðvi � rÞvi ¼ �

e

mi
r/; (1)

@ni

@t
þr � nivið Þ ¼ 0: (2)

Here, vi and ni are the ion velocity and density, / is the elec-

tric potential, and e is the proton charge.

To describe the electron density, we use the following

equation:

@

@t
þVE � r

� �
ne� 2neðVEþVpÞ �rlnB0

þr2
?

neTe

mex2
Be

ðVEþVpÞ � rlnB0

� �
� 1

mexBe

� r neTe

xBeB0

r � ðVEþVpÞ �B0

� �� �
� b

� �
� rlnB0

þr � ne

xBe

@

@t
þ ðVEþVDÞ �r

� �
ðVEþVpÞ

� 	
� b

� �
¼ 0:

(3)

Here,

VE ¼
c

B0

b�r/; Vp ¼
cTe

eneB0

rne � b;

VD ¼
2cTe

eB0

rlnB0 � b;

where c is the speed of light, me is the mass of electron, B0 is

the equilibrium magnetic field, and b � B0=B0. The electron

temperature Te ¼ pe=ne is assumed to be homogeneous and

its perturbation is neglected; pe and ne are the electron pres-

sure and density, respectively. The magnetic field is created

by the external coils, so that in plasma r� B0 ¼ 0. This

electron continuity equation has been derived in Refs. 14 and

18 and includes the finite Larmor radius (FLR) effects in the

Pad�e approximation and the effects of the external magnetic

field inhomogeneity.

We suppose that the plasma density is sufficiently high

so that xpe � xBe (xpe is the electron Langmuir frequency)

and close the set of Eqs. (1)–(3) with the quasineutrality

condition

ne ¼ ni: (4)

We assume that the plasma is in the external crossed

electric in the x-direction E0 ¼ �ðd/0ðxÞ=dxÞex and the

magnetic field predominantly in the z-direction B0 ¼ B0xex

þB0zez; B0z � B0x. Then in steady state, the magnetized

electrons move in the azimuthal y-direction with the velocity

v0e ¼ ðVE þ V?eÞey; VE ¼ �
c

B0

E0 ¼
c

B0

d/0

dx
;

V?e ¼ �
cTe

eB0

dlnn0e

dx
:

We restrict ourselves to almost azimuthal oscillations, such

that ky � kx and neglect the effect of steady-state ion flow in

the direction of electric field E0. Then, linearizing Eqs.

(1)–(4) with respect to small-amplitude perturbations

proportional to exp ð�ixtþ ikxxþ ikyyÞ, we arrive at the fol-

lowing local dispersion relation:

1� x2
lhð1þ k2

?q
2
eÞ

x2
þ 1

k2
?q

2
e

� x?eð1þ k2
?q

2
eÞ � xDð1þ 2k2

?q
2
eÞ

ðx� xEÞð1þ k2
?q

2
eÞ � xDð1þ 2k2

?q
2
eÞ
¼ 0:

(5)

Here, xlh ¼ ðxBexBiÞ1=2
is the lower-hybrid frequency, qe ¼

ðTe=mex2
BeÞ

1=2
is the electron Larmor radius, and

ðx?e; xE; xDÞ ¼ kyðV?e; VE; VDÞ; VD ¼ �
2cTe

eB0

jB

are the electron diamagnetic drift, the E0 � B0-drift, and the

electron magnetic drift frequencies, respectively; ðjn; jBÞ
¼ dlnðn0;B0Þ=dx are the characteristic variation lengths of

the equilibrium plasma density and magnetic field magni-

tude, and k2
? � k2

x þ k2
y .

This dispersion relation (5) follows from the more gen-

eral equation derived earlier.14 Simplifications were made

based on the following assumptions: (1) the plasma is dense,

so that x2
pe=x

2
Be � 1; (2) the oscillations are almost azi-

muthal, ky � kx, and the effect of steady-state ion flow in the

direction of electric field E0 is neglected; (3) the wavelength

of oscillations is large compared to the electron Debye length

de ¼ ðTe=mex2
peÞ

1=2; k2
?d2

e � 1. Dispersion relation (5) takes

into account the electron inertia effects represented by the

first term 1 and the electron finite Larmor radius effects in

the Pad�e approximation terms proportional to k2
?q

2
e in combi-

nations with 1.

For the further analysis, we represent the dispersion rela-

tion in the dimensionless form

X3 þ krX2 � X� r ¼ 0; (6)

where

X� x=x0; k � k?qe; x0 ¼ xlh 1þ k2ð Þ1=2
;

k¼ 1� 1

k2
� ð1þ k2Þvn� ð1þ 2k2ÞvB

ð1þ k2Þnþ k2vB

;

r¼ k cosh

ð1þ k2Þ3=2
� ð1þ k2Þnþ k2vB


 �
;

n¼�VE þVD

cs
; vn ¼�

V?e

cs
� qsjn; vB ¼�

VD

cs
� 2qsjB;

(7)

where cs ¼ ðTe=miÞ1=2
is the ion-sound speed, qs ¼ cs=xBi is

the ion-sound Larmor radius, and cos h ¼ ky=k?. Restricting

ourselves to the azimuthal oscillations below, we put

j cos hj ¼ 1. The parameter n is proportional to perpendicular

equilibrium electron current VE þ VD—the source of free

energy—and characterizes the “drive” of gradient drift insta-

bility. The parameters vn and vB in the numerator of k corre-

spond to plasma density and magnetic field inhomogeneities

which play the role of the instability trigger. It was shown in

Ref. 14 that the necessary instability condition for gradient-

drift modes described by Eq. (6) is k < 1; we will use this

condition below.
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To simplify the subsequent study of instability, it is use-

ful to notice that the dispersion relation is symmetrical with

respect to the transformation

n! �n; vn ! �vn; vB ! �vB; ky ! �ky: (8)

It means that for studying the instability one can fix the sign

of one of the parameters, e.g., vn > 0 .

III. GRADIENT DRIFT INSTABILITY FOR STRONG
ELECTRIC FIELD, jVE=VD j� 1

Assuming that jVE=VDj� 1, we start from the general

case of dispersion relation (5). The oscillations are character-

ized by three independent equilibrium parameters—n, vn,

and vB, and the value of the wavenumber k.

A. Instability region and marginal stability condition

According to the analysis presented in Ref. 14, the nec-

essary instability condition is k < 1 or

ð1þ k2Þvn � ð1þ 2k2ÞvB

ð1þ k2Þnþ k2vB

> 0: (9)

Then, taking into account the above noted property of the

dispersion relation described by Eq. (8), we fix vn > 0 and

consider variations of another two equilibrium parameters—

n and vB.

For vn > 2vB, the numerator of fraction in inequality (9)

is positive for any k2; for vB > vn, it is negative for any k2,

and for vn=2 < vB < vn, it changes sign at k2 ¼ k2
?. The

defining wavenumber k2
? is

k2
? ¼

vn � vB

2vB � vn

: (10)

Therefore, we separate the whole interval of the parameter

vB into 3 subintervals: (a) �1 < vB � vn=2; (b) vn=2 < vB

< vn; (c) vB 	 vn. Then the necessary instability condition (9)

in the subinterval (a) is satisfied if

n > � k2

ð1þ k2Þ vB; (11)

in the subinterval (b) if

n > �k2vB=ð1þ k2Þ; for k2 < k2
?;

n < �k2vB=ð1þ k2Þ; for k2 > k2
?;

(
(12)

and in the subinterval (c) if

n < � k2

ð1þ k2Þ vB: (13)

The corresponding regions of possible instability are pre-

sented in Fig. 1.

The instability boundary is determined by the zero value

of the determinant of Eq. (6), which gives the equation

F � 4k3r4 þ ðk2 þ 18k� 27Þr2 þ 4 ¼ 0; (14)

and the necessary and sufficient instability condition has the

form

r2 > l1; for k � 0;

l1 < r2 < l2; for 0 < k < 1;

(
(15)

where

l1;2 ¼
1

8k3
27� 18k� k27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞð9� kÞ3

q� 	
: (16)

The details of the derivation of instability condition (15) can

be found in Ref. 14.

As it is already mentioned in the Introduction, the

gradient-drift instability is driven by the equilibrium plasma

current perpendicular to the magnetic field and arises when

this current exceeds some critical value. Therefore, it is

important to know this value. In our representation, the insta-

bility drive is associated with the parameter n. Its minimal

value can be found by a minimization of n with respect to

the wavenumber k2 on the instability boundary in the interval

0 < k2 <1. We consider Eq. (14), F¼ 0, as the equation

defining the implicit function n ¼ nðk2Þ at fixed values of

parameters vn and vB. Then, the function n has the extremum

either at the stationary points defined by the set of equations

@F

@k2
¼ 0; F ¼ 0; (17)

or at the edge points of the interval.

Solving Eqs. (17), we find that inside the instability

region these equations describe only two possible stationary

points. One of them is described by the set of equations

k2
1 ¼

vn � vB � n
2ð2vB � vnÞ

; ðnþ vn � vBÞ2 ¼ 1; (18)

and the other one by the equations

k2
2 ¼

n� vB

nþ vB

� vn � vB

2vB � vn

; ðnþ vBÞ2 ¼
vB

vn � vB

: (19)

Of course, the corresponding stationary point does exist only

for such vn and vB that the solution of equations satisfies the

following two conditions: (1) n is a real value; (2)

k2
i 	 0; i ¼ ð1; 2Þ.

Also, we find that for small k2 such that k2 � 1 the

lower branch of instability boundary, r2 ¼ l1, takes the

form

n ¼ 1

4ðvn � vBÞ

�
1þ 4vBðvn � vBÞ � 1ð Þ

� 1

4ðvn � vBÞ2
� 1

 !
k2 þ Oðk4Þ

�
: (20)

Thus, for long-wavelength oscillations with k2 ! 0, the

instability boundary is defined by the expression

n ¼ 1

4ðvn � vBÞ
� n0: (21)
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Now let us study the instability region for the above three

subintervals of parameter vB.

1. 2‘<vB £ vn=2

In this interval of vB, we have 2vB � vn < 0. Therefore,

according to Eq. (18), one of possible stationary points is

defined by the following expressions:

n ¼ 1� vn þ vB � n1þ; k2 ¼ 1

2
� 1� 2ðvn � vBÞ

vn � 2vB

� k2
1þ:

(22)

In fact, this point can exist (k2 	 0) only in the interval

vn � 1=2 < vB � vn=2: (23)

These inequalities are compatible if vn < 1. Therefore, the

stationary point ðn1þ; k1þÞ takes place if the parameters vn

and vB belong to the region: vn � 1=2 < vB � vn=2 and

vn < 1.

In accordance with Eq. (19), another possible stationary

point can exist only in the subinterval 0 < vB < vn=2. It is

described by the equations

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vB

vn � vB

r
� vB � n2þ;

k2 ¼ vn � vB

vn � 2vB

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBðvn � vBÞ

p
� 1

h i
� k2

2þ: (24)

This stationary point ðn2þ; k2þÞ takes place, k2 > 0, only for

vn > 1 and

vð�ÞB < vB �
1

2
vn; where vð�ÞB � 1

2
vn �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � 1

q� �
:

(25)

Now, let us consider the minimization of n with respect

to k for two intervals of parameter vn.

For vn < 1 and �1 < vB � vn � 1=2, there are no sta-

tionary points of n in the interval 0 < k <1. According to

expression (20) in the vicinity of k¼ 0, the function n is

the growing function of k. At k!1, the function n on the

instability boundary asymptotically approaches the value

nðþÞ1

n! nðþÞ1 � 1� vB: (26)

FIG. 1. Necessary instability condition in ðk; nÞ-plane for fixed vn (namely, vn ¼ 2) and different vB: (a) vB � 0 (namely, vB ¼ �1); (b) 0 < vB � vn=2

(namely, vB ¼ 0:2); (c) vn=2 < vB < vn (namely, vB ¼ 1:5); and (d) vB 	 vn (namely, vB ¼ 4). The region of possible instability is shaded.
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Thus, on the lower branch of instability boundary, n is the

growing function of k everywhere in the interval 0 < k <1.

Thus, in the discussed range of plasma parameters, the insta-

bility threshold has its minimum at k ! 0. Hereafter, we call

the value of n on the instability boundary minimized with

respect to k, the critical value of instability drive ncr. So, in

this range of parameters, ncr ¼ n0.

For vn < 1 and vn � 1=2 < vB � vn=2, the function n is

the decreasing function of k in the vicinity of k¼ 0. It

reaches the minimum at the stationary point k ¼ k1þ, and,

therefore, ncr ¼ 1� vn þ vB. With the further increase of k
in the interval k1þ < k <1, the lower branch of instability

boundary goes to nðþÞ1 . With the increase of vB, the point

of minimal threshold k1þ shifts from the long-wavelength

oscillations with k¼ 0 (at vB ¼ vn � 1=2) to the short-

wavelength modes with k !1 (at vB ! vn=2). The fre-

quency of the marginally stable mode also increases with the

increase of vB.

For vn > 1 and �1 < vB < vð�ÞB , the function n on the

lower branch of instability boundary is the increasing func-

tion of k for any 0 < k <1 and therefore ncr ¼ n0.

For vn > 1 and vð�ÞB < vB � vn=2, the function n has its

minimum for the oscillations with k ¼ k2þ and the critical

value of instability drive is ncr ¼ n2þ. The value of k2þ

increases from k2þ ¼ 0 (at vð�ÞB ) to k2þ ! 1. It means that

with the increase of vB the oscillations with the minimal

threshold have more and more short wavelength and high

frequency.

2. vn=2 <vB <vn

For vB belonging to this interval, the necessary instabil-

ity condition changes its sign depending on the magnitude of

the wavenumber. For the oscillations with k < k?, the neces-

sary instability condition is ð1þ k2Þnþ k2vB > 0. For the

shorter-wavelength oscillations, k > k?, the necessary insta-

bility condition is ð1þ k2Þnþ k2vB < 0.

a. Oscillations with k � k?. For such oscillations with

k � k?, the stationary point described by Eq. (18) in the

interval k < k? does exist only for vn > 1 and vn=2 < vB

< vn � 1=2. It is described by expressions n ¼ n1þ and

k ¼ k1þ.

Another possible stationary point defined by Eq. (19) is

characterized by n ¼ n2þ and k ¼ k2þ. For vn � 1, such a

point does exist for any vB from the interval vn=2 < vB < vn.

For vn > 1, it does exist only if

vðþÞB < vB < vn; where vðþÞB � 1

2
vn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � 1

q� 	
:

Thus, for vn � 1, the function n on the lower branch of

instability boundary starts from the point n ¼ n0 at k ! 0

and decreases with the increase of k up to k ¼ k2þ. It

reaches the minimum for the oscillations with k ¼ k2þ. This

critical value is ncr ¼ n2þ. With further increase of k in the

interval k2þ < k � k?, the function n grows and reaches the

value

n ¼ vB � vn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vB

vB � vn

r
� nðþÞ?

at k ¼ k?. At the point ðnðþÞ? ; k?Þ, the lower branch of insta-

bility boundary intersects with the upper one defined by the

equation r2 ¼ l2. The value of ncr increases with the growth

of vB from 1� vn=2 (at vB ¼ vn=2) to 1 (when vB ! vn)

and the minimal threshold point k2þ shifts from the short-

wavelength high-frequency oscillations with

k ! vnð1� vnÞ
2ð2vB � vnÞ

! 1; at vB ! vn=2;

to the long-wavelength (k! 0) low-frequency modes at

vB ! vn.

Now, let us analyze the case vn > 1. For vn=2 < vB

< vn � 1=2, the function n on the lower instability boundary

reaches its minimum for the oscillations with k ¼ k1þ and

therefore ncr ¼ n1þ. For vB ! vn=2, the lowest threshold

corresponds to the short-wavelength high-frequency oscilla-

tions with

k! vn � 1

2ð2vB � vnÞ
! 1; at vB ! vn=2:

With the increase of vB, the point k ¼ k1þ shifts towards long

wavelengths and k1þ ! 0 at vB ¼ vn � 1=2. When

vn � 1=2 � vB � vðþÞB , the function n on the lower branch of

instability boundary is the increasing function of k for

0 < k � k?. The lowest instability threshold corresponds to

the longest-wavelength oscillations with k! 0 and the criti-

cal instability drive is ncr ¼ n0. Finally, for vðþÞB < vB < vn,

the lowest threshold ncr ¼ n2þ corresponds to the oscillations

with k ¼ k2þ. The numerical calculations show that with the

increase of vB the function k2þ starting from k2þ ¼ 0 at vB

¼ vðþÞB increases and reaches its maximum approximately in

the center of the interval at vB 
 ðv
ðþÞ
B þ vnÞ=2 and decreases

with further increase of vB so that k2þ ! 0 at vB ! vn.

b. Oscillations with k > k?. For the oscillations with

k > k?, there are two stationary points on the instability

boundary. The first one takes place at k ¼ k1� on the lower

branch of instability boundary r2 ¼ l1 and corresponds to

its maximum n ¼ n1�, where

k2
1� ¼

1þ 2ðvn � vBÞ
2ð2vB � vnÞ

; n1� ¼ vB � vn � 1: (27)

The second stationary point takes place at k ¼ k2� on the

upper branch of instability boundary r2 ¼ l2 and corre-

sponds to its minimum n ¼ n2�, where

k2
2� ¼

vn � vB

2vB � vn

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBðvn � vBÞ

ph i
;

n2� ¼ �vB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vB

vn � vB

r
: (28)

Both the lower and the upper branches of instability bound-

ary (in the sense of jnj because n < 0 inside the instability

region!) start at the point n ¼ nð�Þ? ,
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nð�Þ? ¼ vB � vn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vB

vB � vn

r
:

At large k!1, the function n on both branches asymptoti-

cally approaches the same value

nð�Þ1 ¼ �1� vB:

The lower branch approaches nð�Þ1 from above and the

upper from below.

3. vn £ vB <‘

For this interval of vB only, the stationary point

described by Eq. (18) is possible. As far as the necessary

condition of instability requires that n < �k2vB=ð1þ k2Þ,
this stationary point is characterized by n ¼ n1� and

k ¼ k1�. It does exist for any vn > 0 if vn � vB < vn þ 1=2.

For such vB, the lower branch of instability boundary starting

at the point n ¼ n0 at k! 0 grows when k increases in the

interval 0 < k < k1� reaching its maximum corresponding to

the critical value ncr ¼ n1� at k ¼ k1�. With further increase

of k in the interval k1� < k <1, the function n decreases

and asymptotically approaches the value nð�Þ1 ¼ �1� vB.

With the increase of vB the minimum of instability threshold

jncrj shifts from the modes with k ¼ 1=2vn to the long-

wavelength oscillations with k¼ 0.

For vn þ 1=2 � vB <1, the function n on the branch of

instability boundary r2 ¼ l1 is the decreasing function of k.

It has the maximum at k ! 0 equal to n0 which is the critical

value of n and asymptotically approaches the value nð�Þ1
from above.

4. Summary

We have summarized the results of the above analysis in

the form of several figures. In Fig. 2, the dependencies of the

critical values of instability drive ncr on vB for two fixed val-

ues of vn—0 < vn < 1 and vn 	 1—are represented.

The dependencies of the wavenumbers and of the fre-

quencies of marginally stable oscillations corresponding to

ncr are shown in Figs. 3 and 4.

One can see that for 0 < vn < 1 the long-wavelength

oscillations require the minimal drive of instability if vB is

either in the interval vB 2� �1; vn � 1=2� or in the interval

vB 2�vn þ 1=2;1½. We show below that for such vn and vB

and n which is close to ncr only the long-wavelength low-

frequency (compared to xlh) oscillations are unstable. For the

other intervals of vB, the shorter-wavelength and higher-

frequency modes have the minimal instability threshold.

For vn 	 1, the long-wavelength oscillations have the

lowest threshold if either vB 2� �1; v
ð�Þ
B �, or vB 2�vn

�1=2; vðþÞB �, or vB 2�vn þ 1=2;1½. Otherwise, the shorter-

wavelength and higher-frequency modes have the minimal

instability threshold.

B. Frequencies and growth rates of unstable
oscillations

We separately present the analysis of the frequencies

and growth rates of unstable oscillations for the following

ranges of vB: (a) �1 < vB � vn=2 and vn � vB <1; (b)

vn=2 < vB < vn.

1. Unstable oscillations for 2‘< vB £ vn=2 and
vn £ vB< ‘

As it follows from the above analysis of instability region,

for equilibria with 0 < vn < 1 and vB 2� �1; vn � 1=2� or

vB 2�vn þ 1=2;1½ and for equilibria with vn 	 1 and vB 2
� �1; vð�ÞB � or vB 2 ½vn þ 1=2;1½, the lower branch of insta-

bility boundary is the growing function of the oscillation wave-

number k. Then, assuming that the oscillations have the long

wavelengths, k2 � k2
?q

2
e � 1, and that the instability drive n

FIG. 2. Dependencies of critical values of instability drive, ncr, on vB: (a) vn ¼ 0:6, (b) vn ¼ 3. Dashed lines show the upper and lower instability thresholds of

short-wavelength oscillations with k2 > k2
? for vn=2 < vB < vn.
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just slightly exceeds its critical value, n ¼ n0 ð1þ Oðk2ÞÞ, we

can show that the short-wavelength modes are stabilized by

even small FLR effects.

Indeed, under the above assumptions, the following esti-

mates are valid:

1

kr
� k; 4kr2þ 1� 1

2k2r2
� 1� 4nðvn� vBÞþOðk2Þ � k2:

Then, we simplify dispersion relation (6) and write it in the

form

�X
2¼ 1

4k2r2
4kr2þ1� 1

2k2r2

� �
� 3�X

4k3r3
� 3�X

2

2k2r2
�

�X
3

kr
; (29)

where

�X ¼ X� 1

2kr
: (30)

It is evident that this equation is satisfied by �X � k2. Then

keeping the terms up to order k4 and neglecting the last three

terms, we solve this equation and, returning to physical vari-

ables, obtain

xr ¼
k?c2

s

2ðV?e � VDÞ
� sgnðkyÞ;

c ¼ k?c2
s

2jV?e � VDj
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AG � 1� ak2

?q
2
e

q
; (31)

where xr and c are the frequency and the growth rate of

oscillations

AG ¼ 4nðvn � vBÞ � �
4ðjn � 2jBÞðV0E þ VDÞ

xBi
;

a ¼ 1� 1

4ðvn � vBÞ2

 !
� 1� 4vBðvn � vBÞð Þ: (32)

The function AG is proportional to the instability drive,

and AG¼ 1 corresponds to the critical value n ¼ ncr � n0.

One can also check that for the values of vn and vB belonging

to the assumed intervals the FLR effects are stabilizing,

a > 0. Therefore, the gradient-drift instability of considered

long-wavelength oscillations is stabilized for the modes with

k? 	 k?max, where

k?max qe ¼ ðAG � 1Þ=a½ �1=2:

The maximal growth rate among the unstable modes with

0 < k? < k?max belongs to the modes with k?qe

¼ ½ðAG � 1Þ=2a�1=2
. The frequency and the growth rate of

such oscillations are

xr ¼
cs

2ðV?e � VDÞ
� AG � 1

2a

� �1=2

xlh � sgnðkyÞ;

c ¼ cs � ðAG � 1Þ
4a1=2jV?e � VDj

� xlh: (33)

Such long-wavelength modes in neglect of the electron iner-

tia and FLR effects have been studied previously, e.g., in

Refs. 6 and 8. Such perturbation will be dominant only for

plasma parameters near the critical value of the perpendicu-

lar current. Otherwise, as it can be shown below, there are

always the high-frequency unstable oscillations with larger

growth rates.

In the regions of equilibrium parameters where 0 < vn < 1,

vB 2� �1; vn � 1=2� and vn 	 1; vB 2� �1; v
ð�Þ
B � with the

increase of n, the spectrum of unstable modes gets wider and

the maximum of instability growth rate shifts towards

shorter wavelengths. At n ¼ 1� vB, the whole spectrum of

oscillations (up to k2 !1) is unstable. The similar picture

takes place for vn > 0; vB 2�vn þ 1=2;1½. In this case, the

instability takes place only for n < 0 and, therefore, when

�n grows, the spectrum of unstable modes gets wider and

at n ¼ �1� vB the whole spectrum of oscillations becomes

unstable.

FIG. 3. Dependencies of wavenumbers, k, of marginally stable oscillations corresponding to ncr on vB: (a) vn ¼ 0:6; (b) vn ¼ 3. Dashed lines show the wave-

numbers of short-wavelength modes with k2 > k2
? .
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At n ¼ 61� vB (in the corresponding region of param-

eters), the largest growth rate perturbations are the short-

wavelength oscillations with k� 1. For such perturbations

and the above mentioned values of n, we have r2 ! 1 and

k! 1 and dispersion relation (6) is solved analytically.

Namely, we rewrite this equation in the form

ðXþ rÞ2ðX� rÞ ¼ rð1� kÞX2 � ðr2 � 1ÞðXþ rÞ: (34)

Due to smallness of the right-hand side of this equation, its

unstable solution can be represented in the form X ¼ �r
þ dX, where dX � k�1. Neglecting the last term on the right-

hand side of Eq. (34), we find that dX satisfies the equation

2ðdXÞ2 þ r2ð1� kÞ ¼ 0: (35)

Solving this equation, we find that in physical variables the

frequency and the growth rate of the most unstable modes

with k?qe � 1 are as follows:

xr ’ k?cs � sgn kyðVE þ 2VDÞ
� �

;

c ’ xlh �
1

2
jvn � 2vBj

� 	1=2

:
(36)

These oscillations can be identified as the high-frequency

short-wavelength ion-sound waves. Also, it is important to

notice that the growth rate of unstable oscillations saturates

with the increase of k? and does not depend on k? when

k? ! 1 [see Eq. (36)].

With a further increase of n, the spectrum of unstable

modes narrows, and for large n, the electron inertia effects

stabilize the oscillations with k2 only slightly exceeding the

value k2
0 ¼ ðvn � vBÞ=ðnþ vBÞ. The latter, k¼ k0, is the solu-

tion of the equation k ¼ 0. The maximum of growth rate

also shifts towards the long-wavelength high-frequency

oscillations with k2 ¼ k2
0. For

vn � vB

nþ vB

� ðnþ vn � vBÞ � 1;

the oscillations with largest growth rate are characterized by

the following frequency and growth rate:

xr ¼
xlh

2
� vn � vB

nþ vB

� ðnþ vn � vBÞ2
� 	1=6

� sgn kyðVE þ V?eÞ
� �

;

c ¼
ffiffiffi
3
p

xlh

2
� vn � vB

nþ vB

� ðnþ vn � vBÞ2
� 	1=6

: (37)

In the limiting case n� ðvn; vBÞ, expressions (37) are sim-

plified and we get (compare with Refs. 19 and 20)

xr ¼
xlh

2
� nðvn � vBÞ½ �1=6 � sgn kyðVE þ V?eÞ

� �
;

c ¼
ffiffiffi
3
p

xlh

2
� nðvn � vBÞ½ �1=6: (38)

Such oscillations have long wavelengths, k?qe ’ ððvn

�vBÞ=nÞ � 1.

The contour-plots of the growth rates and frequencies of

unstable modes for the discussed ranges of parameters vn

and vB calculated from dispersion relation (6) using the trig-

onometrical Vieta’s formula in the plane k? � n are pre-

sented in Fig. 5 for vn ¼ 6 and vB ¼ �6.

Also, Fig. 6 shows the dependencies of the growth

rates and frequencies of unstable perturbations for vn ¼ 6;
vB ¼ �6 and different values of n.

In the regions with 0 < vn < 1 and vB 2�vn � 1=2;
vn=2�, the instability threshold starts at n ¼ n0 when

k2 ! 0 and then decreases with the increase of k2 up to

k2 ¼ k2
1þ reaching the minimal value n1þ. It means that for

n1þ < n < n0 the long-wavelength perturbations are stable.

The instability starts from some minimal k2 which is the

root of equation r2 ¼ l1. The minimal threshold corre-

sponds to the high-frequency waves with xr of order xlh.

Due to the FLR effects, the short-wavelength modes are sta-

bilized when k2 reaches some maximal wavenumber.

FIG. 4. Dependencies of frequencies x of marginally stable oscillations corresponding to ncr on vB: (a) vn ¼ 0:6, (b) vn ¼ 3. Dashed lines show the frequency

of short-wavelength modes with k2 > k2
? .
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FIG. 5. Stability diagram in ðk; nÞ-plane (the instability region is shaded) (a); contour-plots of the growth rates (b) and frequencies (c) of unstable modes in

k? � n-plane. Here, vn ¼ 6; vB ¼ �6. In Fig. 5(c), the white color indicates the stable region and oscillations with frequency higher than xlh are shown in

black.

FIG. 6. Dependencies of growth rates and frequencies of unstable modes on wavenumber k? (a); the near-threshold region is shown separately in Fig. 6(b).

Different lines correspond to different values of n. Here vn ¼ 6; vB ¼ �6.
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For

vn � 1=2 < vB �
1

2
1þ vn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� vnÞ2

q� �
;

this maximal wavenumber is another larger root of equation

r2 ¼ l1. The growth rate increases with the increase of n in

the interval n1þ < n < n0 and the instability region expands

both into the larger- and shorter-wavelength domains.

For

1

2
1þ vn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� vnÞ2

q� �
< vB <

vn

2
;

the wavenumber of the shortest unstable oscillations is as fol-

lows: (1) another larger root of equation r2 ¼ l1 if n < 1� vB;

(2) the root of equation r2 ¼ l2 (the point of intersection of the

curve r2 with the upper branch of instability threshold) if

n > 1� vB. For n ¼ 1� vB, the whole spectrum of oscillations

is unstable. The largest growth rate perturbations are the high-

frequency ion-sound waves described by Eq. (36). The spectrum

of unstable modes expands in the long-wavelength region up to

k! 0 when n > n0. Like it is described above for another

interval of parameters vn and vB, further increase of n in the

interval n > 1� vB results in narrowing of instability spectrum

and stabilization of short-wavelength modes for n� 1 at k of

order k0. The oscillations with k ’ k0 have the maximal growth

rate and are characterized by Eq. (38).

The contour-plots of the growth rates and frequencies of

unstable modes for the discussed ranges of parameters vn

and vB in the plane k? � n are presented in Fig. 7 for vn ¼
0:5 and vB ¼ 0:15.

Also, Fig. 8 shows the dependencies of the growth rates

and frequencies of unstable perturbations for vn ¼ 0:5; vB ¼
0:15 and different values of n.

FIG. 7. Stability diagram in ðk; nÞ-plane (the instability region is shaded) (a); contour-plots of the growth rates (b) and frequencies (c) of unstable modes in

k? � n-plane. Here vn ¼ 0:5; vB ¼ 0:15. In Fig. 7(c), the white color indicates the stable region and oscillations with frequency higher than xlh are shown in

black.
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A similar behavior of the frequencies and growth rates of

unstable oscillations takes place in the regions where vn 	 1;

vB 2�v
ð�Þ
B ;vn=2� (with the substitution n1þ ! n2þ;k1þ ! k2þ)

and where vn > 0;vB 2 ½vn;vnþ 1=2½ (with the substitution

n1þ ! n1�;k1þ ! k1�). In the latter case, the necessary con-

dition of instability is n< 0 and the lower branch of instability

threshold has its maximum n1�. So, the growth rate of insta-

bility increases when n decreases, i.e., when �n increases.

2. Unstable oscillations for vn=2 <vB<vn

In accordance with the analysis of Subsection III A in the

regions with 0 < vn < 1, the gradient drift instability occurs

either when the drive n is positive and n > n2þ or when it is

negative and n2� < n < n1� (see Fig. 9). In the former case,

the long-wavelength oscillations with k2 < k2
? can be unstable,

and in the latter, only the short-wavelength oscillations which

always have high-frequencies can be unstable.

For positive drive in the interval n2þ < n < n0, the

instability starts from some minimal finite value of k 6¼ 0

which is the root of equation r2 ¼ l1. This means that for

such drives the long-wavelength oscillations are stable. The

closer the n to n0, the longer-wavelength oscillations are

unstable. The electron inertia and FLR effects also stabilize

the short-wavelength modes. Thus, the instability takes place

for kmin < k < kmax. The results of numerical analysis show

that high-frequency modes with x � xlh have the largest

growth rate (see Fig. 10). For n > n0, the long-wavelength

oscillations with k ! 0 become unstable and the short-

wavelength oscillations are stabilized at some k ¼ kmax.

With the increase of n, the spectrum of unstable perturba-

tions narrows and the maximum of the growth rate shifts

towards k¼ k0. Such oscillations are described by expres-

sions (37) and (38).

For negative drive such that n2� < n < n1� the unstable

oscillations have high frequencies of order xlh and higher.

Also, we notice that for n ¼ �1� vB the oscillations with k
up to k!1 are unstable. The largest growth rate perturba-

tions are the high-frequency ion-sound waves characterized

by expressions (36).

The dependencies of the growth rates and frequencies of

unstable perturbations on wavenumber k? for vn ¼ 0:5; vB

¼ 0:4 and different values of n are represented in Fig. 11.

Qualitatively the same picture for the instability region,

the growth rate, and frequencies remains for vn 	 1. The dif-

ference is that in this case the critical instability drive for the

perturbations with k < k? depends on the value of vB. For

vB 2�vn=2; vn � 1=2½, the instability occurs at n > n1þ, for

vB 2�v
ðþÞ
B ; vn½—at n > n2þ, and for vB 2 ½vn � 1=2; vðþÞB �—at

n > n0. In the latter case, there is no cutoff of instability at

long wavelengths and it starts from the longest-wavelength

oscillations with k! 0.

IV. INSTABILITY DRIVEN BY THE ELECTRON
MAGNETIC DRIFT

Now, let us analyze a stability of azimuthal oscillations

in the regions of negligibly weak electric field, such that

jeE0=ðjBTeÞj � 1. Neglecting the effects of equilibrium

FIG. 8. Dependencies of growth rates and frequencies of unstable modes on wavenumber k? (a); the near-threshold region is shown separately in Fig. 8(b).

Different lines correspond to different values of n. Here, vn ¼ 0:5; vB ¼ 0:15.

FIG. 9. Stability diagram in ðk; nÞ-plane for vn ¼ 0:5, vB ¼ 0:4. The insta-

bility regions are shaded.
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electric field, we find that the coefficients in dispersion rela-

tion (6) take the form

k ¼ 1� ð1þ k2Þvn � ð1þ 2k2ÞvB

k2ð1þ 2k2ÞvB

;

r ¼ kð1þ 2k2Þ sgnðkyÞ
ð1þ k2Þ3=2

� vB: (39)

The perturbations are characterized only by two independent

parameters vn and vB. As we have already shown earlier, the

gradient drift instability is due to a combination of equilibrium

electron drift (instability drive) and inhomogeneity of plasma

and magnetic field in the direction perpendicular to the mag-

netic field (instability trigger). It is important to notice that in

the regions of negligibly weak electric field one of the parame-

ters, vB, enters the dispersion relation in two ways. On the one

hand, the instability is driven by the electron magnetic drift,

which is proportional to the magnetic field inhomogeneity and

characterized by the parameter vB, as the drive vB enters the

dispersion relation via the coefficient r and via the denominator

in the expression of k. On the other hand, the magnetic field

gradient in combination with the plasma density gradient enters

the inhomogeneity term (the numerator in the expression of k)

serving as a trigger of instability. Due to this intrinsic coupling

between the instability drive and its trigger in a finite electron

temperature plasmas, this problem is in some sense degenerate

and needs to be treated separately. We show that this specifics

results in severe restriction of instability domain.

Let us notice again that the coefficients k and r do not

change under the substitution vn ! �vn; vB ! �vB; ky

! �ky. Therefore, hereafter we fix vn > 0 and study the

instability picture changing its drive VD, i.e., the value of vB.

A. Marginal stability condition and instability region

The necessary condition for the instability k < 1 in the

considered case takes the form

FIG. 10. Contour-plots of the growth rates (a) and frequencies (b) of unstable modes in k? � n-plane. Here, vn ¼ 0:5; vB ¼ 0:4. In Fig. 10(b), the white color

indicates stable region, and oscillations with frequency higher than xlh are shown in black.

FIG. 11. Dependencies of growth rates (a) and frequencies (b) of unstable modes on wavenumber k?. Different lines correspond to different values of n. Here,

vn ¼ 0:5; vB ¼ 0:4.
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0 < vB < vn;

and the instability domain is described by the inequalities

(see also Ref. 14),

v2
B > l1 f ðkÞ; for k2 � ðvn � vBÞ=2vB;

l1 f ðkÞ < v2
B < l2 f ðkÞ; for k2 > ðvn � vBÞ=2vB;

(
(40)

where

f ðkÞ ¼ ð1þ k2Þ3

k2ð1þ 2k2Þ2
: (41)

The instability is driven by the equilibrium electron

magnetic drift. It arises only when the electron magnetic drift

velocity VD exceeds some minimal value, i.e., when

vB > ðvBÞmin. At the same time, the inhomogeneity defined

by the parameter vn � vB decreases when the drive vB

increases and goes to zero at vB ! vn. Thus, the instability is

possible only when ðvBÞmin < vB < ðvBÞmax. To better under-

stand this point, let us start from the long-wavelength pertur-

bations with k! 0. Expanding the functions k; l1;2 and f in

a power series over k for k� 1, we find that for such pertur-

bations the instability condition v2
B > l1 f ðkÞ takes the form

vB � ðvn � vBÞ >
1

4
1þ vn � 2vB

vn � vB

� �2

k4 þ Oðk6Þ
" #

: (42)

Thus, for k ! 0, the gradient drift instability is possible

only if

1

2
vn �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � 1

q� �
< vB <

1

2
vn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � 1

q� �
; v2

n > 1:

(43)

The terms of order k4 in Eq. (42) demonstrate that the

lower boundary of instability ðvBÞmin increases with the

growth of k and the upper boundary ðvBÞmax decreases. Thus,

the region of instability for long-wavelength perturbations,

k� 1, gets narrower with respect to vB when k increases.

To prove that for any 0 < k <1, the minimal and maxi-

mal values of vB are described by the corresponding expres-

sions in inequality (43), we turn to Eq. (14) describing the

instability boundary. We consider it as the equation defining

the implicit function vB ¼ vBðkÞ at fixed vn and look for its

extremums in the interval 0 < k <1. A lengthy but straight-

forward analysis shows that there are no solutions of Eq. (17)

describing the stationary points. Therefore, the function vB

has no stationary points. It means that the extremes of vB take

place at the edge points k¼ 0 and k ¼ 1. We have already

found the minimal and maximal values of vB at k¼ 0. When

k!1, we have k! 1; l1;2 ! 1 and both the lower and the

upper instability boundaries asymptotically approach the same

value—vB ¼ 1=2. Thus, at fixed vn, the instability takes place

only at jV?ej > cs. It starts when the electron magnetic drift

velocity jVDj exceeds the lower critical value V
ð�Þ
cr ,

Vð�Þcr ¼
1

2
jV?ej �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

q� �
; (44)

and stops when jVDj reaches the upper critical value V
ðþÞ
cr ,

VðþÞcr ¼
1

2
jV?ej þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

q� �
: (45)

The instability region in the plane vn–vB is presented in

Fig. 12.

The instability region in the plane vB–k? is presented in

Fig. 13. For jvBj ¼ 1=2, the whole spectrum of perturbations

0 < k <1 is unstable. For jvBj < 1=2, the value of ðk?Þmax

¼ k? at which the electron FLR effects stabilize the gradient

drift instability is defined by equation v2
B ¼ l1ðk?Þf ðk?Þ and

for jvBj > 1=2 by equation v2
B ¼ l2ðk?Þf ðk?Þ. The value of k?

increases and the spectrum of unstable perturbations expands

when jVDj increases from V
ð�Þ
cr to cs=2 and narrows when

jVDj further increases from cs=2 to V
ðþÞ
cr .

FIG. 12. Stability diagram in the plane vn–vB. The instability region is

shaded.

FIG. 13. Stability diagram in the plane vB–k? for vn ¼ 4. The instability

region is shaded.
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B. Frequencies and growth rates of oscillations driven
by electron magnetic drift

The above analysis of instability domain presented by

Fig. 13 shows that for the values of electron magnetic drift

velocity jVDj near the lower, V
ð�Þ
cr , and upper, V

ðþÞ
cr , critical

values, only the long-wavelength perturbations are unstable

and shorter-wavelength modes are stabilized by the electron

FLR effects. In this limiting case, it is possible to solve

dispersion relation (6) analytically by assuming that jVDj
�V

ð�Þ
cr (or V

ðþÞ
cr � jVDj) is as small as k4 and applying the

expansion of the eigenfrequency X and dimensionless coef-

ficients k and r in powers of k.

To do that, we rewrite Eq. (6) in the form described by

Eqs. (29) and (30). Then, using expressions (39), we obtain

the following estimates:

1

kr
� k; 4kr2 þ 1� 1

2k2r2
� k4:

Thus, Eq. (6) can be satisfied if we assume that �X � k3.

Under this assumption, it can be simplified by neglecting

the last two terms on the right-hand side and written in the

form

�X þ 3

8k3r3

� �2

¼ 1

4k2r2
4kr2 þ 1� 1

2k2r2
þ 9

16k4r4

� �
:

Unlike the general case analyzed above here, the FLR cor-

rections to the mode eigenfrequency are of higher order with

respect to small parameter k and more terms need to be taken

into account. Representing X in the form X ¼ Xr þ iC,

where Xr is the normalized mode frequency and C is its nor-

malized growth rate, we obtain

Xr ¼
1

2kr
1þ Oðk2Þ
� �

;

C ¼ 1

2jkrj �4kr2 � 1þ 1

2k2r2
� 9

16k4r4

� 	1=2

:

Finally, substituting here expressions (39) and remembering

the definitions of X and k [see Eq. (7)], we arrive at the fol-

lowing result:

xr ’
k?c2

s � sgnðkyÞ
2ðV?e � VDÞ

;

c ¼ k?c2
s

jV?e � VDj

� vBðvn � vBÞ �
1

4
� 1

4

vn � 2vB

vn � vB

� �2

� k4
?q4

e

" #1=2

:

(46)

Then, for jVDj near the lower critical value V
ð�Þ
cr , we obtain

the low-frequency long-wavelength mode with the frequency

and the growth rate described by

xðlÞr ’
k?c2

s

jV?ej þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p � sgnðkyV?eÞ;

cðlÞ ¼ 2k?cs ðV2
?e � c2

s Þ
1=4

jV?ej þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p
� jVDj � Vð�Þcr �

c2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p
� k4
?q

4
e

jV?ej þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p �2

2
4

3
5

1=2

: (47)

The gradient drift instability takes place for jVDj > V
ð�Þ
cr

and only for the perturbations with

k4
?q

4
e <

jV?ej þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p �2

jVDj � V
ð�Þ
cr

 �
c2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p � k4
�q

4
e :

(48)

The growth rate has its maximum for the oscillations

with ðk?Þð�Þmax ¼ k�=31=4. The frequency and the growth rate

of the most unstable mode are

ðxrÞðlÞmax ’
1

3
�

c2
s jVDj � V

ð�Þ
cr

 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p
jV?ej þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p �2

2
64

3
75

1=4

� xlh � sgnðkyV?eÞ;

ðcÞðlÞmax ¼
8

3
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

p
jVDj � V

ð�Þ
cr

 �
c2

s

2
4

3
5

1=2

� jðxrÞlmaxj � jðxrÞlmaxj: (49)

The frequency xðhÞr and growth rate cðhÞr of oscillations in the

region, where jVDj is close to the upper instability boundary

V
ðþÞ
cr , are described by the equations which follow from Eq.

(47) by the substitutions

xðlÞr ! xðhÞr ; cðlÞr ! cðhÞr ; jV?ej þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

q
! jV?ej �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e � c2

s

q
; jVDj � Vð�Þcr ! VðþÞcr � jVDj:

In a similar way, the wavenumber kþ at which the stabiliza-

tion of instability by the FLR effects takes place, the wave-

number, frequency ðxrÞðhÞmax and growth rate ðcÞðhÞmax of the

perturbation with the largest growth rate are described by

expressions (48) and (49) with the additional substitutions

k� ! kþ; ðxrÞðlÞmax ! ðxrÞðhÞmax; ðcÞ
ðlÞ
max ! ðcÞ

ðhÞ
max:

For fixed V?e with the increase of the magnetic drift velocity

in the interval between the lower critical value V
ð�Þ
cr and

2cs; V
ð�Þ
cr < jVDj < 2cs, the spectrum of unstable perturba-

tions expands into the region of short-wavelengths. The max-

imal growth rate of instability increases. It takes place for

the oscillations with shorter and shorter wavelengths and the

frequency of oscillations with the maximal growth rate also

increases.

For jVDj ¼ 2cs (or jvBj ¼ 1=2), the whole spectrum of

oscillations (up to k?qe !1) is unstable. In this case, the
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frequency of unstable oscillations increases with the increase

of k? and the growth rate also increases and has its maxi-

mum at large k?qe !1. For perturbations with k� 1,

k ¼ 1� jvnj � 1

k2
þ O

1

k4

� �
;

r ¼ 1� 1

k2
þ O

1

k4

� �� 	
� sgnðkyÞ; (50)

so that ðk; r2Þ ! 1 when k!1. Then, dispersion relation

(6) can be solved analytically similarly to Sec. II [see Eqs.

(33)–(35)]. As a result, we find that in physical variables, the

frequency and the growth rate of the most unstable modes

with k?qe � 1 are as follows:

xr ’ k?cs � sgnðkyVDÞ � 2k?VD � sgnðkyÞ;

c ’ xlh �
jvnj � 1

2

� �1=2

� xlh �
1

2

jV?ej
cs
� 1

� �� 	1=2

:

(51)

These perturbations can be identified as the high-

frequency ion-sound waves.

When jVDj increases further in the interval 2cs < jVDj
< V

ðþÞ
cr , the spectrum of unstable oscillations gets narrower.

The short-wavelength modes are stabilized due to electron

inertia and FLR effects. For jVDj not too close to V
ðþÞ
cr , such

that ðVðþÞcr � VDÞ=V
ðþÞ
cr � 1, the maximal growth rate belongs

to the oscillations with k2
?q

2
e ’ ðV?e � VDÞ=2VD. For such

perturbations k ’ 0, and the dispersion relation reduces to

X3 � X� r ¼ 0.

If, in addition, jV?ej � cs, so that r2 � 1, the maximal

growth rate and the frequency corresponding to it are

described by

xr ¼
xlh

2
� � V2

?e

2V2
D

ðjn � 2jBÞVD

xBi

" #1=6

� sgnðkyVDÞ;

c ¼
ffiffiffi
3
p

xlh

2
� � V2

?e

2V2
D

ðjn � 2jBÞVD

xBi

" #1=6

: (52)

In Figs. 14(a) and 14(b), the contour-plots of the growth

rates and frequencies of unstable modes calculated using the

trigonometrical Vieta’s formula in the plane k? � vB are

shown for vn ¼ 4. Also, Fig. 15 shows the dependencies of

the growth rates and frequencies of unstable perturbations

for vn ¼ 4 and different values of vB.

V. CONCLUSIONS

We have presented a detailed analysis of the gradient

drift electrostatic instabilities in partially magnetized plas-

mas with hot electrons and cold ions in crossed electric and

magnetic fields. The azimuthal oscillations with kx � ky

driven by the equilibrium electron flows perpendicular to the

magnetic field are considered. Two cases are analyzed sepa-

rately: (1) the general case in which the equilibrium electron

E� B velocity, VE, is of the order of the magnetic drift

velocity VD or larger; (2) the case of negligibly weak electric

field, VE � VD, in which the instability is driven by the elec-

tron magnetic drift velocity.

It is shown that in the general case of moderate and

strong electric fields the character of instability depends on

the ratio between the gradients of equilibrium plasma density

and magnetic field. Minimizing the function nðvn; vB; kÞ with

respect to the wavenumber k, we have analytically found the

critical value of the instability drive ncr for all possible

ranges of parameters vn and vB. The corresponding results

are summarized in Figs. 2(a) and 2(b) as the dependencies

ncr ¼ ncrðvBÞ at fixed values of vn in two different cases of

FIG. 14. Contour-plots of growth rates (a) and frequencies (b) of unstable modes in k? � vB-plane. Here vn ¼ 4. In (b), white color indicates the stable area,

and modes with frequency higher than xlh are shown in black.
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weak, 0 < jnqs < 1, and sufficiently strong, jnqs � 1,

plasma density inhomogeneity. The values ncr define the

marginal stability condition. In accordance with the concept

of the self-organized criticality of the anomalous transport,

one could expect that due to the turbulent transport caused

by gradient drift instability the plasma profile corresponding

to the marginal stability n ¼ ncr will establish. We have

shown that the marginal stability condition essentially

depends on the ratio between the gradients of equilibrium

plasma density and magnetic field. It is important to note

that the long-wavelength perturbations are unstable when

n > n0 (see Fig. 3) and such perturbations provide the domi-

nant contribution to the anomalous transport. Therefore, one

can expect that the marginal stability profile will be deter-

mined by long-wavelength perturbation with the condition

n ¼ n0 or in terms of physical parameters

eE0

Te
þ 1

B2
0

dB2
0

dx

 !
� B

2
0

n0

d

dx

n0

B2
0

� �
¼ 1

4q2
s

:

One can also speculate that the instability of long-wavelength

low-frequency modes near the marginal stability boundary

may be the origin for low-frequency structures often observed

in Hall plasma devices.10,21

Other marginal stability boundaries are defined by the

conditions n ¼ n16 and n ¼ n26 or

eE0

Te
þ 1

n0

@n0

@x
¼ 6

1

qs

and

eE0

Te
þ 1

B4
0

@B4
0

@x
¼ 6

1

qs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jB

jn � 2jB

r
:

Near these boundaries, the short-wavelength perturbations are

unstable which are less effective in producing anomalous

transport. One can note that in the near anode region of a clas-

sical Hall thruster SPT-100 typical experimental data show

that jn=2 < jB < jn (the typical magnetic field and density

profiles are presented, e.g., in Ref. 5). Under these conditions,

the high-frequency, short-wavelength perturbations are unsta-

ble near the marginal stability boundary. The detailed compar-

ison of our theoretical results with the actual experimental

plasma profiles for the various Hall plasma devices is still

required and it is planned for subsequent studies.

The dependencies of the frequencies and the growth

rates of unstable oscillations are studied numerically and

analytically (for some limiting cases) for fixed values of the

gradients of equilibrium plasma density and magnetic field

belonging to all possible intervals. It is shown that one can

expect low-frequency (x� xlh), long-wavelength oscilla-

tions with k ! 0 excited near the marginal stability bound-

ary, at n 
 ncr ¼ n0. One may expect such a situation in

the regions of sufficiently large gradients of magnetic field

magnitude, jjBjqs � 1. In the regions with weak plasma

density gradient (0 < jnqs < 1), such modes can have place

only when vB 2� �1; vn � 1=2� or vB 2 ½vn þ 1=2;1½.
Meanwhile, in the regions with strong plasma density gradi-

ent (jnqs 	 1), these modes may exist when vB 2� �1;
vð�ÞB �, vB 2 ½vn � 1=2; vðþÞB �, or vB 2 ½vn þ 1=2;1½. In this

case, the shorter-wavelength oscillations are effectively sup-

pressed even by the small, k?qe � 1, electron FLR effects

[see Eq. (31)]. For larger values of n, which are also appro-

priate to standard Hall-type thrusters, there are always the

unstable high-frequency oscillations with x � xlh. The

larger the n, the larger the growth rate. Besides that, for large

n, only the long-wavelength oscillations are unstable due to

the suppression of instability of shorter-wavelength oscilla-

tions by the electron inertia effects14 [see Eqs. (37) and

(38) and Fig. 5]. It is also shown that for a special value of

n defined by n ¼ 61� vB and vB outside the interval

½vn=2; vn� the whole spectrum of oscillations is unstable. The

FIG. 15. Dependencies of growth rates (a) and frequencies (a) of unstable modes on wavenumber k?. Different lines correspond to different values of vB:

vB ¼ 0:1—near the lower critical value; vB ¼ 3:9—near the upper critical value; vB ¼ 0:5. Here, vn ¼ 4.
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maximal growth rate is achieved for the high-frequency ion-

sound mode [Eq. (36)]. For k? ! 1, the growth rate asymp-

totically goes to the value described by Eq. (36), which does

not depend on k?.

In the case of negligibly weak electric field, the instabil-

ities are driven by the electron magnetic drift flow VD. Such

conditions can arise outside of the exit plane of Hall thruster

and in other laboratory cross-field devices if the electric field

changes sign inside the plasma channel (see, e.g., the magne-

tron discharge profiles from Ref. 11). We have rigorously

proved that such instability can take place only in the regions

with significantly strong plasma density gradients such

that vn � 1 and if jV?ej �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e=c2

s � 1
p �

=2 < jVDj < jV?ejð
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e=c2

s � 1
p

Þ=2. We have shown that for jVDj ¼ cs=2 the

whole spectrum of perturbations with 0 < k? <1 is

unstable.

We have determined that the long-wavelength, low-

frequency instability exists only when the amplitude of

electron magnetic drift velocity jVDj is close to the lower

critical value, jVDj � V
ð�Þ
cr � c2

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
?e=c2

s � 1
p

. Otherwise,

the shorter-wavelength high-frequency (x � xlh and

higher) oscillations with much larger growth rates are

excited.
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