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Abstract—The nonlinear equation describing the Farley–Buneman (FB) waves in multispecies collisional
plasmas is derived by employing the multiple-scale reduction analysis. It is shown that the presence of several
ion species with different collisionalities and different ion masses removes the degeneracy of the nonlinear
equation and generates the nonlinear terms resulting in wave steepening and wave breaking. This effect may
be responsible for formation of one-dimensional coherent FB waves of a finite amplitude.
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1. INTRODUCTION
The Farley–Buneman (FB) instability [1–5] is

typically considered as a source of electrojet irregular-
ities observed in the E-region of Earth’s ionosphere at
a height where the electrons are strongly magnetized
(ωce ≫ νen) and ions are unmagnetized (ωci ≪ νin),
where ωc(e, i) is the gyrofrequency and ν(e, i)n is the col-
lision frequency of charged species with the neutrals.
It has been extensively studied in linear theory (see,
e.g., [4–9] and references therein). There remains,
however, a number of important observational fea-
tures that need to be explained on the basis of nonlin-
ear theory, such as the saturation of the instability,
nature of the nonlinear states and the resulting spectral
characteristics of developed turbulence.

The nonlinear theory of the FB instability has been
investigated for the mode saturation as a result of non-
linear electron drift and diffusion, as well as nonlinear
energy f low from linearly excited modes to the
damped modes [5, 10–15]. Saturation mechanism of
FB modes via the nonlinear wave coupling has been
studied through computer simulations in [15, 16]. The
simulations [17] have shown that the mode saturation
depends on flow angle, that is the angle between the
directions of wave propagation and the drift velocity.
Further, it was demonstrated [14] that the excitation of
small scale secondary waves plays an important role in

the nonlinear saturation of the instability. These satu-
ration mechanisms are related to the nonlinearity due
to the electron E × B drift, which is essentially a two-
dimensional effect in a plane perpendicular to the
magnetic field direction. Respective nonlinear equa-
tion with two-dimensional (vector) nonlinearity was
derived, e.g., in [18]. This nonlinearity was found to be
responsible for the energy transfer between small (FB)
and large scale structures resulting in the generation of
secondary modes at finite f low angles [19, 20]. It was
also shown that this mechanism can stabilize FB insta-
bility by coupling of an unstable mode with two
damped modes [9]. Nonlinear interaction of FB mode
with external RF fields was also considered and sug-
gested as a stabilization mechanism from intense radar
beams [21].

The two-dimensional nonlinearity is likely to be
responsible for often observed finite f low angle modes
and for the mode spreading into the linearly stable
regions [20]. However, some observations indicate the
presence of large amplitude square waves [22, 23]
which resemble coherent one-dimensional waves. The
mechanism for formation of such structures (most
likely to be one-dimensional) is not clear. It was sug-
gested [24] that such square wave structures may be
explained by wave breaking of large amplitude waves
similar to the breaking of the water waves.

Wave breaking is a result of nonlinear dependence
of the wave phase velocity on the wave amplitude.1 The article is published in the original.
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Within the approximation of weakly nonlinear waves,
the model nonlinear equation for one dimensional
wave demonstrating the wave breaking phenomena
can be written in the form:

 (1)

The second term in Eq. (1) is a nonlinear term which
leads to the wave breaking, the third term is the diffu-
sion/dissipation with D as a diffusion coefficient, and
the fourth term represents dispersion with ρ2 as a dis-
persion parameter. The FB waves are almost disper-
sion-free (at least in the meter-scale wavelength
region) [20]. In absence of dispersion, ρ2 = 0, Eq. (1)
becomes Burgers equation, which was derived for
many type of water waves and waves in plasma. For
unstable FB mode, the diffusion term is, in fact, neg-
ative with D < 0, resulting in growing modes as f ~
exp(–iωτ + ikξ) with frequency ω = ik2D. Unstable
waves can grow to large amplitude when the nonlinear
term becomes significant leading to the wave steepen-
ing and breaking [25]. One-dimensional (scalar) non-
linearity is the main nonlinear effect for sound type
waves (such as ion sound), where it is crucial for the
formation of solitons, periodic nonlinear waves (cnoi-
dal waves), and shock waves [25].

The FB instability is often thought as a special case
of destabilized ion-sound waves. However, FB waves
possess unique degeneration due to remarkable can-
celation of the first-order (quadratic) nonlinearities of
the sound wave type. It was shown [18, 26–28] that the
first order nonlinear terms are exactly canceled in the
regime ω < νi, typically considered for ionosphere
application. This property precludes the wave steepen-
ing and wave breaking for FB waves. In this work, we
revisit the problem of the nonlinear equation for one-
dimensional FB waves. By considering weakly nonlin-
ear waves and employing the technique of reductive
perturbation method, we derive a nonlinear equation
for FB waves. We show that the above noted degener-
acy is removed and one-dimensional convective non-
linearity is retained in multispecies plasmas resulting
in wave steepening and wave breaking. In addition, it
is shown that there exists one-dimensional nonlinear
diffusion nonlinearity related to the ion inertia [29].
The normalized nonlinear equation for one dimen-
sional FB waves in a multispecies plasma can be writ-
ten in the form

 (2)

The linear diffusion-type coefficients, DI > 0 and DD > 0,
are responsible for the instability and stabilizing diffu-
sion, respectively, and DNL describes nonlinear diffu-
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sion effects. The derivation of this equation is a subject
of this manuscript.

2. BASIC EQUATIONS

Our model is based on the basic f luid equations for
ions and electrons. We consider the magnetic field
along the z direction, B0 = B0 , and the electric field
along the y direction, E = E . This will thus give the
E × B drift along the x direction. Ions are assumed to
be isothermal (Ti is constant) and unmagnetized as the
ion cyclotron frequency is much smaller than the ion-
neutral collision frequency (ωci = eB0/mic ≪ νin). The
ion dynamics can be described by continuity and
momentum equations as

 (3)

 (4)

where the variables have their standard meanings. The
electric field is given by E = –∇ϕ, with ϕ as the elec-
trostatic potential, and the pressure gradient is ∇pi =
Ti∇ni. Assuming that the ion velocity can be expressed
in terms of a velocity potential as vi = –∇χ, the above
equations for ions can be written as

 (5)

 (6)

The electrons are considered as isothermal (Te is con-
stant) and magnetized as their cyclotron frequency is
much greater than the electron−neutral collision fre-
quency (ωce= eB0/mec ≫ νen) and their motion is dom-
inated by the magnetic field. The electron dynamics is
also described by the continuity and momentum
equations as:

 (7)

 (8)

with E = –∇ϕ and the pressure gradient as ∇pe =
Te∇ne. Electron inertia can be neglected since ω< ωce
and νen > ω, so the electron collisional response is
more important than the inertial (low hybrid mode
thus is not considered). Thus, neglecting the left-hand
side in Eq. (8), the momentum equation can be solved
to obtain the electron perpendicular velocity as

 (9)
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where VE is the E × B drift, Vpe is the diamagnetic drift,
and Vν is the next-order drift given by

 (10)

 (11)

 (12)

with ωce > 0. Note that we consider the modes which
have no variations along the magnetic field (kz = 0), so
the electron parallel velocity (along the magnetic
field) can be neglected here. Now, using Eq. (9) in
electron continuity equation (7), we obtain

 (13)

Equations (5), (6), and (13) together with the quasi-
neutrality (ne ≈ ni = n) condition make up our basic
model.

3. DERIVATION OF THE NONLINEAR 
EVOLUTION EQUATION BY THE REDUCTIVE 

PERTURBATION THEORY
The reductive perturbation theory, widely used in

nonlinear optics and wave dynamics [30–32], allows
to reduce a complex system of nonlinear equations (5),
(6), and (13) to a single nonlinear equation. The per-
turbative expansion is performed in a small parameter
corresponding to the wave amplitude. In our case, the
amplitude expansion is combined with the expansion
near the marginal stability. In the leading order, one
has the stable propagating wave; effects of the nonlin-
earity and instability are included in the next order.
Thus, the reduced (simplified) nonlinear equation
includes the dominant nonlinear effects and diffusive
(negative or positive) terms near the marginal stability.

Technically, the expansion is done by introducing
the stretching coordinates, such as the spatial variable
ξ = x – ut and slow time dependence variable τ = t. All
variables are represented in the form X = ,
where X =  represents the perturbed quantities.
The parameter u corresponds to the phase velocity of
the stable linear wave and the dependence on the τ and
ξ variables is due to the weak nonlinear terms and weak
deviation from marginal stability.

First, we review the derivation of the nonlinear
equation for the single ion species case. All variables
are considered in a form of the series expansion
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Using stretching coordinates along with the expansion
of dependent variables, from Eqs. (5), (6), and (13),
the lowest order of equations are

 (15)
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 (17)

where V0 is the equilibrium E × B drift in the x direc-
tion. These equations form the homogenous system
for three first-order variables , , and . The
solvability condition for this system defines the phase
velocity for the linear wave,

 (18)

with . In the second order, one takes
into account the nonlinear terms and the terms
responsible for the instability. These equations are
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The secular terms (related to the linear terms , ,
and ) are removed from Eqs. (19)–(21) by the con-
dition in Eq. (18) and the remaining equation gives the
evolution equation for , which is defined by the
nonlinear effects and weak deviation from marginal
stability. Equations (19)–(21) have three different
types of nonlinear terms: the two-dimensional vector
nonlinearity , which originates
from E × B convection in the electron continuity
equation; the convective nonlinearity ,
which originates from  terms in the equation of
ion motion; and another convective type nonlineari-
ties in the ion  and the electron
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 continuity equations.
The  nonlinear term, or in another form

, corresponds to the nonlinear diffusion. The
convective terms,  and 
are present in one-dimensional case and normally
would be responsible for the wave steepening and
breaking. There is, however, remarkable exact cancel-
ation between these terms and the lowest order scalar
nonlinearity does not appear in nonlinear equation
[28].

This cancelation is demonstrated as follows.
Excluding  from Eqs. (19) and (20), one obtains

 (22)

The final nonlinear equation is obtained by excluding
 between Eqs. (21) and (22). The nonlinear terms

in these equations,  and ,
are collected in the form

(23)

After using phase velocity relation and Eq. (16), we
can see that these two terms cancel each other,

(24)

where .

Let us introduce a new variable .
Now, using Eqs. (21) and (22), the remaining equa-
tions give a single nonlinear equation for the evolution
of FB mode in single-species plasma in the following
form:

 (25)

The third term in this equation is destabilizing due to
negative diffusion, the fourth term is a standard (posi-
tive) diffusion that defines the instability threshold.
The second term is a vector nonlinearity obtained in
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this form as in [18]. The last term is a new nonlinear
term of the nonlinear diffusion type.

The cancelation of the scalar convective nonlinear
terms in Eq. (25) is a result of a delicate balance of the
dissipation that define the phase velocity of the linear
waves. Such cancelation does not occur in a plasma
with several species which have different collision fre-
quencies. For a plasma consisting of two type of ions,
a and b, of different masses and different collisionali-
ties, the governing equations (5), (6), and (13) can be
written as

 (26)

 (27)

where α= (a, b). The lowest order equations (15) and
(16) now are
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 (35)

Introducing a new variable  and
using Eqs. (33)–(35) along with dispersion relation (30),
the secular terms can be removed and resulting single
nonlinear equation for the evolution of FB mode is
obtained as

 (36)

with the coefficients defined as

 (37)

 (38)

 (39)

 (40)

In case of two ion species, a lowest order scalar non-
linearity term arises with coefficient CNL due to the
difference in mass and collision frequency of the two
species. This term is zero for ma = mb and νa = νb, thus
reducing to the single ion case as obtained in Eq. (25).

Nonlinear equation (36) can be written in a dimen-
sionless form by introducing the following normalized
quantities:  and  with ρsa = csa/ωca,
where csa =  and ωca = eB0 /mac. For one-

dimensional case, assuming  and intro-
ducing a function f such that U = βf with β = 1/2CNL,
we can write Eq. (36) in a form given as
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where the dimensionless coefficients are: 
 with DΓ = DI – DD and  with

DNL = CD/2CNL. This form has two nonlinear terms:
one of the convective type, as in Burgers equation,
responsible for wave breaking; and the another one is
the nonlinear diffusion term which is generally stabi-
lizing. The linear term, DΓ, describes the FB instability
for DΓ > 0 or diffusive damping for DΓ < 0. Typical val-
ues of these coefficients for typical plasma parameters
for the E-region of ionosphere and the solar chromo-
sphere are given in the Appendix.

4. SUMMARY

We have derived a novel nonlinear equation
describing the one-dimensional FB waves in multi-
species plasmas. We have shown that one dimensional
quadratic nonlinearity persist in plasmas with several
ion species, thus affecting the evolution of FB modes
and leading to the wave steepening and wave breaking.
We have also obtained an additional nonlinear term of
the nonlinear diffusion type. The magnitude of the
nonlinear coefficients depend on the relative concen-
tration, mass and collision frequencies of ion species
as shown in Eq. (36). The situations with several ion
species exist in the E-region of the Earth’s ionosphere
and solar chromosphere. In these cases, the wave
steepening nonlinear term may result in wave breaking
and forming strongly nonlinear singular solutions. It is
worth noting that the FB waves in multispecies plas-
mas have recently been studied in application to the
solar physics problems [33–36]. It has been suggested
that FB instability plays an important role in the heat-
ing of solar chromosphere [33, 34]. The FB theory has
been developed to describe the multi-ion-species
metal-dominated plasma of the solar chromosphere
[35]. It is shown in this paper that in multispecies plas-
mas convective nonlinear terms appear that may result
in wave breaking of one-dimensional FB waves.

The typical values of the numerical coefficients
given in the table show that wave breaking will be more
pronounced in the solar chromosphere due to larger
mass difference of the ion species while in the E-
region of Earth’s ionosphere, the nonlinear diffusion
effects typically are more important. The two-dimen-
sional (vector) nonlinearity present in Eq. (36) is gen-
erally larger than the one-dimensional nonlinear
terms for a general case of kx ≃ ky. However, the linear
instability exists in a narrow cone around the direction
of the electron E × B f low (along the x axis) and the
wave may grow as a one-dimensional structure to a
large amplitude before the two-dimensional nonlinear
effects will generate waves with finite ky. Such effects
were recently considered in [20]. Therefore, the finite
result will depend on the relative competition of two
effects: linear growth of one dimensional structures
and nonlinear wave-breaking/nonlinear diffusion and

'DΓ =
2/ca saD cΓω NL NL' / saD D= ρ
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nonlinear spreading [20], generating finite ky modes.
Numerical analysis of the full equation describing
both effects will be presented elsewhere.

APPENDIX
TYPICAL PLASMA PARAMETERS 

FOR FB INSTABILITY IN THE IONOSPHERE 
AND SOLAR CHROMOSPHERE

We have used the typical ionosphere parameters at
105 and 110 km altitudes in the E-region of the iono-
sphere to evaluate the coefficients in Eq. (36). The ion
species a and b are taken to be the two dominant ion
species in the E-region of the ionosphere, NO+ and

, respectively. Thus, the masses for the two ion spe-
cies are  and  with mp =
1.627 × 10–27 kg as the mass of a proton. The electric
field and the magnetic field values considered are E0 =
0.025 V/m and B0 = 0.5 G, which gives the drift veloc-
ity V0 = 500 m/s. The cyclotron frequency for elec-
trons is ωce = 8.79 × 106 s–1 and the cyclotron frequen-
cies for each of the ions species are ωca = 1.64 × 102 s–1

(for NO+) and ωcb = 1.54 × 102 s–1 (for ). We con-
sider equal temperatures both for the electrons and the
ion species, so Te = Ta = Tb = 300 K, which gives csa =
291.24 m/s. To find the collision frequencies of each of
the charged species with the neutrals, we consider the
nonresonant ion−neutral collision frequencies only.
We took the simple expression for nonresonant colli-
sion frequency for a given ion−neutral pair as given in
[37], which is νin = Cinnn with Cin as a numerical colli-
sion frequency coefficient and nn as the density of neu-
trals in cm–3. The neutral species we have considered
are N2 and O2 molecules. The density of the neutrals is
taken from the MSIS atmospheric model
[http://ccmc.gsfc.nasa.gov/modelweb/models/msis_
vitmo.php] (for March 17, 2014 with universal time
(hour = 1.5) and geographic coordinates at the lati-
tude 55° and longitude 45°). It should be noted that we
have not taken into account the resonant collision fre-
quency of  ions with O2 neutrals as the resonant
ion−neutral collision frequency values become
important only at higher altitudes and for temperature
values greater than 300 K.

For the 105-km altitude, the densities obtained for
N2 and O2 are 3.645 × 1012 cm–3 and 7.552 × 1011 cm–3,

2O+

NO 30 pm m+ =
2O 32 pm m+ =

2O+

2O+

respectively. The collision frequency coefficients are
taken from [37] as Cin (NO+–N2) = 4.34 × 10–10 cm3 s–1,

Cin (NO+–O2) = 4.27 × 10–10 cm3 s–1, and Cin ( –
N2) = 4.13 × 10–10 cm3 s–1. So, the ion−neutral colli-
sion frequencies obtained for the two ion species are

 = 1.58 × 103 s–1 and  = 3.22 × 102 s–1,
which gives the total collision frequency of NO+ ions
with neutrals to be 1.90 × 103 s–1 and  = 1.51 ×
103 s–1. The collision frequency of electrons with neu-
trals along the E-region of ionosphere follows νen =
10νin. So, using the total ion−neutral frequency calcu-
lated above for both ion species, the electron-neutral
collision frequency is νen = 3.41 × 104 s–1. To find the
η values for both the species, we need the densities for
both the ions and the electrons. So, using the modeled
ion densities and the electron density profile as in [38,
39] for NO+ and  at 105 km, we obtain ηa =  =

 = 0.5 and ηb =  = /ne0 = 0.5. Simi-
larly, for the two ion species at the 110-km altitude, the
values obtained are ηa = 0.6, ηb = 0.4;  =
6.05 × 102 s–1, and  = 1.05 × 102 s–1, which
gives the total collision frequency of NO+ ions with
neutrals to be 7.10 × 102 s–1;  = 5.76 × 102 s–1,
and, thus, νen = 1.29 ×104 s–1. Using all these parame-
ters, the normalized coefficient values for Eq. (41) are
given in the table.

In the solar chromosphere, the FB instability may
develop near the solar temperature minimum, where
electrons are strongly magnetized but the protons and
the heavy ions are unmagnetized [33–36]. For the
chromosphere parameters, just below the temperature
minimum, MgII, SiII, and FeII are the dominant ion
species, while protons and CII (to a lesser extent)
dominate above the temperature minimum. We have
considered electrons and the two ion species: (a) pro-
tons and (b) FeII. Thus, for the mass of the ions, we
have: ma = 1.627 × 10–27 kg for protons and mb =
9.09 × 10–26 kg for FeII. The coefficients are calcu-
lated using the various parameters taken from the plots
of collision frequency, plasma density, temperature
profile, and trigger velocities in [35] corresponding to
magnetic field values of 30 and 105 G near the solar
temperature minimum.

2O+

2NO N+ −ν
2NO O+ −ν

2 2O N+ −ν

2O+
NO+η

0NO / e+η η
2O+η

2O+η

2NO N+ −ν

2NO O+ −ν

2 2O N+ −ν

Coefficient in Eq. (41) for the ionosphere and chromosphere plasma parameters

Parameters
Ionosphere E-region Solar chromosphere

105 km 110 km 30 G 105 G

3.61 × 10–3 1.47 × 10–3 1.51 × 10–2 0.10 × 10–2

6.02 15.14 0.241 0.502

'DΓ

NL'D
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We first consider parameters at temperature mini-
mum for the magnetic field B0 = 30 G. The trigger
velocity and the solar temperature minimum values
corresponding to this magnetic field are 8 km/s and
3800 K, respectively. We will take V0 to be greater than
the trigger velocity, V0 = 14 km/s, and the tempera-
tures Te = Ta = Tb equal to the temperature minimum,
which gives csa = 5.68 km/s. The ratios of the collision
frequency to the gyrofrequency for electrons and ions
are νen/ωce = 0.07, νan/ωca = 9, and νbn/ωcb = 100. The
density values are na = 4 × 1016 m–3, nb = 0.7 × 1016 m–3,
and ne = 5 × 1016 m–3, which satisfies the quasineutral-
ity assumption ne ≈ na + nb. Using these density values,
we have ηa = 0.8 and ηb = 0.2. Similarly, we consider
parameters at same temperature minimum for the
magnetic field B0 = 105 G. The trigger velocity corre-
sponding to this magnetic field value now is 5.2 km/s,
so we take V0 = 8 km/s. The ratios of the collision
frequency to the gyrofrequency are νen/ωce = 0.02,
νan/ωca = 4, and νbn/ωcb = 40. The values for csa, ηa,
and ηb remain the same. Using these values, the calcu-
lated normalized coefficients in Eq. (41) are given
in table.
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