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Modification of the Simon-Hoh Instability by the sheath effects in partially
magnetized E 3 B plasmas
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Effects of dissipation on the gradient drift modes in partially magnetized E�B plasmas are studied

with emphasis on the sheath effects. It is shown that the dissipation induced instabilities driven by

the density gradient and E�B drifts persist in conditions where the criteria for standard Simon-

Hoh instability in E�B plasmas are not satisfied. Published by AIP Publishing.
https://doi.org/10.1063/1.5044649

Plasma discharges based on E�B fields are used in a

variety of applications for electric propulsion and plasma

processing. In applications such as Hall thruster, Penning

traps, and magnetron devices, the plasmas are only partially

magnetized; the electrons are magnetized while the ions are

not. In such plasmas, the electric field perpendicular to the

external magnetic field is often used to confine electrons and

support the discharge. When the plasma density is inhomo-

geneous across the magnetic field, as is expected for magnet-

ically confined electrons, the electron drift together with the

inertial response of unmagnetized ions results in a peculiar

eigen-mode of partially magnetized plasmas: the so-called

“anti-drift” mode.1 This mode is the basis for various exten-

sions and instabilities existing in a partially magnetized

plasma, which are generically referred here as gradient-drift

modes.2–4 The simplest expression for the anti-drift mode

frequency is given by

x � k2c2
s

x�
¼ �kyLnxci; (1)

where ky refers to the perpendicular wave-vector, cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
; x� ¼ �c2

s ky=Lnxci; xci ¼ eB0=mic is the ion

cyclotron frequency (assuming singly-charge ions), and

L�1
n ¼ ðdn=dxÞ=n is the inverse density gradient length

scale.

For the Hall thruster geometry, consider a small

region of the plasma which is approximately planar (i.e.,

we set the radius of curvature characteristic of the system

to be very large) and we set the axial direction to be the

x-direction, the y-direction to be along the azimuthal

direction, and the z-direction to be in the radial direction.

Then, ky is the component of the wave-vector along the

azimuthal direction which is periodic. Similar approxima-

tions can be made for the magnetron and Penning dis-

charge geometries, so we assume that the y-direction is

always periodic, z-direction is along the magnetic field,

and x-direction is the direction of the density gradient and

the electric field. It should be noted that this mode occurs

for kz ¼ 0.5

The E�B plasma discharges are supported by the

energy input from the externally imposed electric field

E0¼E0x which causes the equilibrium electron E0�B0-drift

where B0¼B0z. The Doppler shift due to the electron drift,

v0¼ cE0/B0y, results in the modification of the electron

response with x! x – kyv0, giving the dispersion relation

k2c2
s

x2
¼ x�

x� x0

; (2)

and, therefore, producing the reactive instability of the anti-

drift mode if the condition x0/x* > 0 is met. This implies a

condition on the density gradient and externally applied elec-

tric field, E0(dn/dx) > 0. This instability, referred to as the

collisionless Simon-Hoh instability, is one of the several

instabilities existing in Hall plasmas3,6 In the simplest case,

this instability and resulting plasma dynamics are often con-

sidered in neglect of the electron motion along the magnetic

field or assuming periodicity in this direction. It is our goal

to consider finite and bounded plasmas where the magnetic

field lines are intercepted by material walls. In this case, the

sheaths formed at the boundaries become important and con-

strain the parallel plasma motion. It will be seen that this

induces a dissipative-type instability.

That there exist instabilities enabled by the sheath with

wavelengths of the order of the system length was first

shown in Refs. 7 and 8. Shear flow and temperature-gradient

instability driven by the sheath were studied in application to

the divertor and scrape-off layer in tokamaks. The sheath

driven instability due to the electron secondary emission was

shown in Ref. 9. All of these works were performed under

the assumption of fully magnetized plasmas. Sheath effects

on the modes in partially magnetized plasma were investi-

gated in Ref. 4 but in neglect of the plasma density gradient.

It turns out that the effect of the sheath is similar in

structure to the effect of electron motion along the magnetic

field in the presence of the electron-neutral collisions. Thus,

we will review this case first. Then, the appropriate boundary

conditions for our problem will be presented and used to

derive the dispersion equation for the case of the collision-

less, bounded plasma. The following paragraph will demon-

strate the modification of the condition for the classicala)vim705@mail.usask.ca
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Simon-Hoh instability due to the presence of finite resistivity

and then expose the two main limiting cases (e.g., v0¼ 0 and

v*¼ 0). Finally, the system with both electron drift and ion

density gradient will be analyzed, and it will be shown that

the growth rate (as well as the angular frequency of the

plasma oscillation modes) is significantly modified by the

presence of finite resistivity, would it be due to neutral-

electron collisions or due to the conservation of current at

the bounding walls.

The equation of motion for the electrons, neglecting

electron inertia, is given by

0 ¼ �e �$Uþ ve

c
� B

� �
� $ðneTeÞ

ne
� �mevezz: (3)

Linearizing Eq. (3) for small perturbations in the electric

potential, number density, and velocity yields the set of

equations

�

v2
Te

~vez ¼
@

@z

e~U
Te
� ~ne

n0

 !
; (4)

~ve? ¼
cb� $? ~U

B0

� cTeb� $?~ne

n0eB0

: (5)

Assuming, because of the periodicity in y and the infinite

extend in x, the form ð~U; ~nÞ � exp ð�ixtþ ik? � r?Þ, it is

easy to show that

ðx� x0Þ
~ne

n0

� x�
e~U
Te
þ i

@~vez

@z
¼ 0: (6)

The equation of motion for the unmagnetized ions is given

by

dvi

dt
þ ð~vi � $Þvi ¼ �

e

mi
$U: (7)

Then, to first-order in the perturbation ~U ¼ ~UðzÞe�ixtþik?�r? ,

we have

~viz ¼
e

ixmi

@ ~U
@z

; (8)

~vi? ¼
e

mix
k? ~U: (9)

The continuity equation for the ions then yields

�ix
~ni

n0

þ ik? � ~vi? þ
@~viz

@z
¼ 0: (10)

Assuming quasi-neutrality as well as taking @/@z ! ikz, one

finds the dispersion equation

x� þ ik2
z v

2
Te=�

x� x0 þ ik2
z v

2
Te=�

¼ k2c2
s

x2
; (11)

which was shown for a plasma of unmagnetized ions and

non-vanishing kz.
1,6 It should be noted that a similar problem

was considered in Refs. 10 and 11, but the parallel electron

velocity was taken in the form of an ambipolar diffusion flux

rather than in the form of Eqs. (4) and (5). In fact, the self-

consistent density response is constrained by the quasi-

neutrality condition where both parallel and perpendicular

electron velocities are responsible for maintaining quasi-

neutrality.

In many physical situations, it is interesting to look at

large scale perturbations along the magnetic field lines since

these are the modes that will see the presence of the bounding

walls. Then, kz is much smaller than ky (it is implicitly

assumed that perturbations in the x-direction are similar to

the length scale of the system [i.e., k2
x � k2

z � k2
y )]. Since the

z-direction is finite, the eigen-functions of the system will be

the solution of a differential equation in z; it is then necessary

to determine the boundary condition along the magnetic field.

This boundary condition is determined by the dynamics of

the electrons and ions in the sheath region. The standard sheath

model for a planar, quasi-neutral plasma will be assumed.

Therefore, the walls will be fully absorbing, the plasma-sheath

boundary will be defined as the location where the ions reach

Bohm’s velocity cs, and the electron will be distributed isother-

mally (i.e., Boltzmann distribution) along the magnetic field

being mostly reflected by the strong electric field in the sheath

region. Since, at steady-state, there is no net current entering

the sheath, the net current density vanishes

Jsh;0 ¼ 0 ¼ J0i þ J0e ¼ en0cs �
en0vTeffiffiffiffiffiffi

2p
p e�e/sh=Te ; (12)

where e/sh/Te > 0 is the equilibrium plasma potential at the

sheath entrance (with respect to the wall potential). It is

straightforward to solve for the normalized electric potential,

the result being, for a singly-charged Xenon plasma,

�e/sh=Te ¼ lnð2pme=miÞ=2 	 5. Since the plasma density

and electric potential perturbations will perturb the electron

current entering the sheath, one finds for small perturbations

~JezðLÞ ¼ en0cs
e~UðLÞ

Te
� ~neðLÞ

n0

 !
: (13)

This provides us with a boundary condition on the elec-

tron current density at the plasma-sheath interface (z	L).

Using the ion density response and quasi-neutrality in the

bulk plasma, one finds the simple form for Eq. (13)

~JezðLÞ ¼ en0cs
e~UðLÞ

Te
1�

k2
y c2

s

x2

� �
: (14)

This boundary condition can be implemented in Eq. (6) by

averaging over z from –L to L, whilst assuming the density

perturbation is even in z

ðx� x0Þ
~neðLÞ

n0

� x�
e~UðLÞ

Te
¼ i

1

en0L
~JezðLÞ: (15)

Again, using quasi-neutrality as well as the ion density, we

have

ðx� x0Þ
k2

y c2
s

x2
� x�

� �
e~UðLÞ

Te
¼ i

cs

L

e~UðLÞ
Te

1�
k2

y c2
s

x2

� �
:

(16)
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It should be noted that in the long wavelength approxi-

mation k2
z � k2

y , the perturbed ion current in the z-direction,

~vz=~vy � kz=ky, can be neglected so that the ion density

response [used above in Eqs. (14) and (15)] is only deter-

mined by the ion transverse current. The final dispersion

relation can be transformed to the form

k2
y c2

s

x2
¼ x� þ ics=L

x� x0 þ ics=L
; (17)

which is similar in structure to the dissipative instability due

to electron-neutral collisions seen in Eq. (11).

Properties of the dispersion Eqs. (11) and (17) can be

presented in the same form using the notation �k ¼ cs=L as a

characteristic parallel flow frequency in the sheath bound

plasma or with �k ¼ k2
z v

2
Te=� as typical parallel diffusion fre-

quency for collisional plasmas. The relative importance of

the sheath resistivity over the parallel collisional diffusion

for kz ’ 1/L is given by the standard condition12,13

k=L >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
; (18)

where k � vTe/� is the electron mean free path.

Also, we are interested in low frequency long wave-

length instabilities with x < xLH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xcexci
p

(	488xci for a

xenon plasma) so that the effects of the lower hybrid mode

seen in Ref. 3 are neglected. We consider modes with low m
(azimuthal mode number), roughly corresponding to the

wavelengths of the order of the device radius. For estimates

in what follows, we use kyqs ’ 1.

Before presenting some results for different limiting

cases as well as the modification of the Simon-Hoh instabil-

ity, it is worth revisiting the physical mechanism behind the

resistive instability. In the presence of cross electric and

magnetic fields, the electrons will drift along the perpendicu-

lar direction to both of these fields. Then, if a small perturba-

tion exists as well as an ion density gradient along this

direction, there will be periodic regions of lower and higher

density of electrons (relative to the ions) and therefore a fluc-

tuating electric potential will be generated. In a perfectly

conducting plasma, the electrons are free to move to lower

density regions and thus short-circuit the induced electric

field; the drift wave is then purely oscillatory. However,

when some agent restricts the free motion of electrons,

would it be electron-neutral collisions or the presence of a

plasma sheath which restricts the electron current along the

magnetic field;7 there will be a phase lag between the electric

potential and the density fluctuations. In such a case, the

induced E�B drift will actually increase the density fluctua-

tions, exasperating the difference between high and low

density regions. The main results which follow provide a

quantitative description of the growth rate of this resistive

drift instability in different limits.

The collisionless Simon-Hoh instability is recovered in

the limit �k ! 0. The instability then requires the standard

condition 4v0v� > c2
s . However, for non-zero �k 6¼ 0, the

condition is modified, becoming 4ðv0v� þ �k=k2
yÞ > c2

s , and

the dissipation leads to the disappearance of the threshold in

v0 resulting in a weak instability occurring for lower values

of v0 and even in the limit of v0! 0 (see Fig. 1).

It is of interest to note the instability in the absence of

the electron drift, v0¼ 0, which occurs for finite values of the

�k parameter. In this case, the Simon-Hoh instability is not

present and the anti-drift mode is destabilized by the dissipa-

tion, either from collisions or from the sheath resistivity

(see Fig. 2). This anti-drift-dissipative mode is the partially

magnetized counterpart to the drift-dissipative instabilities

existing in fully magnetized plasmas.7,14 In the limit of small

�k, the growth rate vanishes and the real part of the mode fre-

quency converges to k?cs=x� as expected from Eqs. (11)

and (17). For larger values of �k 
 ðx�;x0Þ the dispersion

Eq. (17) predicts the weakly unstable ion sound mode x2

’ k2
y c2

s with the growth rate decaying as c � ��1
k .

Alternatively, in the case of vanishing v*¼ 0, one finds

the instability which is driven by the electron drift and the

finite resistivity. The growth rate decays for large �k and

vanishes for �k ! 0 as expected. Note that the instability

exists only for v0 > cs while the mode is stable (see Fig. 3)

when v0 < cs.

Similar trends are observed in the general case when

both x0 and x* are finite. These are illustrated in Figs. 4–6

for the case when x0 and x* are of the same sign, corre-

sponding to the situation of the unstable, collisionless Simon-

Hoh instability. For the strongly unstable case, v0/cs > 1, the

instability exists even for �k ¼ 0 (this is the collisionless

FIG. 1. The collisionless Simon-Hoh instability and its modification due to

the sheath resistivity with �k=xci ¼ 0:01 and kyqs ¼ 1 when the threshold

for the instability disappears.

FIG. 2. The real and imaginary parts of the mode frequency as a function of

�k=xci for v0 ¼ 0. The maximum value of the growth rate, c 	 0.322xci,

occurs at � � x*/2. For �k ! 0; x! k2
?c2

s=x
2
�, and for �k ! 1; x ¼ kycs.
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Simon-Hoh instability). In this case, the sheath dissipation

(finite �k) is stabilizing: the growth rate decreases as �k
increases. With the decrease in the ratio v0/cs, the mode goes

from the weakly unstable regime to the stable regime.

However as the instability drive from finite v0/cs is decreas-

ing, the effect of the finite x* becomes more important and

the mode is destabilized due to a finite �k: this is the dissipat-

ing instability of the anti-drift mode, similar the case shown

in Fig. 2.

The collisionless Simon-Hoh instability occurs for

v�v0 > c2
s=4. This condition is not met if v*v0 < 0 or positive

but too small. Then, the Simon-Hoh instability is absent, but

an instability remains due to a finite �k; this situation is illus-

trated in Fig. 7. For large �k, the mode goes into the weakly

unstable ions sound. In the limit of small �k, the growth rate

is linearly proportional to �k and is given by the approximate

expression

c 	
�kk

2
y c2

s

2x2
�
�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x0x�

k2
y c2

s

s
2x�ðx� � x0Þ
k2

y c2
s � 4x0x�

� 1

" #0
@

1
A:
(19)

For one of the roots (shown in Fig. 7), the maximum

growth rate decreases with an increase in the ratio of the

absolute value v0/v* when it remains negative. On the other

hand, the other root has negative growth rate for the ratio x0/

x* > –1 and increases with the increase in the ratio of the

absolute value of x0/x* when it remains negative. For large

values, the behavior of the growth rate of this root is similar

to the case x*¼ 0 shown in Fig. 3.

Therefore, various regimes of dissipative instabilities of

the gradient drift mode can be realized depending on typical

values of plasma parameters which vary between various

types of E�B devices (e.g., Hall thruster, Penning dis-

charge, and magnetron). Plasma parameters may also vary

for different regions in the same device and/or the devices of

the same type (e.g., for different realizations of the Hall

thrusters). For the most common types of Hall thrusters, the

value of the E�B-drift velocity v0 may range from 108 cm/s

FIG. 3. x/xci as a function of �k=xci for kyqs ¼ 1 and vanishing v*. In the

opposite limit of �k ! 1, one finds x ¼ xci as expected. The maximum

value of the growth rate, c 	 x0/3, occurs at �/xci 	 cs/v0. In the limit of

vanishing �k ! 0; x ¼ x0.

FIG. 4. c/xci as a function of �k=xci for kyqs ¼ 1 and x*/xci �7. The maxi-

mum of the growth rate increases with x0.

FIG. 5. xr/xci as a function of �k=xci for kyqs ¼ 1.

FIG. 6. xr/xci as a function of (small) �k=xci for kyqs ¼ 1.

FIG. 7. x/xci as a function of �k=xci.
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to vanishingly small and negative values near the anode; the

plasma density gradient length scale may be in the range

Ln¼ 0.2–1 cm or larger and the electron temperature Te from

a few eV to several tens of eV (see Ref. 15 and references

therein for a more detailed description of various Hall

thruster parameters). The wide range of parameters for some

E�B devices are given in Table I. Due to the wide range of

plasma parameters in various situations, one can expect that

different regimes exist in the dispersion Eqs. (11) and (17)

and shown in Fig. 2–7 that may occur in different devices

and different operational regimes.

In summary, in this note, we have investigated the role

of the sheath plasma boundaries on the gradient drift instabil-

ities in partially magnetized plasmas with E�B-fields. It

was found that the sheath resistivity results in a dispersion

equation analogous to the collisional plasma, but the resis-

tive diffusion frequency parameter k2
z v

2
Te=�en is replaced with

the sheath resistivity parameter cs/L. The sheath dissipation

is more important than the standard collisional resistivity

when k=L >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. We have shown that the sheath resis-

tivity may result in long wavelength instabilities which are

driven either by the E�B-drift or the density gradient drifts

alone and in situations when the collisionless Simon-Hoh

instability is not operative; this is the most important result

of our study.

The partially magnetized plasmas, as found in Hall

thrusters and magnetrons, exhibit a variety of fluctuations

driven by a variety of mechanisms,3 but the exact nature of

the instabilities is still unknown. Large scale structures (such

as spokes), often observed in these devices, can be driven

directly via linear large scale instability(s), such as discussed

in this paper, for example, or via the secondary nonlinear

instabilities, or inverse cascade.3 Our results suggest that the

effects of sheath dissipation also need to be included in the

modeling of E�B plasma devices.
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