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Low frequency ionization oscillations involving plasma and neutral density (breathing

modes) are the most violent perturbations in Hall thrusters for electric propulsion.

Because of its simplicity, the zero-dimensional (0-D) predator-prey model of two

nonlinearly coupled ordinary differential equations for plasma and neutral density has

been often used for the characterization of such oscillations and scaling estimates. We

investigate the properties of its continuum analog, the one-dimensional (1-D) system

of two nonlinearly coupled equations in partial derivatives (PDE) for plasma and

neutral density. This is a more general model, of which the standard 0-D predator-

prey model is a special limit case. We show that the 1-D model is stable and does not

show any oscillations for the boundary conditions relevant to Hall thruster and the

uniform ion velocity. We then propose a reduced 1-D model based on two coupled

PDE for plasma and neutral densities that is unstable and exhibit oscillations if the

ion velocity profile with the near the anode back-flow (toward the anode) region is

used. Comparisons of the reduced model with the predictions of the full model that

takes into account the self-consistent plasma response show that the main properties

of the breathing mode are well captured. In particular, it is shown that the frequency

of the breathing mode oscillations is weakly dependent on the final ion velocity but

shows a strong correlation with the width of the ion back-flow region.
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I. INTRODUCTION

Hall thrusters are electric propulsion plasma devices with cross-field E×B configuration,

where electrons are effectively trapped by the magnetic field, and heavy ions are accelerated

by the electric field generating thrust. Despite the long history and a large number of

successful missions, as well as the relatively simple design of these devices, many physical

phenomena are not well understood. Large amplitude discharge current oscillations in the

axial direction of Hall thrusters, or the so-called breathing modes, are among the most

strong perturbations that affect the operation, e.g. with current oscillations reaching 100%

and even extinguishing the discharge1. The physics of the breathing mode has been studied

in many papers but the full understanding is far from complete. Simulations of low-frequency

axial dynamics of Hall thrusters were done earlier with various approximations, including

fluid2–4, and hybrid2,5–8 (fluid electrons and kinetic ions and atoms) models. Ionization is

one of the key physics elements of the breathing mode oscillations. In addition to the basic

coupling of plasma density and neutral gas due to the ionization, many models include self-

consistent electric field calculations along the channel, and some models include electron

pressure evolution and detailed electron energy balance.

At the same time, a simple zero-dimensional (0-D) model was proposed9,10 to explain the

mechanism of breathing mode, in which neutral and ion (plasma) densities are coupled in

the form of predator-prey model (Lotka-Volterra equations). The predator-prey model is

a system of two nonlinearly coupled ordinary differential equations that describes periodic

oscillations in a number of physics and biology systems. This model is claimed to predict

the frequencies close to the observed in experiments. It was, however, noted that for the

constant ion and neutral velocities, the model is stable and does not predict any instability11

so the conditions for the excitation of the ionization oscillations are not clear. Additional

effects and modifications11,12 were proposed for the predator-prey model to make it unstable

but it remains unclear to what degree the 0-D models are capable to predict the breathing

mode oscillations (discussed in section II).

Nevertheless, simple reduced models are of considerable interest. First, such models are

useful as scaling tools, e.g. for the design of power supply sources. Another motivation stems

from the considerable complexity of the full models. In the full models with many parameters

that are unknown experimentally, it is rather difficult to predict the conditions for the
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instability and therefore difficult to translate the predictions of the theoretical models into

practical recommendations. The search for physical mechanism (or mechanisms) and critical

controlling parameters continues13. Reduced models focusing on selected specific phenomena

may allow easier experimental validation and eventually lead to a better understanding of

the physics of the instability, its conditions, and the development of the full predictive

model(s)14,15.

In this work, we analyze the properties of the continuum one-dimensional (1-D) model,

based on two coupled partial differential equations (PDE) for the evolution of neutral and

plasma densities. The 0-D predator-prey is a reduction of the 1-D model. If anything, the

more complete 1-D model should exhibit the same physics (and e.g. predict similar charac-

teristics of the oscillations) if the reduction from the 1-D to the 0-D model is appropriate for

the relevant physics, and the oscillations in the 0-D model are not the artefact introduced by

the simplifications. We show, however, that the 1-D model is not only stable with boundary

conditions of a typical Hall thruster and the standard assumptions of the uniform velocity

(as it is used in 0-D model) but also does not show the oscillations observed in the 0-D

model. On the contrary, any oscillations, even introduced externally, are damped in time

and space. We then propose a modified 1D model with a non-uniform ion velocity profile

and with a back-flow (toward the anode) the region near the anode. We show that such a

model is unstable and exhibit ionization oscillations with characteristics roughly consistent

with the predictions of the full fluid model16. Rather good agreement of the results of the

reduced (simplified) and full models suggests that the reduced model captures well essen-

tial physics relevant to the breathing mode and may point to the critical conditions for the

instability.

The paper is organized as follows. In section II, various modifications of the 0-D model are

discussed. In section III, the continuum 1-D model is introduced. The stationary solutions

are obtained here, their stability and response to external perturbations are discussed for

the uniform profile of the ion velocity. Section IV presents a reduced 1-D continuum model

with the ion back-flow region near the anode and shows that this model exhibit unstable

nonlinear oscillations. In section V, the predictions of the reduced model are compared

against the full self-consistent simulations.
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II. ZERO-DIMENSIONAL (0-D) PREDATOR-PREY MODELS

In this section we discuss the various modifications and properties of the zero-dimensional

(0-D) predator-prey models for the ionization oscillations. Such a simplest model includes

basic time and space dynamics of plasma and neutrals and is based on the continuity equa-

tions for the ion density ni (assuming full plasma quasineutrality), and neutral atom density

na:

∂na

∂t
+ va

∂na

∂x
= −βnani, (1)

∂ni

∂t
+

∂

∂x
(nivi) = βnani, (2)

where vi, va are ion and atom flow velocities, respectively, and β is the ionization rate

coefficient. We assume that va is a constant, but vi and β, in general, could be non-uniform

in space. A basic assumption leading to a simple zero-dimensional predator-prey model9

is that the ionization zone and acceleration zone is replaced by the transition layer of the

width L. The integration of Eqs. (1)-(2) over this region results in the system of ordinary

differential equations (ODE):

∂

∂t
〈na〉+

1

L
(nava)|L0 = −β 〈nani〉 , (3)

∂

∂t
〈ni〉+

1

L
(nivi)|L0 = β 〈nani〉 , (4)

where averages over the transition layer are defined as 〈(...)〉 = L−1
∫ L

0
(...) dx and β is

assumed constant here. A set of approximations are made to obtain the original predator-

prey model9. First, the ion and neutral fluxes at the boundaries of the transition layer are

assumed in the form: (nivi)|0 = 0, (nivi)|L = nvi and (nava)|0 = nava and (nava)|L = 0,

where vi is the final ion velocity and n(t) is plasma density at the exit of the transition layer,

at x = L, n(t) ≡ ni(t, L), and N(t) is neutral density at x = 0, N(t) ≡ na(t, 0). Thus, these

boundary conditions imply full ionization, na(L) = 0, zero flux of the ions from the left

boundary,(nivi)|0 = 0, and full acceleration the transition layer, (nivi)|L = nvi. Then, the

boundary values for the plasma and neutral densities are used to approximate the averages

over the transition layer: 〈nani〉 ' nN , 〈na〉 ' N , and 〈ni〉 ' n. These steps lead to the

0-D ODE system9

dN

dt
− 1

L
Nva = −βNn, (5)

dn

dt
+

1

L
nvi = βNn. (6)

4



These equations have the equilibrium solution with neq = va/Lβ and Neq = vi/Lβ.

Considering the perturbations
(
ñ(t), Ñ(t)

)
∼ exp (−iωt) near the equilibrium, n = neq +

ñ(t), N = Neq + Ñ(t) one obtains stable oscillations with

ω2 = β2neqNeq = viva/L
2 (7)

It was later noted10 that oscillations (time dependence) in N are inconsistent with the

constant mass rate boundary condition at x = 0, (nava)|0 = Nva = Ṁ/Ama = const, which

means that the N should be constant for the constant neutral flow velocity; A is the cross-

section area. A modification of the 0-D model was suggested in Ref. 11 where the value

of neutral density at the left (entrance) side was fixed constant, (nava)|0 = N0va, and the

value at the exit was assumed time dependent, (nava)|L = N (t) va, so the neutral balance

equation takes the form
dN

dt
+

1

L
(N −N0) va = −βNn. (8)

The plasma balance equation was also modified with an additional term due to the sheath

losses at the lateral walls
dn

dt
+

1

L
nvi +

1

d
ncs = βNn, (9)

where sheath losses are estimated based on the Bohm condition for the ion velocity, where

d is the radial channel width and cs =
√
Te/mi. With these modifications, the equilibrium

value of the neutral density in equations (8-9) is only corrected by the sheath losses,

Neq =
1

β

(vi
L

+
cs
d

)
, (10)

while the equilibrium value of plasma density can be very different from that in equation

(5) and takes the form

neq =
va
βL

(
N0

Neq

− 1

)
. (11)

Note that in this model, the value of the neutral density at x = 0 should be sufficiently

large N0 > Neq = (vi/L+ cs/d) /β. Considering perturbations near Neq and neq one obtains

damped oscillations11

ω = − i
2

va
L

N0

Neq

±
√
β2neqNeq −

1

4

(va
L

)2( N0

Neq

)2

. (12)

The essential problem of the predator-prey model is that it does not predict instability

so no condition for the oscillations can be determined. It was argued that the electron
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dynamics should be important and more complex models were proposed such as using the

electron (instead of ion) continuity equation with the drift-diffusion approximation for the

electron velocity17–19, ion flows12, electron energy evolution11,20, and two-zone model14,15.

Ref. 21 provides an overview of various models and involved mechanisms.

III. CONTINUUM (1-D) PREDATOR-PREY MODEL

Ideally, the reduction from the continuous 1-D model to the 0-D models as was dis-

cussed in the previous section should preserve the essential properties and features of the

more complete model and do not introduce any fundamental changes to the 1-D model.

Therefore, is of interest to study if the 1-D model has the properties predicted by the 0-D

models. Here we discuss properties of the stationary and time-dependent solutions of the

one-dimensional (continuous) model consisting of the continuity equations (1) and (2) for

atoms and ions with constant flow velocities va and vi, and the ionization rate β. These

are the same assumptions with which the original predator-prey model was derived. The

stationary problem is formulated as two coupled equations:

va
∂na

∂x
= −βnani, (13)

vi
∂ni

∂x
= βnani. (14)

The exact solution to this system is found in the form:

na,st(ξ) = na0

(
1 +

n0vi
na0va

)
1

(n0vi) / (na0va) exp (ξ) + 1
, (15)

ni,st(ξ) = n0

(
1 +

na0va
n0vi

)
exp (ξ)

exp (ξ) + (na0va) / (n0vi)
, (16)

where n0, na0 are values of ion density and atom density, respectively, at the left boundary,

and normalized length is ξ = x/l0, with l0 = viva/β (n0vi + na0va). It can be noted that

the solutions of the stationary problem depend only on two parameters, n0, na0. Typical

stationary solutions for vi/va = 10 are depicted in Figs. 1a,1b by solid lines. Note that

the position of the crossing point, where the ion and neutral densities are equal, and the

localization of the ionization source βnna depend on the value n0: they move to the right

with decreasing n0, and goes to infinity for n0 → 0.

Numerical studies of the time-dependent equations (1) and (2) were performed with fixed

boundary values at the left n0, na0 and free boundary conditions (spatial second derivative is
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Figure 1. Stationary solutions given by Eqs. (13) and (14) are shown by solid lines, with higher

(a) and lower (b) ion density at the left boundary n0. The time dependent solutions of Eqs. (1),

and (2), converging to the stationary solution are shown for the case (a) at three consecutive time

steps t1 < t2 < t3, dot dashed (initial condition), dashed, and dotted line, respectively.

zero) on the right end. This analysis shows that all perturbations are damped and converge

to the stationary solutions given by equations (15) and (16), as shown in Fig. 1a at different

times. Thus, the 1-D predator-prey model with a constant spatial profile of the ion velocity

does not exhibit oscillatory or unstable behaviour, unlike zero-dimensional predator-prey

models. The 1-D continuum model presented here in some sense is similar to the asymptotic

low-frequency model derived in the limit n/Na � 14,10, which also predicts the neutral

oscillations with the frequencies of the order of given by equation (7). Contrary to4,10, our

model does not show neutrally stable oscillations but only damped modes.

One can envisage that the boundary value of plasma density could be perturbed, e.g.

by some sheath instability. Such perturbations may also arise in the experiments with

segmented anode22, external modulations of the anode voltage23, and two-stage thruster

configurations24. Therefore, it is interesting to investigate how this nonlinear system re-

sponds to external perturbations of the ion density and whether such external pertur-

bations may grow in amplitude while propagating from the left boundary. We will im-

pose harmonic external modulations of the ion density at the left boundary in the form

ni(0) = ni0 (1 + r sin 2πfextt), where fext is the modulation frequency, with r = 0.15. We
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consider the 1-D continuum model, Eqs. (1,2) with vi = 10va, ni0/na0 = 0.05, l0 = 1.31 cm,

Fig. 1a, with the simulation length 15l0. Since velocities of neutrals and ions are different,

there are two natural modes that can be excited during the external modulations, with

the wavelengths given with λa = va/fext and λi = vi/fext. We consider four values of the

driving frequencies fextl0/va = (0.1, 0.5, 1, 10). For these values, the corresponding natural

wavelengths of the neutral and ion characteristic wavelengths are λa = (10, 2, 1, 0.1)l0 and

λi = (100, 20, 10, 1)l0, respectively.
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Figure 2. Instantaneous profiles of perturbed ion ñi (blue) and neutral ña (red) densities for the

various driving frequencies fextl0/va = (0.1, 0.5, 1, 10), shown, respectively, in (a), (b), (c), (d).

Three consecutive time snapshots t1 < t2 < t3 are shown for each variable, depicted with the dot

dashed line, dashed line, and solid line, respectively; they divide one oscillation period in 3 equal

intervals. Crossing point (of stationary ion and atom densities profiles) location is shown with the

black dashed line.
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The resulting response of the system of Eqs. (1,2) under the external modulations of the

ion density is presented in Fig. 2 for the perturbed variables, defined as ñ = n− nst, where

nst is the corresponding stationary solution. It can be noted that in all cases ion density

perturbations grow in absolute values before reaching the crossing point and leaving the

ionization region, whereas the amplitude of neutral density perturbations decays, which is

expected in the ionization region. Note that while the absolute value of the perturbations

of the ion density seems increasing, the relative value ñ/nst does not grow. Thus, in the

presence of external ion density perturbations in the near-anode region, the system exhibit

externally driven oscillations that are advected along the channel but show a limited increase

of the amplitude. However, the atom response is slightly more complicated and besides the

natural mode can exhibit the nonlinear response (on ion natural wavelength). It is also

affected by the atom stationary profile (Fig. 1a), as atom perturbations decay rapidly after

the crossing point. It is seen that for the low frequency perturbations the natural atom

mode is excited (Fig. 2a), while for the higher frequencies the ion characteristic wavelengths

become more and more dominant in the atom response (seen gradually through Figs. 2b-

2d). We remind that the amplitude of the ion density perturbations was fixed in these cases.

The amplitude of the neutral density perturbations is maximal for the lower frequencies. We

have also investigated the case when the neutral density was modulated at the left boundary.

Such a system shows similar behaviour and does not show the unstable modes.

IV. IONIZATION OSCILLATIONS IN THE 1-D CONTINUOUS MODEL

WITH THE ION BACK-FLOW IN THE NEAR ANODE REGION

As it was discussed in the previous section, the reduced fluid model, described with

Eqs. (1, 2), with spatially uniform profiles of vi, va, and β is stable. Here we will show

that the same system with spatial dependence of vi, when vi is negative near the anode, the

so-called ion back-flow, becomes unstable and exhibit self-consistent oscillations. The ion

back-flow region naturally forms in the presheath, a quasineutral region near the anode with

the negative electric field due to the electron diffusion25–28. The positive density gradient

near the anode creates a strong electron flow to the anode. To maintain ambipolarity (the

total current remains uniform), the ion back-flow current occurs to compensate the increase

of the electron current. The current ambipolarity is required to keep plasma quasineutral.
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This process is somewhat similar to the formation of the electric field in the presheath region

near the plasma boundary where the electric field is induced to accelerate ions toward the

boundary (up to the Bohm velocity) to balance electron and ion losses.

In this configuration the only fixed boundary condition is a value of the neutral density

on the left, as their characteristics travel strictly to the right (atom velocity is a positive

constant). Ion density boundary condition is free on the left, ∂2xni(0) = 0. First, we

consider the simple configuration with the velocity profile vi as a strictly linear function of

the position. The ionization rate β is taken uniform. One might argue the constant β is

an unrealistic assumption for a typical Hall thruster where electron energy near the anode

is low due to higher mobility, shaping the β profile; we consider these effects in Section V

in the comparison with the full fluid model. Recombination of plasma at the anode is not

included here: the ion flux converted to the neutral flux at the anode is not added to the

neutral flow. It can also be included, increasing the amplitude of oscillations, but it is not

required for the existence of the oscillations. An example of such oscillations shown for

a typical Hall thruster parameters (the stationary plasma thruster “SPT 100”2), with the

channel length 3 cm, ionization rate β = 9× 10−14 m3s−1, va = 150 m/s. Atom density at

the anode na0 is evaluated from na0va = ṁ/Ama, assuming ṁ = 5 mgs−1, Xenon atom

mass, and A = 12.75π cm2. For the simplicity, we assumed the linear ion flow velocity

profile vi = (2.5x− 1.5) km/s (x is in [cm]), with the ion back-flow extent Lb = 0.6 cm. The

resulting time and space evolution of ion and atom densities is shown in Fig. 3. The observed

frequency is 12.8 kHz, in the range of the values observed in experiments and simulations

for breathing mode.

Now, for the same setup with ion velocity profile in the form vi = (2.5x− 1.5) km/s (x is

in [cm]), we will show effects of the amplitude of the ionization rate β, which is still assumed

uniform here for simplicity. The ionization rate coefficient β needs to be sufficiently large to

support plasma discharge. Interestingly, in addition to a threshold β value for the discharge

to exist, there is also a threshold between stable and oscillatory plasma behaviour. In the

oscillatory regime, there is a value of β when the amplitude of the oscillations is the largest

(note that here we assume that β is constant along the channel). It shouldn’t be of surprise,

as when the values of β are too high, the ionization takes place immediately near the left

end and so both density profiles have maximum values at the left end. The dependency of

the oscillation amplitude on β is shown in Fig. 4a, where the peak-to-peak amplitude of the
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(a) (b)

Figure 3. Evolution in space and time of atom (a) and ion (b) density, normalized to na0.

averaged in space density 〈ni〉x(t) is shown.

The frequency dependence on β is presented in Fig. 4b. If the ion back-flow region is very

short, i.e. vi(0) ≈ 0, the ionization mostly will occur at the anode for the same reasons, and

there would not be enough spatial separation between high and low atom density points.

Dependencies, similar to those shown in Figs. 4a, 4b, are also observed for different values

of the ion back-low extent Lb. They follow the same scaling as presented below in Figs. 5b,

6.

The effect of the ion back-flow region is investigated further for our reduced model by

taking the ion velocity profiles with a variable ion back-flow extent. The Fig. 5a shows

the velocity profiles taken as parabolas specified with the three points, vi(0) = −1.5 km/s,

vi(L) = 20 km/s, and vi(Lb) = 0 km/s, where Lb is the length of the ion back-flow region,

the distance from the anode to the transition point where the ion velocity reverse its sign.

The value of Lb was varied, with the system length set to 3 cm, the ionization rate β =

5× 10−14 m3/s, atom flow velocity va = 150 m/s. Simulations using these velocity profiles

reveal that that oscillation frequency scales with the atom fly-by frequency va/Lb in the

back-flow region, Fig. 5b. The oscillations amplitude decreases with decreasing Lb and the

oscillations disappear for Lb → 0, as shown in Fig. 6. Also, no oscillations were observed for

monotonically increasing ion velocity profiles with vi(0) ≥ 0.

Zero-dimensional predator-prey models predict that the frequency depends on the exhaust
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Figure 4. Peak-to-peak values of averaged in space ion density 〈ni〉x(t) as a function of ionization

rate (a). The main frequency component of observed oscillations as a function of the ionization

rate (b).
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Figure 5. Velocity profiles (a) for a variable ion back-flow region Lb while the exhaust velocity

is fixed to 20 km/s (300 eV is a typical ion energy in the exhaust plume of “SPT100”2). The

corresponding frequency (b) as a function of Lb in compare with neutral flyby frequency of va/Lb

in the backflow region.

ion velocity. Here, we show that for our model this effect is very small and, mostly, the back-

flow region “defines” the frequency. Fig. 7a shows the family of the ion velocity profiles,

constructed in a similar manner (by a parabola) but keeping the back-flow length the same

12



2 4 6 8 10
Lb, mm

0.0

2.5

5.0

7.5

10.0

P
ea

k-
P

ea
k

av
er

ag
e

d
en

si
ty

/
10

18

Figure 6. Peak-to-peak values of averaged in space ion density 〈ni〉x(t) as a function of the ion

back-flow region Lb. Oscillations disappear as Lb = 1 mm goes to zero.

(1 cm) and varying vi(L) = (14, 18, 22, 26) km/s. The resulting frequency for all these profiles

was found to be close to 10 kHz, Fig. 7b, predicted by the previous example in Fig. 5b with

the Lb = 1 cm.
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Figure 7. Velocity profiles (a) and corresponding frequency (b) as a function of vi(L), for the

variable ion exhaust velocity vi(L) while keeping the back-flow region Lb constant.

The mechanism of the oscillations can be considered in three main stages, starting from

a stationary state in Fig. 1a, but with the ion velocity back-flow region. In the first stage

we observe enhanced ionization process in the region of plasma stagnation (vi ≈ 0). The

13



ionization process in this stage may be approximated as ṅi = βnina, ṅa = −βnina (where

ni, na are some average plasma and atom densities, respectively, in that region). In this stage,

effects of atom inflow and ion outflow are relatively small here. The ionization proceeds

with the exponential rise plasma density ni ∼ exp (βnat) and depletion of atom density. In

the second stage, the newly created plasma peak splits and partially moves to the anode

(via back-flow) wiping down the rest of atoms near the anode. Finally, in the third stage,

the system enters the period of “regeneration” with both plasma and atom densities low,

while atoms slowly fill the region near the anode. The atom density remains higher than

the ion density, and the ion density balance is predominantly follows the equation ṅi =

βnina − γlossni, where γlossni represents the ion advection losses via the back-flow. In this

quasistationary state, there is no exponential rise of ionization but slow inflow of atoms

(to the right) filling this region toward the stagnation region. The third stage is also the

slowest and defines the breathing mode period, hence the backflow lengths defines the period

(Fig. 5b). Additionally, if the recombination at the anode is included, it increases a number

of atoms injected to the system for the stage three, and it increases the amplitude of the

oscillations.

V. REDUCED VS FULL SELF-CONSISTENT MODEL

In this section we compare the reduced and full models for the breathing modes, and

demonstrate that our simple reduced model, Eqs. (1,2), reproduces well the results from the

full self-consistent time-dependent model16. First, we give a brief description of the full fluid

self-consistent model for low-frequency ionization oscillations.

A. Full self-consistent model

The full model of low-frequency axial plasma dynamics in Hall thruster is considered in

electrostatic and quasineutral approximation for three species: neutrals, ions, and electrons.

Our model is fully fluid both for the ion, neutral, and electron components. The electron

equations in general are similar to those used in Refs.4,5. The full fluid model consists

of time-dependent PDE equations for neutral atom density na, plasma density n (ion and

14



electron), ion flow velocity vi, and electron temperature Te:

∂na

∂t
+ va

∂na

∂x
= −βnan, (17)

∂n

∂t
+

∂

∂x
(nvi) = βnan, (18)

∂vi
∂t

+ vi
∂vi
∂x

=
e

mi

E + βna (va − vi) , (19)

3

2

∂

∂t
(nTe) +

5

2

∂

∂x
(nvexTe) +

∂qe
∂x

= nvexE − nnaK− nW, (20)

where the electric field E is obtained from the electron momentum balance equation

vex = −µeE −
µe

ne

∂(nTe)

∂x
, (21)

obtained with neglected electron inertia, where µe is the electron mobility across the mag-

netic field (described below). Quasineutrality condition, along with the constraint
∫
L
Edx =

U0 (U0 is the applied potential) leads to the total current JT = en (vi − ve)

JT =

U0 +

∫
L

0

(
vi
µe

+
1

n

∂pe
∂x

)
dx∫

L

0

dx

enµe

, (22)

which is spatially uniform but may oscillate in time. Other quantities in the system (17-

20) are the constant atom flow velocity va, the ionization rate coefficient β (obtained with

BOLSIG+29 for Maxwellian EEDF using SIGLO database30), the elementary charge e, the

electron mass me, the ion (Xenon) mass mi = 131.293 amu, the anomalous energy loss

coefficient5 W, the collisional energy loss coefficient K (also via BOLSIG+), and the electron

heat flux given by

qe = −5

2
µenTe

∂Te
∂x

. (23)

The electron transport across magnetic field is described in the form of the magnetized

mobility

µe =
e

meνm

1

1 + ω2
ce/ν

2
m

, (24)

where νm the total electron momentum exchange collision frequency, ωce = eB/me is the

electron cyclotron frequency. In this model νm is represented in the form as was adopted in

Ref.31,

νm = νen + νwalls + νB, (25)
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where the electron-neutral collision frequency νen, electron-wall collision frequency νwalls,

and anomalous Bohm frequency νB are given with:

νen = kmna, (26)

νwalls = α107 [s−1], (27)

νB = (βa/16) eB/me. (28)

where km = 2.5× 1013 m−3s−1, α and βa are adjusting constants. The profile of external

magnetic field B is shown if Fig. 8a, with the channel’s exit in the peak of magnetic field

intensity, given by B = B0 exp (−(x− l)2/2δ2B), where l = 2.5 cm is the channel length

and δB defines a magnetic field profile width. This model use different parameters inside

(x < l) and outside (x ≥ l) the channel31–33, the near wall conductivity contribution (27)

αin = 0.2, αout = 0, and the anomalous contribution (28) is set to βa,in = 0.1, βa,out = 1.

The anomalous electron energy loss coefficient5 W is modeled as

W = νεε exp (−U/ε), (29)

where ε = 3/2Te, U = 20 V, and νε is electron energy anomalous loss coefficient. A constant

mass flow rate ṁ determines the value of na at the boundary together with the recombination

of plasma that flows to the anode, hence the boundary condition:

na(0) =
ṁ

miAva
− nvi(0)

va
, (30)

where A is the anode surface area of a thruster. Bohm type condition for ion velocity

can be imposed at the anode vi(0) = −bv
√
Te/mi, where bv = 0–1 is the Bohm velocity

factor which can be varied. Both anode and cathode electron temperature are fixed with

Te(0) = Te(L) = 2 eV. All other boundary conditions are free (spatial second derivative is

zero).

Following the LANDMARK benchmark34 Test Case 3, we use the parameters that result

in bulk low-frequency oscillations, with the electron energy anomalous loss coefficient inside

the channel νε,in = 107 s−1 and outside νε,in = 0.4 · 107 s−1. The resulting plasma currents

evolution shown in Fig. 8b, assuming the typical inner and outer radius of a Hall thruster

(“SPT 100”2) R1 = 3.5 cm, R2 = 5 cm, respectively. The input atom mass flow used in the

simulation is ṁ = 5 mgs−1 corresponds to I = ṁqe/mi = 3.67 A. The average ion current

(to the exit plane) is 3.68 A which is consistent with the mass flow rate. The electron current

16



(to the exit plane) is of the same order (or slightly larger). Other simulation parameters for

this test case are: δB,in = 1.1 cm, δB,out = 1.8 cm, A = π(R2
2 −R2

1), bv = 1.
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Figure 8. The magnetic field profile (a) used in full fluid and hybrid simulations, with the channel

exit located 2.5 cm from anode (dashed line). Low-frequency oscillations in time (b) of total current

I, ion current Ii (at x = 5 cm), and electron current Ie (at x = 5 cm) in the full fluid model using

specified parameters.

The self-consistent fluid model used here is essentially based on the formulations and

parameters suggested in Refs.3,5,31,33, also see the LANDMARK benchmark34. The fluid

model has been compared against the hybrid model31,35; both models demonstrate similar

results16.

B. Comparison of the reduced model with predictions of the full

self-consistent model

We compare now results of the full fluid model (in the regime described above), with the

reduced model. In the full model the ion velocity profile vi and the ionization rate β profile

are self-consistent variables, and for the reduced model we take averaged in time profiles of

these variables, Figs. 9a, 9b. We also include the ion back-flow recombination to the atom

boundary condition at the anode in the reduced model, described by Eq. (30), in agreement

with the full model.

Time evolution of na, ni, and the source S = βnani, are shown in Figs. 10a, 10d, 10g,
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Figure 9. Ion velocity (a) and ionization rate (b) coefficient profiles obtained from the full fluid

model as time-averaged over a few oscillation periods. They are used in the reduced model as fixed

profiles in time.

respectively. The same quantities from the reduced model are shown in Figs. 10b, 10e, 10h.

It is seen that the reduced model results in oscillatory behaviour, qualitatively reproducing

the breathing mode oscillations, but with much higher amplitudes (about one order) of

evolving variables. The observed natural frequency in this model is also higher, 14.9 kHz,

compared to 10.2 kHz in the full model.

The observed discrepancy can be explained by the absence of the electron temperature

evolution and lack of self-consistent ionization rate dynamics in the reduced model which is

known to affect the breathing mode characteristics, e.g. Ref. 36. One observation is that the

average position of the source term S in our reduced model is closer to the anode (Fig. 10h)

(compared with the full model) that results in higher frequency. Higher amplitude may also

be explained by the shift of the ionization source toward the region with higher ion back-flow

velocity so that more ions return to the anode and recombine enhancing the positive feedback

loop. We found that simply lowering the values of the ionization rate, precisely by taking

0.82β of the original averaged β profile (shown in Fig. 9b) agrees with the full model much

closer, see Figs. 10c, 10f, 10i, with the oscillation frequency of 11.8 kHz. While our intention

is not really to achieve full quantitative agreement, this exercise shows the sensitivity to the

temperature effects. It is also possible that the strong nonlinear dependence of the ionization

rate on temperature may suggest some weighting average for the ionization rate. We leave
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the investigation of the proper averaging technique for future work.

(a) na (Full) (b) na (Reduced) (c) na (Reduced, lower β)

(d) ni (Full) (e) ni (Reduced) (f) ni (Reduced, lower β)

(g) Source (Full) (h) Source (Reduced) (i) Source (Reduced, lower β)

Figure 10. Neutral density (a,b,c), ion density (d,e,f), and ionization source βnina (g,h,i) for the

full fluid model, the reduced model, and the reduced model with lower values of β (see captions).

Density values are normalized to 1019 m−3, and source values to 1024 m−3s−1. The spatial domain

is limited to channel region only, 2.5 cm from the anode.

To show that the atom velocity va plays a defining role in the observed oscillation fre-

quency, the full and reduced model (lower β) were compared against each other, Fig. 11.

Both full and reduced (with lower β) model show approximately linear behaviour for the
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frequency, again suggesting the feedback loop mechanism supported by ion back-flow and

advection of the neutral atoms. Interestingly, the ion current amplitudes are comparable

between the full and reduced (lower β) models, Fig. 12.
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Figure 11. Oscillation frequency as a function of neutral velocity in full and reduced (with lower

β) fluid models.

VI. SUMMARY

In this paper, we have proposed a reduced continuum 1-D model with the ion velocity

profile that has an ion back-flow (toward the anode) region. The model consists of two one-

dimensional equations for coupled dynamics of the ion and neutral densities. While the 0-D

simplification of this model, commonly referred to as the predator-prey model, shows the

oscillations, the continuum 1-D model with a uniform ion velocity and boundary conditions

typical of Hall thruster show damped modes converging to the analytical stationary state.

Under externally imposed perturbations at the left boundary, the 1-D continuum model

shows limited convective amplification of the perturbation (in the region where the local

value of the neutral density is smaller than plasma density) and subsequent convection

(with a slow amplitude decay) where the ion and neutral density perturbations are mostly

decoupled. Therefore the models with the uniform ion velocity, in the absence of additional
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(a) (b)

Figure 12. Temporal and spatial ion current dynamics in full model (a) and reduced model with

lower β (b), in Amperes (assuming cross section area A = 12.75π cm2).

effects e.g. such as temperature variations11, do not predict the excitation of the breathing

modes.

The key element of the proposed continuum model is the ion velocity profile that has an

ion back-flow (toward the anode) region. As it is shown here, such a system becomes unstable

and shows self-consistent nonlinear oscillations. The comparison between this reduced model

and the full self-consistent fluid model shows very similar characteristics for oscillations of

the ion and neutral densities, and ion current. We have investigated the scaling of the

frequency and amplitude of the oscillations as a function of the width of the back-flow

region and neutral flow velocity which show generic va/Lb dependence both in the reduced

and full models. These results suggest that the presence of the ion back-flow region may be

a critical condition for the breathing mode oscillations and the overlap of this region with

the ionization region creates the closed feedback loop necessary for the instability. These

results also indicate that the electron dynamics, in particular diffusion, which leads to the

appearance of the back-flow region, is important for the breathing mode. A number of

full models, reporting the breathing mode oscillations, include the electron diffusion either

explicitly via the electron fluid equations, such as full fluid4 or hybrid31 formulations, or via

full kinetic treatment as in the full kinetic (particle-in-cell) treatment37. The ion back-flow

near the anode occurs as a result of the electron diffusion ensuring the current conservation
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to maintain quasineutrality. The ion stagnation in the back-flow region triggering enhanced

ionization is suggested as the mechanism for the instability. It is also worth noting that the

electron diffusion is also a reason for the appearance of the singular sonic point where the

ion velocity is equal to the local sound velocity, vi = cs. The smooth (regular) solution is

obtained when the sonic point is made regular by imposing some constraints on the current,

mass flow rate, and plasma parameters. These constraints made singular point regular and

play an important role for the existence and characteristics of stationary solutions25,27,38,39.

As it was shown in16,40 the constraints indeed define the stability of the resulting profile and

characteristic frequency of the breathing mode.

One has to note, however, that low frequency ionization oscillations were also observed in

the models without the electron diffusion, and hence, without back-flow region5,8,41–43. It has

been suggested7 that the high frequency oscillations due to the resistive axial modes7,44,45 is

a driving mechanism for a breathing mode. Alternative mechanisms may be based on the

temperature dependence of the ionization coefficient11, other electron temperature effects46,

and/or more complex interactions between the low frequency modes involving ionization and

higher frequency modes in the ion transit time frequency range as it was suggested earlier16,47.

The simulations with the full model also demonstrate the existence of two different regimes

of the breathing mode16, the so-called solo regime, where only the low frequency mode

present, and the regime with coexisting low frequency and the high frequency ion transit

time oscillations. The breathing mode oscillations reproduced by our reduced model are

similar to the solo regime, but are different from the modes coexisting with high-frequency

ion transit time oscillations. The existence and nature of the breathing mode together with

the well pronounced high-frequency mode is an interesting question that will be addressed

in future studies with the full model.

In summary, we would like to conclude that the importance of the reduced models is

not only in their ability to predict reasonably well some essential features of the ionization

modes in Hall thrusters but also, and perhaps, even more importantly, in pointing to some

important physics involved in the modes excitation and characteristics. The reduced models

typically involve a smaller number of adjustable parameters compared to the full models,

e.g. as the values of the anomalous mobility are poorly known. Therefore, the tests of the

properties and consequences of the reduced models in the experiments13–15,23 could be an

effective approach to test the crucial physics responsible for the breathing modes oscillations.
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