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Abstract
The electron dynamics and the mechanisms of power absorption in radio-frequency (RF) driven,
magnetically enhanced capacitively coupled plasmas at low pressure are investigated. The
device in focus is a geometrically asymmetric cylindrical magnetron with a radially nonuniform
magnetic field in axial direction and an electric field in radial direction. The dynamics is studied
analytically using the cold plasma model and a single-particle formalism, and numerically with
the inhouse energy and charge conserving particle-in-cell/Monte Carlo collisions code
ECCOPIC1S-M. It is found that the dynamics differs significantly from that of an unmagnetized
reference discharge. In the magnetized region in front of the powered electrode, an enhanced
electric field arises during sheath expansion and a reversed electric field during sheath collapse.
Both fields are needed to ensure discharge sustaining electron transport against the confining
effect of the magnetic field. The corresponding azimuthal E×B-drift can accelerate electrons
into the inelastic energy range which gives rise to a new mechanism of RF power dissipation. It
is related to the Hall current and is different in nature from Ohmic heating, as which it has been
classified in previous literature. The new heating is expected to be dominant in many
magnetized capacitively coupled discharges. It is proposed to term it the ‘µ-mode’ to separate it
from other heating modes.

Keywords: RF magnetrons, new electron heating mode, collisionless electron energization,
magnetized plasma, Hall heating
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1. Introduction

An externally applied magnetic field allows to sustain gas dis-
charges at lower pressures and at higher plasma densities than
otherwise possible [1]. Magnetically enhanced plasmas play a
major role in advanced surface processing technologies such
as thin film deposition, plasma etching, or ion implantation
[2–6]. They are often termed ‘partially’ or ‘weakly’ magnet-
ized, referring to the fact that—at typical magnetic flux dens-
ities B of up to 100mT—only electrons are magnetized, while
ions are not. (A particle is called magnetized when its gyration
radius rL is smaller than other length scales like the reactor
size L, the scale length of the magnetic field l, and the mean
free path λ, and its gyration frequency ωc larger that than
other relevant frequencies like the excitation frequency ωRF

or the collision frequency ν [7]). In this study, we focus on
radio-frequency (RF) driven magnetrons [8, 9], or, more gen-
erally, on magnetically enhanced capacitively coupled plas-
mas (MECCPs), where a RF voltage drives an electrical cur-
rent across the magnetic field [10].

In order to optimize and control such discharges, it is cru-
cial to understand how exactly magnetized electrons acquire
and utilize their power. The aspect of ‘utilization’ is obvi-
ous: magnetization can confine energetic electrons to an act-
ive region which they can leave only by collisional interac-
tion (classical transport) or by scattering at instability-induced
fluctuations of the electric field (anomalous transport). This
improves utilization of the electron energy. In some discharge
configurations such as planar magnetrons, the electron drift
orbits are closed within the reactor, so that the effective sys-
tem size becomes infinite [11].

The processes which enable the electrons to acquire energy
are more difficult to address. In a fluid view, electron heating,
as the phenomenon is called, requires an electron current je
in the direction of the electric field E: The power dissipation,
i.e. the energy flow from the electromagnetic field to the elec-
trons, is equal to Pe = je ·E. The mechanisms underlying the
transport of electrons in magnetized plasmas are diverse and
notoriously complicated [12, 13]. Equally complicated are the
mechanisms of electron heating in MECCPs. Note that the
fluid picture itself may be physically insufficient and should be
supplemented by kinetic analysis: only those electrons whose
kinetic energies are above the inelastic thresholds of chemical
reactions can create useful new particles and radiation. Low-
energy electrons do not have this chance and merely take part
in transport processes. This consideration would motivate to
distinguish between electron heating in general and electron
energization in particular [14].

To get oriented, it helps to first consider the power absorp-
tion in non-magnetized CCPs. Traditionally, Ohmic heating
was assumed: The electrical field parallel to the electron flux
was taken to arise from Ohmic resistance, i.e. from the need
to overcome electron inertia and the momentum loss connec-
ted to elastic collisions with the neutral background particles
[1]. This process can already be captured within the Drude
model. (We use standard notation: me is the electron mass, e
the electron charge, ne the electron density, ωRF the frequency

of the applied voltage, and νe = vthe/λe the electron neut-
ral collision frequency, where λe is the mean free path and
vthe =

√
8Te/πme the thermal speed; Te is the electron tem-

perature). In the frequency domain, the plasma conductivity is
the complex σe = e2ne/(iωRF + νe)me (denoted as such by an
underline). The electron current is j

e
= σeE, and the phase-

averaged dissipated power, understood to be converted into
electron thermal energy, reads:

P̄Ω =
1
4

(
j
e
·E∗ + j∗

e
·E
)
=

e2neνe
2me

(
ν2
e +ω2

RF

) E·E∗. (1)

Kinetic theory gives insight into the underlying mechanism.
Assuming that the electric field is not too strong—eλe|E| ≪
Te, so that the energy increment between collisions is small—,
Ohmic heating is a diffusion process in energy space. The cor-
responding diffusion constant is proportional to the square of
the effective electric field and, provided that the elastic col-
lision frequency is smaller than the radio frequency, propor-
tional to the pressure p [15, 16]. At low gas pressure, however,
the concept of Ohmic heating loses its explanatory power. An
alternative mechanism, termed ‘stochastic heating’, was pro-
posed by Godyak [17, 18]. The modulated plasma sheath, spe-
cifically the electron edge, was treated as an oscillating, spec-
ularly reflecting ‘hard wall’. As a consequence, if an electron
of velocity v collides with the edge moving at speed us, then
the electron velocity after the collision is 2us − v. Under the
assumption that the oscillation of the electron edge and the tra-
jectories of the individual electrons are not correlated—which
explains the term ‘stochastic heating’—, this process leads,
on average, to an increase in kinetic energy. (It is evident that
the stated assumption is problematic, and recent treatments
seek to avoid it. However, the name stuck). Further investiga-
tions have shown that, for typical plasma conditions, stochastic
heating cannot really be of a collision-free nature. Rather, it
must be of a ‘hybrid’ type in that it requires an additional dis-
sipative mechanism in the plasma bulk, for example elastic
electron-neutral collisions, even if these are only implicitly
accounted for [19, 20].

It was also found that not only the moving sheath edge,
but also the momentarily quasineutral zone behind it contrib-
utes to the power dissipation via the ambipolar field [21, 22].
The concept of ‘pressure heating’ is based on the assumption
that sheath heating is caused by the periodic but temporally
asymmetric compression and decompression of the electron
fluid near the sheath [21, 23]. Lafleur et al [24] argued that
stochastic heating and pressure heating stem from the same
physical mechanism; they differ only in the spatial region
where the electron heating is assumed to occur. For a finite net
power absorption, the sheath expansion must not be a ‘mirror
image’ of the collapse, so that the dissipation integral

¸
je ·dE

is unequal to zero [23, 25].
Additional electron heating mechanisms which can be

linked to sheath physics are caused by the action of a reversed
electric field during sheath collapse (‘field reversal heating’)
[26–30] and the self-excitation of the plasma series resonance
(PSR) through sheath-related nonlinearities in asymmetric
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discharges (‘nonlinear electron resonance heating’ (NERH))
[31–36]. Lastly, it was found that also secondary electrons,
predominantly of the ion-induced γ-type, can significantly
contribute to the electron heating process and even enable a
transition of the discharge into the γ-mode [37, 38]. Of course,
all listed processes are simultaneously present and may act in
synergy [39].

The literature on the subject shows that all heating mech-
anisms present in unmagnetized capacitive plasmas can also
be seen in their magnetized counterparts, albeit in modi-
fied form. An early study by Lieberman, Lichtenberg, and
Savas stated that both Ohmic and stochastic heating would
be enhanced by a magnetic field, but via different physical
mechanisms [40]. The increased Ohmic heating was related to
a magnetically modified conductivity tensor. Stochastic heat-
ing would increase because magnetized electrons can collide
multiple times with the sheath during an expansion phase,
at each collision picking up additional energy. Both heating
processes were argued to scale positively with the magnetic
field strength, so that their ratio was predicted to stay con-
stant. Another early study found increased levels of sheath
heating under the resonance condition ω = 2ωce [41]. This
effect, which requires unusually small magnetic fields, was
revisited in [42, 43], where it acquired a new name ‘electron
bounce-cyclotron resonance heating’. Later research came to
different results. Using experiments, particle-in-cell/Monte
Carlo collisions (PIC/MCCs) simulations, or analytical mod-
els, references [44–46] claimed that even weakmagnetic fields
could make Ohmic heating prevail over other heating mechan-
isms. More recent work has argued similarly [47–49].

Also the other mechanisms were seen in magnetized plas-
mas. NERH was investigated for different values of the mag-
netic flux density in RF driven planar magnetron plasmas
[50, 51]. Electric field reversal was also observed and con-
nected with the inhibited electron transport due to the mag-
netic field [10, 52–54]. Influence of ambipolar field heating
was seen in [54]. Also secondary electron emission can play a
role. Kushner concluded that if the magnetic field is oriented
parallel to the electrode, heating by secondary electrons (of the
γ-type) is most effective when their gyroradius is comparable
to the elastic mean free path [10]. Other research, however,
indicated that a presence of secondaries is not always import-
ant for discharge sustainment [55].

As stated above, all electron heating mechanisms present in
unmagnetized capacitive plasmas are also active in MECCPs,
albeit in modified form. But does this also apply vice versa?
Can all electron heating processes in MECCPs be understood
in terms of their counterparts in unmagnetized CCPs? We do
not believe this is the case. Instead, we believe that the domin-
ant heating in MECCPs is ‘truly magnetic’ but has not been
recognized as such. In particular, we believe that the term
‘Hall-enhanced Ohmic heating’ [49] is a misnomer, and that
the underlying phenomenon has little in common with the
process of Ohmic heating, provided that term is used in the
original sense. We propose to call it ‘Hall heating’ or, with
reference to the role of the magnetic field, the ‘µ-mode’. In

this study we will outline our arguments and support them
with analysis and simulation. Specifically, we will contrast the
characteristics of a magnetized discharge with a nominal field
strength of B= 5mT with an unmagnetized reference case of
the same geometry. (If necessary, we mark the magnetized and
unmagnetized case with (M) and (U), respectively).

This publication is the first of three companion papers
aimed at improving the understanding of the electron dynam-
ics in magnetized RF discharges operated at low pressures. It
emphasizes the kinetic nature of the electron heating in such
discharges and demonstrates that the dominant Hall heating
is a new mechanism that directly leads to efficient ionization.
To focus on the electron transport across the magnetic field
lines, we study a deliberately simplified system, namely a long,
axisymmetric cylindrical magnetron. The second work [56]
computationally studies a planar RF magnetron in realistic
geometry with electron motion along and across the magnetic
field. Finally, the third publication [57] presents experimental
observations obtained in a planar RF magnetron and interprets
them with help of the newly gained knowledge about the elec-
tron dynamics in such devices.

2. The device under study and its operation regime

Our research focuses on a cylindrical magnetron with pro-
nounced geometrical asymmetry. Figure 1 provides a schem-
atic and defines the reference directions of the currents and
voltages. The powered inner electrode E has a radius of
RE = 1cm, the grounded outer electrode G a radius of RG =
6.5cm, with RC = (RE +RG)/2. The electrode area ratio is
AE/AG = 0.154. Invariance in the axial and azimuthal direc-
tions is assumed. The first assumption makes the discharge
infinitely long. (For evaluation purposes, we use a nominal
height of H= 10cm). The second assumption reflects that
symmetry breaking plasma instabilities are generally not sig-
nificant for the rather weak magnetic fields (B⩽ 10mT) con-
sidered in this study [58–60]. In the radial direction the mag-
netic field and the plasma characteristics are nonuniform.
The device is operated in argon at a pressure of p= 0.5Pa
and a temperature of T= 300K. A sinusoidal RF voltage
with an amplitude of V̂= 300V and a frequency of f =
13.56MHz is connected via a large blocking capacitor, over
which a self bias of V̄G =−161V drops. (All quantitative
information corresponds to the simulation results described
in section 7). The sheath before the powered electrode has
a phase-averaged thickness of s̄E ≈ 0.32cm; it develops a
large voltage V̄E = 200V that accelerates the impacting ions
to high energies. This, in turn, yields a high flux of second-
ary electrons which are also energized in the sheath. Ana-
logous processes at electrode G are less effective, there s̄G ≈
0.14cm and V̄G = 20V. The magnetic field B= Bz(r)ez is a
1d model of a planar magnetron field [50, 57, 61, 62]. Fol-
lowing the logic of Trieschmann et al [63], we adopt the axial
profile of the radial magnetic field component directly above
the racetrack from [56], see figure 1. An analytical form is

3



Plasma Sources Sci. Technol. 32 (2023) 045007 D Eremin et al

Figure 1. The cylindrical magnetron considered in this study. The
discharge is driven by an RF voltage source through a blocking
capacitor at the inner electrode, the outer electrode is grounded. The
respective radii are RE = 1cm and RG = 6.5cm. Due to the large
geometrical asymmetry, the plasma sheath at the powered electrode
is larger than the sheath at the grounded electrode. The magnetic
field Bz(r) is axially oriented and non-uniform in the radial direction
(see inset). The arrows indicate the sign conventions for the voltages
and currents.

as follows, where Bi = {−1.46,21.98,−0.90,9.92}mT and
λi = {35.4,81.2,127.3,173.4}m−1:

Bz(r) =
4∑
i=1

Bi exp(−λi r). (2)

Figure 2 shows the frequency and length scales of the dis-
charge. In the magnetized region, the electron gyro fre-
quency and the plasma frequency are comparable, ωce ≈
ωpe ≈ 109 s−1, while the RF and the collision rate are smal-
ler, ωRF ≈ 108 s−1 and νe ≈ 107 s−1. Likewise, the gyrora-
dius and the Debye length are the smallest scales, rL ≈ λD ≈
5× 10−4m, the gradient scale is larger, l≈ 5× 10−3m; and
the mean free path even more, λe ≈ 5× 10−2m. The electron
thermal speed and the E×B drift speed are similar, vthe ≈
vE×B ≈ 106ms−1. The ions are not affected by the magnetic
field.

3. Analysis based on the cold plasma model

A first insight into the discharge dynamics is obtained by con-
sidering the cold plasma model, also known as the Drude
model [1]. We adopt the cylindrical geometry as discussed
above. The electron plasma frequency ωpe(r) and the elec-
tron gyro frequency ωce(r) depend on r; the elastic electron
collision frequency νe is constant. The equations of continu-
ity and motion for the charge density ρ(r, t) and for the non-
vanishing components jr(r, t) and jθ(r, t) of the electric current
density are

Figure 2. Characteristic frequencies (top) and length scale (bottom)
of the cylindrical magnetron. Top: electron gyrofrequency (blue),
electron plasma frequency (green), radio frequency (black), electron
collision frequency (brown), ion plasma frequency (red). Bottom:
chamber radius (black), mean free path (brown), field scale (pink),
electron gyroradius (blue), Debye length (green).

∂ρ

∂t
+

1
r
∂

∂r
(rjr) = 0, (3)

∂jr
∂t

= ε0ω
2
peEr−ωce jθ − νe jr, (4)

∂jθ
∂t

= ωce jr− νe jθ. (5)

The electric field E= Er(r, t)er, derived from a potential
Φ(r, t), follows Poisson’s equation

ε0
1
r
∂

∂r
(rEr) =−ε0

1
r
∂

∂r

(
r
∂Φ

∂r

)
= ρ. (6)

As a consequence of the equations, the sum of the particle
current and the displacement current is divergence-free. This
allows to define the current through the discharge as

I(t) = 2πr H

(
jr+ ε0

∂Er
∂t

)
. (7)

If the time-evolution is harmonic with frequencyω (which is in
this context not necessarily the applied RF ωRF), the complex
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currents j
r
and j

θ
can be expressed as follows. The expressions

after the tilde hold in the limiting case ν= 0, ω ≪ ωce:

j
r
=−

(iω+ νe)ε0ω
2
pe

ω2 −ω2
ce − ν2

e − 2iνeω
Er

∼
iωε0ω2

pe

ω2
ce

Er = ene
iωEr
ωceBz

, (8)

j
θ
=−

ωceε0ω
2
pe

ω2 −ω2
ce − ν2

e − 2iνeω
Er ∼

ε0ω
2
pe

ωce
Er = ene

Er
Bz

. (9)

The relation of the discharge current to the electric field can
be written as

I= 2πrH iωε0εpEr, (10)

where the relative dielectric constant of the plasma is

εp = 1−
ω2
pe(ω− iνe)

ω (ω2 −ω2
ce − ν2

e − 2iνeω)

≈−
ω2
pe(ω− iνe)

ω (ω2 −ω2
ce − ν2

e − 2iνeω)
. (11)

The local resonance condition εp = 0 (with full form) leads
to a current-free resonance at the upper hybrid frequency

ωuh =
√
ω2
pe +ω2

ce, often termed ‘plasma parallel resonance’

[36]. If the approximate form of εp is used, this fast local
phenomenon is excluded and only the slower global beha-
vior remains in the description. Solving (7) for the electric
field in terms of the global current I and integrating over the
bulk—from RE + s̄E to RG − s̄G—yields the voltage drop over
the bulk. Added to this is the capacitive voltage drop over
the sheaths. We evaluate the model for the unmagnetized ref-
erence case (U) and the magnetized case (M) described in
sections 6 and 7 below. For a compact notation, we introduce
the inverse capacitances of the two sheaths and the inertia coef-
ficient (‘inductance’) of the bulk:

C−1
E =

ˆ RE+s̄E

RE

1
2πr Hε0

dr

= 1.32× 1011VAs−1 (U) or 5.00× 1010VAs−1 (M),
(12)

C−1
G =

ˆ RG

RG−s̄G

1
2πr Hε0

dr

= 1.63× 1010VAs−1 (U) or 3.90× 109VAs−1 (M),
(13)

LB =

ˆ RG+s̄G

RE+s̄E

1
2πr Hε0ω2

pe(r)
dr

= 1.01× 10−7VAs−1 (U) or 1.66× 10−8VsA−1 (M).
(14)

In the magnetized case there is an additional coefficient, form-
ally an inverse ‘capacitance’.

Physically, this capacitive behavior can be understood as
follows: themagnetized electrons in the bulk experienceE×B

drift, so that their kinetic energy density is me (Er/Bz)
2 ne/2.

The energy density of an electric field is ε0εrE2
r/2. Form-

ally equating the two yields a ‘relative permittivity’ of εr =
ω2
pe/ω

2
ce. Applying the formula to the series connection of an

infinite number of infinitely thin capacitors leads to

C−1
B =

ˆ RG+s̄G

RE+s̄E

ω2
ce(r)

2πr Hε0ω2
pe(r)

dr

= 0VAs−1 (U) or 9.64× 109VAs−1 (M). (15)

The impedance of the discharge is then

Z(ω) =
C−1

E

iω
+
C−1

G

iω
+(iω+ νe)LB +

C−1
B

(iω+ νe)
. (16)

At the frequency ωRF = 2π× 13.56MHz, the overall imped-
ance is dominated by the sheaths and acts as a lossy
capacitor, Z(ωRF) = (1.22− 1726i) VA−1 (U) or (15.9−
742i)VA−1 (M). This implies that the system response is
nearly quasistatic: the discharge state is controlled by the
momentary value VRF(t), and the discharge current reflects
the derivative dVRF/dt. Superimposed on this, however, can
be an excitation of the PSR. Its frequency is obtained by set-
ting the impedance Z(ω) equal to zero and solving for ω:

ωPSR =
√(

C−1
E +C−1

G +C−1
B

)
/LB

= 1.21× 109 s−1 (U) or 1.96× 109 s−1 (M). (17)

In the unmagnetized case, the ratio of the PSR frequency
to the RF is about 14; in the magnetized case, the ratio is
roughly 23. This shift can be understood in elementary terms
by assuming also uniform plasma density and uniform mag-
netic flux density profiles. Equation (17) gives ωPSR(M) =√
ω2
PSR(U)+ω2

ce with ωPSR(U) =
√

(s̄E + s̄G)/(RG −RE) ωpe

[64]. The resonances are damped with a rate of β =
6.0× 106 s−1 (U) or 7.0× 106 s−1 (M).

4. Single-particle picture

An alternative picture can be established by analyzing the
motion of individual electrons. We assume a magnetic field
B= Bz(r)ez and an RFmodulated electric fieldE= Er(r, t)er.
For our numerical trajectory example, we take the magnetic
field (2) and the electrical field from the simulations below,
see figure 18. (The results of this section can thus be com-
pared directly with the simulation outcome). Themotion along
the magnetic field lines is simple: the coordinate z moves uni-
formly in time, the velocity vz is constant:

dz
dt

= vz, (18)

dvz
dt

= 0. (19)
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Consequently, also the kinetic energy of the motion along the
magnetic field is constant:

dϵ∥
dt

≡ dϵz
dt

≡ d
dt

(
1
2
mev

2
z

)
= 0. (20)

The motion in the r-θ-plane is governed by the Lorentz force
and the inertial pseudo-forces, with the former typically dom-
inating the latter by an order of magnitude:

dr
dt

= vr, (21)

dθ
dt

=
vθ
r
, (22)

dvr
dt

=− e
me

(Er+ vθBz)+
v2θ
r
, (23)

dvθ
dt

=
e
me
vrBz−

vrvθ
r

. (24)

The kinetic energy in the r–θ-plane is modulated by the power
influx from the electric field. As expected, the Lorentz force
and the inertial force do not contribute:

dϵ⊥
dt

≡ d
dt

(ϵr+ ϵθ)≡
d
dt

(
1
2
mev

2
r +

1
2
mev

2
θ

)
=−evrEr.

(25)

A numerical integration of the cross-sectional equations of
motion can easily be carried out. For a medium-energy particle
in the strongly magnetized zone, figure 3 displays the traject-
ory in the cross-sectional r–θ-plane over a single RF period
and over a stretch of 25 RF periods. It clearly shows a super-
position of gyromotion and drift. Figure 4 displays the evol-
ution of the coordinates r(t) and θ(t) and the velocities vr(t)
and vθ(t) over two RF periods, respectively. Figure 5 shows
the corresponding kinetic energies.

It is instructive to compare the numerically calculated tra-
jectories above with approximate solutions constructed by
means of perturbation analysis. We apply a technique based
on a series expansion in the ratio of the gyroradius to the
discharge scale, η = rL/|r−RE| ≈ 0.1. For a qualitative pic-
ture, it suffices to evaluate the power series up to the lead-
ing order in η. (appendix provides more mathematical details
and formulates also higher order terms.) We start by noting
that there is, due to the cylindrical symmetry, a strict constant
of motion, the canonical momentum pθ = rmevθ − reAθ(r),
where Aθ is the θ-component of the magnetic vector poten-
tial A. It can be used to define the temporally constant ref-

erence radius r̂ of an electron trajectory via the relation pθ
!
=

−r̂ eAθ(r̂). In the numerical example, r̂= 16.1mm.We use the
circumflex also to denote the constant magnetic flux density
B̂= Bz(r̂) = 5.4mT at the reference radius r̂. The correspond-
ing gyrofrequency is Ω̂ = eB̂/me = 9.5× 108 s−1. The tem-
porally varying electric field strength at the reference point
is termed Ê(t) = Er(r̂, t); the corresponding drift speed is
v̂E×B(t) = Ê(t)/B̂. An approximate solution of the equations

Figure 3. Trajectory of a magnetized electron in the cross-sectional
plane, showing the superposition of small scale gyration and large
scale drift. Top part: trajectory recorded over one RF period; the
blue dots have 1ns separation. Bottom part: trajectory followed over
25 RF periods.

Figure 4. Radial coordinate r(t), azimuth θ(t), radial velocity vr(t),
and azimuthal velocity vθ(t) of the sample trajectory followed over
two RF periods. Solid: particle coordinates and velocities. Dashed:
coordinates and velocities of the guiding center. Dotted: reference
radius r̂.

of motion can then be expressed as follows. Note the corres-
pondence of (28) and (29) with (8) and (9) under the assump-
tions νe → 0, ω ≪ ωce, and ρ̂→ 0:

r= r̂− v̂E×B
Ω̂

+ ρ̂cos
(
Ω̂ t+ ϕ̂

)
, (26)

θ = θ̂+
ρ̂

r̂
sin
(
Ω̂ t+ ϕ̂

)
, (27)

vr =− 1

Ω̂

dv̂E×B

dt
− Ω̂ ρ̂ sin

(
Ω̂ t+ ϕ̂

)
, (28)

vθ =−v̂E×B(t)+ Ω̂ ρ̂ cos
(
Ω̂ t+ ϕ̂

)
. (29)
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Figure 5. Kinetic particle energy in radial direction (blue) and in
azimuthal direction (red) of the sample trajectory over two RF
periods. The second curve shows constructive and destructive
interference of gyro motion and drift.

The gyroradius ρ̂ is an adiabatic constant, i.e. independent of
time, while the gyrophase offset ϕ̂ and the azimuth offset θ̂
exhibit a slow evolution. In the next order approximation, this
is described as follows, with the prime indicating the derivative
with respect to r̂:

dϕ̂
dt

=
3
2

(
1
r̂
− B̂ ′

B̂

)
v̂E×B+

Ê ′

2B
, (30)

dθ̂
dt

=−1
r̂
v̂E×B. (31)

The kinetic energy of the electron can be calculated as

ϵ≈ 1
2
meΩ̂

2ρ̂2 +
1
2
me

(
v̂E×B(t)

2 +
1

Ω̂2

(
dv̂E×B

dt

)2
)

+meΩ̂ρ̂
(
−cos

(
Ω̂ t+ ϕ̂

)
v̂E×B(t)

+sin
(
Ω̂ t+ ϕ̂

) 1
Ω̂

dv̂E×B

dt

)
+

1
2
mev

2
z . (32)

Obviously, the electron dynamics can be described as the
superposition of a large-scale drift of the guiding center—
first terms in (26)–(29)— and a small-scale gyromotion (last
terms). The guiding center trajectories have a banana-like
shape, which can be explained physically: the force F=
−eÊer perpendicular toBmodulates the energy of the gyrating
electron; it grows when the electron moves in the direction of
F and decreases when it moves otherwise. The net effect is a
drift vd =−v̂E×B(t)eθ. The resulting shift in the azimuthal pos-
ition r∆θ is of the order of vE×B/ωRF. In contrast, the motion
in the radial direction is of second order: Because the drift vd is
RF modulated, it causes an acceleration that acts as a pseudo-
force. The corresponding drift is known as the polarization
drift [1], it has a phase shift of 90◦ and is an order of mag-
nitude smaller than the E×B drift. The corresponding shift
∆rp in the radial position is proportional to the electric field:

Figure 6. Orbits (left) and kinetic energies (right) of two typical
electrons with a similar initial radial location but different initial
velocities (see description in the text).

vp =−me
dv̂E×B

dt
eθ ×

B̂

eB̂2
=− 1

Ω̂

dv̂E×B

dt
er, (33)

∆rp =− v̂E×B

Ω̂
er =−meÊ

eB̂2
er. (34)

The ratio ∆rp/r∆θ thus scales as ωRF/ωce ≪ 1. The banana
shape results from the curvature of the azimuthal coordinate
lines. The trajectories somewhat resemble the banana-shaped
trajectories of the guiding center of trapped particles in toka-
maks, although the underlying drift mechanisms are of a dif-
ferent nature [65]. Note that the azimuthal drift velocity and
the gyro speed are comparable. The azimuthal kinetic energy
εr therefore shows destructive and constructive interference;
values of nearly 20eV can be reached, see figure 5.

The approximate solution gives only a qualitative picture.
Due to the strong non-uniformity of particularly the electric
field at the sheath edge, finite Larmor radius effects play a role.
In addition, the motion is strongly influenced by collisions.
Figure 6 (left) shows the orbits of two electrons taken from the
self-consistent simulation described in section 7 below. Both
electrons start near the electrode (marked by black circles) dur-
ing sheath collapse. The first electron (red) is initially trapped
by the magnetic field. It experiences a modulated electric field,
which is positive from t= 0ns to t= 15ns, negative from
t= 15ns to t= 57ns, and then positive again. The correspond-
ing azimuthal E×B-drift results in a banana-like trajectory
of the guiding center, the width of which is determined by
the polarization drift. Figure 6 (right) shows that the kinetic
energy is also modulated. At t= 73ns and t= 74ns, the elec-
tron undergoes elastic collisions which change its orbit and
cause it to go to the electrode during the next phase. The other
electron (blue) also remains initially trapped close to the elec-
trode, despite collisions at t= 30ns and t= 70ns. Between
the elastic collisions, it experiences a strong electric field of
changing polarity and changes its energy accordingly. A final
collision at t= 100ns scatters the particle near the grounded
electrode where the magnetic field is weak. There it follows an
orbit with a very large gyroradius and is repeatedly reflected
by the potential of the grounded sheath.
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5. Kinetic description and velocity moments

For a complete picture of the processes in the discharge,
the dynamics of the particles (including collisions and wall
interactions) must be coupled to the evolution of the fields.
In the low pressure regime of magnetrons, kinetic and non-
local phenomena are expected, and a kinetic approach is to
be adopted. The particle sector is described by a collection
of Boltzmann equations for the distribution functions fs =
fs(r,vr,vθ,vz, t), with s= 1 . . .Ns. (Our specific calculations
use s ∈ {e, i}.) For the streaming term on the left, the equations
of motion (18) are used, while the term on the right describes
the action of collisions:

∂fs
∂t

+ vr
∂fs
∂r

+

(
qs
ms

(
Er+ vθBz

)
+
v2θ
r

)
∂fs
∂vr

−
(
qs
ms
vrBz+

vθvr
r

)
∂fs
∂vθ

= C( fs). (35)

Because of the small dimensions of the discharge and the rel-
atively small electron density, the electrostatic approximation
can be adopted. The radial electric fieldEr is the gradient of the
electrostatic potential, Er =−∂Φ/∂r, and Poisson’s equation
can be written as

−ε0
1
r
∂

∂r
r
∂Φ

∂r
=

Ns∑
s=1

qs

ˆ
fs dvr dvθ dvz. (36)

A direct solution of these equations with current com-
putational resources is cumbersome. We thus employ
ECCOPIC1S-M, a specialized member of our own Energy-
and Charge-COnserving PIC (ECCOPIC) suite of GPU-
parallelized energy and charge conserving PIC/MCCs codes
[66]. ECCOPIC1S-M is an electrostatic 1d3v code for mag-
netized low pressure discharges in Cartesian, cylindrical, or
spherical geometry. It contains several innovations over stand-
ard PIC/MCC. The particle positions and potential values are
found self-consistently during a time step, using the Crank–
Nicolson method inherent to energy-conserving PIC/MCC
schemes [67]. The algorithm relaxes the criterion for the onset
of the finite grid instability which causes numerical heating
in conventional PIC/MCC if the cell size is greater than the
Debye length [68]. The accuracy of the orbit integration is
controlled by an adaptive sub-stepping technique. An external
network with voltage source and blocking capacitor is fully
integrated. The collisions are evaluated with the null collision
method [69] modified for GPUs [70]; the cross sections are
adopted from Phelps [71, 72]. As the plasma density is low,
Coulomb collisions are neglected. The ion-induced secondary
electron emission coefficient was assumed to be γ= 0.1 and
the sticking coefficient s= 1. For details on the implemented
algorithms, see [66, 67, 73], for verification of the code family
ECCOPIC and benchmarking, see [74–76].

The primary results of a PIC/MCC run are the electric
potential values on the grid and the particle positions as func-
tions of time. Single particle trajectories can be recorded as
well. More insight into the dynamics can be obtained by recon-
structing the velocity moments of the phase-space distribu-
tion function f. Defined abstractly as integrals over velocity

space, they are realized in the simulation code as sums over
all particles in the respective grid cells. To reduce noise, an
average is taken over 1000 RF periods after convergence has
been reached. Focusing on the electrons and suppressing the
index e, we list the electron density

n(r, t) =
ˆ
f(r,vr,vθ,vz, t)d

3v, (37)

the mean electron velocities in the directions r and θ,

ur(r, t) =
1
n

ˆ
vrf(r,vr,vθ,vz, t)d

3v, (38)

uθ(r, t) =
1
n

ˆ
vθf(r,vr,vθ,vz, t)d

3v, (39)

and the non-vanishing elements of the pressure tensor,

prr(r, t) =
ˆ
m(vr− ur)(vr− ur)f(r,vr,vθ,vz, t)d

3v, (40)

prθ(r, t) =
ˆ
m(vr− ur)(vθ − uθ)f(r,vr,vθ,vz, t)d

3v, (41)

pθθ(r, t) =
ˆ
m(vθ − uθ)(vθ − uθ)f(r,vr,vθ,vz, t)d

3v, (42)

pzz(r, t) =
ˆ
mvzvzf(r,vr,vθ,vz, t)d

3v. (43)

Furthermore, we define the followingmoments of the collision
integral,

S=
ˆ
C( fs)d

3v, (44)

Fr =
ˆ
mvrC( fs)d

3v, (45)

Fθ =

ˆ
mvθC( fs)d

3v. (46)

Multiplying the kinetic equation with 1, mvr and mvθ and
integrating over velocity space yields the particle balance and
the momentum balances in the directions of r and θ:

∂n
∂t

+
1
r
∂

∂r
(rnur) = S, (47)

∂

∂t
(mnur)+

1
r
∂

∂r

(
r
(
mnu2r + prr

))
− 1
r

(
pθθ +mnu2θ

)
=−en(Er+ uθBz)+Fr, (48)

∂

∂t
(mnuθ)+

1
r2

∂

∂r

(
r2 (mnuruθ + prθ)

)
= enurBz+Fθ. (49)
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6. PIC/MCC results: reference case without
magnetic field

For reference, let us first consider the simpler unmagnetized
case. It follows the logic of all RF-driven capacitive dis-
charges: The plasma self-organizes into the quasineutral bulk
and two electron-depleted sheaths in front of the driven and
grounded electrodes, respectively. Figure 7 shows the phase-
averaged densities of the electrons n̄e(r) and the ions n̄i(r)
and the electron densities ne(r, t) at t= 0 and t= TRF/2. The
peak density is n= 1.5× 1015m−3. The electrons can follow
the electric field, their plasma frequency ωpe = 2.2× 109 s−1

(center) or ωpe = 6.5× 108 s−1 (electrode sheath) is larger
than the RF ωRF = 8.5× 107 s−1. The ions, in contrast, are
almost unmodulated and react only on the phase-averaged
field; their plasma frequency is ωpi = 8.0× 106 s−1 (center)
or ωpi = 2.4× 106 s−1 (electrode sheath). Figure 8 shows the
applied voltage, the discharge and sheaths voltages, and the
bias voltage. Figure 9 provides a spatio-temporal map of the
electric field Er(r, t). The electric current I(t) through the dis-
charge (figure 10) is spatially constant, it is the sum of the
(small) ion current, the electron current, and the displacement
current. Figure 11 shows spatio-temporally resolved maps of
the components of this current. The factor 2πr reflects the cyl-
indrical symmetry of the device, H is its nominal height:

I(t) = 2πrHj(r, t) = 2πr H

(
eniui − eneue + ε0

∂Er
∂t

)
. (50)

Due to the cylindrical device geometry, the current densit-
ies at the driven and the grounded electrode scale like jE : jG =
RG :RE = 6.5 :1. This makes the discharge strongly asymmet-
ric; the inner sheath is much wider (̄sE = 1.1cm) than the
grounded outer sheath (̄sG = 0.56cm). To understand the elec-
tric behavior of the discharge, it is useful to consult a simpli-
fied model which analyzes the evolution of the charges in the
driven and grounded sheath,

QE = H
ˆ RC

RE

e(ni − ne)2πrdr, (51)

QG = H
ˆ RG

RC

e(ni − ne)2πrdr. (52)

The RF current modulates the charges of the two sheaths. Neg-
lecting small terms related to charge carrier losses to the elec-
trodes, we write as follows, where the charge quantity Q̃(t) is
the phase-average-free integral of −I(t), see figure 12:

dQE

dt
=−dQG

dt
=−I(t) = dQ̃

dt
. (53)

The voltage drop over the discharge V(t) is equal to the sum
of the applied RF voltage VRF(t) and the nearly constant self-
bias Vsb =−224V. Assuming that the sheath voltages VE and
VG are functions of QE and QG, respectively (figure 13), and
neglecting all other electric fields, a voltage balance can be for-
mulated. Here, the offset charges Q̄E, Q̄G and the self bias Vsb

Figure 7. RF period-averaged ion density n̄i(r) (solid red) and
electron density n̄e(r) (solid green) of the unmagnetized reference
discharge. The dashed green lines denote electron densities ne(r, t)
at the sheath minimum (t = 0) and maximum (t = TRF/2),
respectively.

Figure 8. Phase-resolved curves of the applied source voltage
VRF(t), the self bias voltage Vsb(t), the total discharge voltage Vd(t),
the sheath voltages VE(t) and VG(t), and the voltage drop Vbulk(t)
over the plasma bulk for the unmagnetized reference case.

are constants which self-adjust so that the floating condition
holds:

−VE
(
Q̄E + Q̃(t)

)
+VG

(
Q̄G − Q̃(t)

)
−Vsb = VRF cos(ωt).

(54)

This quasistatic model explains much of the electrical beha-
vior: the sheath voltages and the bias voltage are determined
by the voltage VRF(t). The periodic charging and discharging
of the sheaths gives rise to the discharge current I(t). How-
ever, the model over-idealizes: its predicts that the charges and
voltages are exact functions of the RF voltage VRF(t), and that
the discharge current I(t), being a derivative of Q̃(t), has an
exact 90◦ phase shift. This would imply zero net heating. (See
the appendix of [25] for details on this argument.)

In reality, and in the results of the PIC/MCC simulation, the
current–voltage phase angle is not exactly 90◦ but very close
to it,

cosφ =
1
T

ˆ T

0
IVdt

/√
1
T

ˆ T

0
I2 dt

1
T

ˆ T

0
V2 dt

= 0.0439= cos87.5◦, (55)
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Figure 9. Spatio-temporally resolved electric field Er(r, t) for the
unmagnetized reference discharge. The color shading is scaled to
resolve the weak fields in the plasma; the additional contour lines
have a separation of ∆E= 5000Vm−1. The plasma-sheath
transition is indicated by the black contours ne/ni = 0.1,0.5,0.9
(from inside to outside) which will be used also in other figures.

Figure 10. Discharge current I(t) of the unmagnetized case (solid)
in comparison with the discharge current of the corresponding
Drude model (dashed).

and the phase-averaged dissipation is not zero but

P̄=
1
T

ˆ T

0
IVdt= 1.22W. (56)

Responsible for the non-vanishing heating are, in fact, the
small ‘other electric fields’ that were neglected in the voltage
balance (54). These small fields are needed to locally drive
the current density j(r, t) which corresponds to the globally
determined discharge current I(t). (They are also not well rep-
resented in the cold plasma model whose predictions of ϕ =
89.96◦ for the phase angle and P̄= 0.018W for the Ohmic-
ally dissipated power are unrealistic. However, the cold plasma
model explains well the current oscillations related to the PSR;
the predicted value of ωPSR = 1.29 × 109 s−1 agrees with the
outcome of the simulations.) In the vicinity of the sheaths,
where the local plasma frequency ωpe(r) is close to ωPSR, also
Langmuir oscillations occur [77]; see the phase-resolved maps
of the electric field Er(r, t), the particle current jr(r, t), and the
displacement current jd(r, t). The hallmark of Langmuir oscil-
lations is a 180◦ degree phase shift between jr and jd.

Of the power P̄= 1.22W provided by the RF source, P̄i =
0.91W are absorbed by the ions and P̄e = 0.31W by the elec-
trons. The energy transfer to the ions takes place in the sheaths
and can be described in terms of the period-averaged field Ēr.
The energy exchange between the electric field and the elec-
trons, however, is a complex spatio-temporal phenomenon,
involving both the RF excitation and the self-excited PSR.
Insight is gained from a velocity moment analysis of the kin-
etic equation [25, 78]. We solve the momentum balance (48)
for the electric field which then can be separated into the iner-
tia field, the pressure field, and the collisional field:

Er =− 1
en

(
∂

∂t
(mnur)+

1
r
∂

∂r

(
rmnu2r

)
− mnu2θ

r

)
− 1
ren

(
∂

∂r
(rprr)− pθθ

)
+

π̇r
en

≡ Eir+Epr+Ecr. (57)

Multiplying by rjr =−renur, we establish the mechanical
energy balance and obtain a split of the radially weighted elec-
tron power dissipation rPer, see figure 14,

rPer = rjeEr = rmur

(
∂

∂t
(nur)+

1
r
∂

∂r

(
rnu2r

)
− nuθuθ

r

)
+ ur

(
∂

∂r
(rprr)− r

pθθ
r

)
− rurπ̇r

≡ rPir+ rPpr+ rPcr. (58)

There is almost no electron heating in the plasma bulk; virtu-
ally all RF power is absorbed in the temporarily quasineutral
sections of the sheaths. All the heating processes discussed in
section 1 are present, but are of different importance. ‘Clas-
sical’ Ohmic heating is weak: the collisional term rPc contrib-
utes only 25% to rPe, not surprising at the small gas pressure
of only p= 0.5Pa. The inertia term rPi can be momentarily
large but is small on average. (This reflects that inertia forces
are often non-dissipative: electrons accelerated during one half
phase of PSR oscillations can be decelerated in the other and
feed their energy back.) The main contribution is thus embod-
ied in the pressure term Ppr.

A kinetic analysis can refine this picture. Immediately after
sheath collapse, in the interval t= 0.02TRF to t= 0.14TRF, the
electrode sheath expands with a speed of us ≈ 2× 106ms−1,
this high speed arises from a synergy of the RF excitation
and the PSR oscillation excited at the moment of sheath
collapse [31]. The fast moving sheath reflects the incoming
electrons according to v→ 2us − v. A group of energetic elec-
trons forms, which, further accelerated by the ambipolar field
of the presheath, propagate beam-like towards the grounded
electrode. This can be seen in figure 15which displays the radi-
ally weighted, spatio-temporally resolved profile of the ioniz-
ation term. Before the grounded electrode, the energetic beam
is stopped by the ambipolar field and by the retreating sheath,
giving rise to a negative power density.

However, before reaching that region, some of them have
lost their directed energy already by collisions in the bulk, so
that even if the rest is fully decelerated by the opposite sheath,
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Figure 11. r-weighted particle current rjr(r, t) (top) and displacement current rjdr(r, t) (bottom) of the unmagnetized reference discharge.
Note that the sum of the two is radially invariant.

Figure 12. Charges of the electrode sheath QE(t) and the ground
sheath QG(t) together with the average-free integral Q̃(t) of the
current I(t) for the unmagnetized reference case.

Figure 13. Parametric plot of the electrode sheath voltage VE(t) and
the ground sheath voltage VE(t) versus the sheath charges Q(t) for
the unmagnetized reference case.

the period-averaged energy transfer rate is positive. In the
second half of the RF period, the sheaths switch roles, but with
less effect on the heating process, since the sheath before the
grounded electrode is less strongly modulated. Another source
of temporal asymmetry can be attributed to different electron
temperatures during sheath expansion and collapse, also res-
ulting in a positive period-averaged power absorption [22, 25].
Heating is therefore substantial in two situations: when there is
a violent acceleration of a significant fraction of particles at the

Figure 14. The radially weighted spatio-temporally resolved total
power transfer rPer from the electric field to electrons in the radial
direction and its constituents (Ppr, Pcr, Pir) from equation (58) for
the unmagnetized reference discharge.

sheath edge, or at the sheath-presheath boundary where a sig-
nificant temporally asymmetric ambipolar field is present [22].

7. Case with magnetic field

We now turn to the more complex magnetized case. (Figure 1
gives a true-to-scale schematic.) Also this discharge self-
organizes into a quasineutral bulk and two electron-depleted
sheaths in front of the driven and grounded electrodes,
respectively. Its plasma density, however, is 7.5 times higher,
the peak density is nmax = 1.24× 1016m−1. The sheaths are
thinner by nearly a factor of four, s̄E = 0.32cm and s̄G =
0.14cm. Figure 16 shows the phase-averaged densities n̄i(r)
and n̄e(r) along with snapshots of ne(r, t) at the phases t= 0
and t= TRF/2.

Again, the electrons can follow the field, their
plasma frequency is ωpe = 5.7× 109 s−1 (center) or ωpe =
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Figure 15. The radially weighted, spatio-temporally resolved
profile of the ionization term for the unmagnetized reference
discharge.

Figure 16. RF period-averaged ion density n̄i(r) (solid red) and
electron density n̄e(r) (solid green) of the magnetized discharge.
The dashed green lines represent the electron densities ne(r, t) at the
moments of electrode sheath minimum (t= 0) and maximum
(t= TRF/2), respectively.

2.2× 109 s−1 (electrode sheath), while the ion component is
essentially unmodulated, ωpi = 2.1× 107 s−1 (center) or ωpi =
8.1× 106 s−1 (electrode sheath). Figure 17 shows the voltages.
Figure 18 provides a map of the electric field Er(r, t).

At first glance, not much has changed compared to unmag-
netized reference discharge. The applied voltage VRF(t) is the
same. The discharge voltage Vd(t), the sheath voltages VE(t)
and VG(t), and the self bias Vsb(t) are similar. The bulk voltage
Vb(t) remains small. Obviously, the discharge is capacitive as
well, and the quasi-static analysis (54) still applies. In fact, it
is now even more applicable: Because of the higher value of
ωPSR, the PSR is no longer excited by the sheath nonlinearit-
ies, and the total current I(t) = 2πHrj(r, t) is better captured
by the quasi-static model or the Drude model, figure 19. As
shown in figures 20 and 21, it is carried by the electrons in the
bulk and flows as displacement current in the sheaths. (Due to
the absence of PSR oscillations, there is almost no displace-
ment current in the bulk.) In contrast to the unmagnetized case,
there is now also an azimuthal current jθ, see figure 22. The

Figure 17. Phase-resolved curves of the applied source voltage
VRF(t), the self bias voltage Vsb(t), the total discharge voltage Vd(t),
the sheath voltages VE(t) and VG(t), and the voltage drop Vbulk(t)
over the plasma bulk for the magnetized case.

Figure 18. Spatio-temporally resolved electric field Er(r, t) for the
magnetized magnetron discharge. The color shading is scaled to
resolve the weak fields in the temporarily quasi-neutral regions;
the additional contour lines have a separation of ∆E= 20kVm−1.

waveforms of the sheath charges are similar to those of the
unmagnetized case, figure 23. They are, however, larger by a
factor of 2. This ratio, which reflects the higher plasma density
and the thinner sheaths of the magnetized case, is also visible
in the amplitude of the current and in the form of the charge
voltage relations VE(Q) and VG(Q) shown in figure 24.

The simulation determines the current–voltage phase angle
to cosφ = cos83.5◦ = 0.113 and the dissipated RF power
to P̄= 6.76W. (The Drude model, with cosφ = cos88.8◦ =
0.021 and P̄= 1.30W is far off.) P̄i = 3.98W is taken
by the ions, P̄e = 2.78W by the electrons. The power
input ratio matches the density ratio, nmax(M)/nmax(U)≈
P̄e(M)/P̄e(U)≈ 8. The plasma density of the magnetized case
is higher because the heating is more efficient.Wewill demon-
strate that it also has a very different physical character.

As in the unmagnetized reference case, the heating mech-
anism is related to the electric field in the ambipolar zone
which is neglected in the quasi-static analysis and which is
only poorly represented by the Drude model, see figure 18. Its
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Figure 19. Discharge current I(t) of the magnetized case (solid) in
comparison with the discharge current of the corresponding Drude
model (dashed).

Figure 20. Radially weighted particle current rjr(r, t) in the
magnetized case.

individual components can be analyzed by solving the radial
momentum balance (48) with respect to the electric field:

Er =− 1
en

(
∂

∂t
(mnur)+

1
r
∂

∂r
(rmnu2r )−

mnu2θ
r

)
− 1
ren

(
∂

∂r
(rprr)− pθθ

)
− uθBz+

Fr
en

≡ Ei +Ep +EH +Ec. (59)

The terms on the right can be obtained from the simulation.
Two contributions dominate, the pressure field Ep and the Hall
field EH. The pressure field appears at the electron edges of
both sheaths and points outward, i.e. is negative around sE(t)
and positive around sG(t). As in the unmagnetized case, it acts
as an indicator of the beginning depletion field with which the
electrons are roughly in Boltzmann equilibrium. The Hall field
EH reflects the Lorentz force and appears only in the magnet-
ized zone. It has a 180◦ phase shift with respect to the elec-
tron edge sE. This can be explained in terms of the single-
particle picture above: as (34) shows, a positive (reversed) field
is needed to move electrons to smaller values of r and a negat-
ive one to push them in the opposite direction.) There is thus
a positive interference between Ep and EH at the time of the
sheath maximum and a cancellation around time of the sheath

Figure 21. Radially weighted displacement current for the
magnetized case.

minimum. However, as EH is also active where quasineutrality
holds, a strong positive field appears during the sheath min-
imum in the zone 1cm⩽ r⩽ 2cm. The other electric field
terms on the right of (59)—reflecting the influence of electron
inertia and collisions—are much smaller (see [54]). The dom-
inance of the pressure field and the Hall field can also be detec-
ted in figure 25 which displays a phase-resolved map of the
radially weighted electron power input rPe = rjerEr. Its indi-
vidual constituents, defined on the basis of the electrical field
analysis (59), are displayed in figure 26:

rPr = mur

(
r
∂

∂t
(nur)+

∂

∂r

(
rnu2r

)
− nu2θ

)
+ ur

(
∂

∂r
(rprr)− pθθ

)
− rjruθBz− rurπ̇r

≡ rPir+ rPpr+ rPH + rPcr. (60)

The pressure term Ppr appears only in the thin transition
zones around the electron edges; its value is positive when
the sheaths are expanding and negative when they are retract-
ing. The phase average is close to zero. The Hall term PH is
only active in the magnetized region, it is negative just after
the sheath collapse and positive just before. The other contri-
butions to the power balance are essentially negligible.

The Hall contribution PH does not correspond to true power
dissipation, as magnetic fields do not do any work and cannot
contribute to heating. Instead, the term represents a flow of
mechanical energy conducted from radial to azimuthal degrees
of freedom and back. This view is supported by the follow-
ing equation which is obtained by multiplying the azimuthal
momentum balance (49) with uθ:

renuθurBz = uθ

(
r
∂

∂t
(mnuθ)+

1
r
∂

∂r

(
r2mnuruθ

))
+ uθ

1
r
∂

∂r

(
r2prθ

)
− ruθπ̇θ

= rPiθ + rPpθ + rPcθ. (61)

The term on the left is the negative of PH; it acts as power
source for the azimuthal motion. Figure 27 shows the three
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Figure 22. Azimuthal electron current density jeθ(r, t) for the
magnetized case.

Figure 23. Charges of the electrode sheath QE(t) and the ground
sheath QG(t) together with the average-free integral Q̃(t) of the
current I(t) for the magnetized case.

Figure 24. Parametric plot of the electrode sheath voltage VE(t) and
the ground sheath voltage VE(t) versus the sheath charges Q(t) for
the magnetized case.

contributions on the right. To begin with the least important
one: the term Ppθ reflects the shear component of the pressure
tensor and is linked to the collisionless effect of gyroviscosity:
radial transport of the axial momentum component caused by
electron gyration [79]. Physically, and by numerical value, it
is rather insignificant. The term Piθ is associated with electron
inertia and reflects the periodic acceleration and deceleration

Figure 25. The radially weighted spatio-temporally resolved
electron power absorption.

Figure 26. The radially weighted spatio-temporally resolved
constituents from (60) of the power dissipation.

of the electrons related to the E×B drift. During the field
growth before the sheath collapse, energy is transferred to the
electrons; after the collapse, is transferred back. This energiz-
ing mechanism is collisionless; it was already captured in the
single-particle view. It generates a strong electron beam in
the azimuthal direction, with a velocity that may exceed the
thermal velocity significantly. (Even if the drift speed vE×B is
not larger than the thermal velocity but comparable to it, the
kinetic energy can be up to four times larger than the thermal
energy alone when the gyro motion and the drift have the same
direction.) A sizable number of electrons close to the powered
electrode can therefore reach energies in the inelastic range,
so that they can participate directly in excitation or ionization
processes. This is seen in the termPcθ and in the ionization rate
shown in figure 28. The confining effect of the magnetic field
prevents the electrons from being ejected from the magnetized
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Figure 27. The spatio-temporally resolved Hall power and its constituents.

zone, allowing them to experience large electric fields over a
long period of time. Note that the number of energetic elec-
trons in such a zone is increased by the production of new elec-
trons via the ionization process. Such electrons experience the
same strong electric field and thus gain the same large E×B
azimuthal drift velocity resulting in a large total kinetic energy.
Under a sufficiently large ionization probability during a time
interval when an electron feels a large electric field close to the
powered electrode, this might significantly enhance the ioniz-
ation efficiency by creating an ionization avalanche.

The findings are supported by the graphs of figure 29,
which illustrate the electron velocity distribution in the (vr,vθ)
plane of the velocity space for different phases of the RF
cycle. The electrons were sampled from a segment close to
the powered electrode, 1cm⩽ r⩽ 2cm, where most of the
energetic electrons are produced. (Secondary electrons are
not shown.) The velocity range is the interval [−vmax,vmax],
vmax = 4.2× 106ms−1 corresponds to 50eV. The boundary
between the elastic and inelastic energy range is shown as a
magenta circle. At t= 0, all electrons experience a strong pos-
itive (‘reversed’) electric field which generates a fast E×B
drift in the negative θ direction (figure 29(a)). A substantial
fraction of electrons is pushed beyond the inelastic energy
threshold. When the powered electrode sheath expands—we
chose the moment t= 0.25TRF —, the electric field at the
sheath edge changes polarity and the E×B drift becomes
small for the electrons close to the expanding sheath edge.
The corresponding distribution of energetic electrons becomes
symmetric in vθ (figure 29(b)). Finally, at t= 0.5TRF, when
the powered sheath is maximal, electrons at the sheath edge
experience a strong negative electric field. The fast E×B drift
in the positive θ direction generates a large number of ener-
getic electrons. Electrons closer to the bulk experience only
a weak electric field, so their distribution, which dominates

Figure 28. Radially weighted ionization rate rSe for the magnetized
discharge.

the low-energy part, is symmetric. The slight asymmetry of
the energetic tail with respect to vr (figure 29(b)) can be attrib-
uted tomagnetized stochastic heating [40]. The effects is much
weaker than Hall heating.

The described mechanisms are also seen the figure which
shows the phase-resolved electron energy probability func-
tions (EEPFs) in the three directions extracted from the sim-
ulation. (In each case, the full EEPF was integrated over the
other directions.) The azimuthal EEPFθ shows the most pro-
nounced modulation. Its energetic phases are at t= 0 and t=
TRF/2, clearly related to the maxima of the E×B-drift dur-
ing sheath collapse and sheath expansion. The radial EEPFr
is less modulated; the magnetized sheath heating (as proposed
in [40]) and the isotropizing effect of collisions are relatively
weak. The axial EEPFz, finally, stays nearly constant, it is only
influenced by the collisions.
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Figure 29. Visualization of the electron distribution function, showing the dynamics of the µ-mode. Top: distribution in the (vr,vθ) plane of
the velocity space sampled at three different RF phases. The magenta circle corresponds to the first excitation level of argon at 11.5eV and
indicates the boundary of the inelastic energy range. Bottom: phase-resolved electron energy probability function EEPF in the coordinate
directions. Secondary electrons are not displayed.

8. Summary and conclusions

In this study, we investigated the electron dynamics and the
mechanisms of power absorption in a RF-driven, MECCP.
The device in focus was a deliberately simplified represent-
ation of a planar RF magnetron, namely an infinitely long
cylindrical magnetron with a radially nonuniform magnetic
field in axial direction and an electric field in radial direc-
tion. The applied voltage was VRF = 300V, the gas argon at
a pressure of p= 0.5Pa. An unmagnetized discharge of the
same geometry and operation conditions was used for com-
parison. The dynamics was studied analytically with the cold
plasma model and a single-particle formalism, and numeric-
ally with the inhouse energy and charge conserving PIC/MCC
code ECCOPIC1S-M.

The reference discharge showed the well-known mechan-
isms of pressure heating, NERH, and, to a lesser extent, Ohmic
heating, all actingmainly in the vicinity of the powered sheath.
The magnetized CCP, in contrast, operates by means of a sig-
nificantly more efficient power absorption mechanism, which
we named ‘Hall heating’. It is caused by the discharge’s need
to ensure the electron current continuity against the inhibitory
effect of the magnetic field. A single-particle study emphas-
ized the role of polarization drift in cross-field transport. The
required strong electric field has a phase shift of 180◦ com-
pared to the electron edge sE; it is negative when the sheath
width is maximal and positive (reversed) when it is minimal.
The corresponding strong azimuthal E×B-drift then consti-
tutes the ‘Hall heating’ as such. It is by a factor ωce/ωRF

larger than the polarization drift and can accelerate a relat-
ively large number of electrons into the inelastic energy range.
These electrons—which are drawn not only from the vicinity
of the electron edge but also from momentarily quasineutral
regions—can either directly participate in inelastic processes
such as impact ionization or convert their kinetic energy into
random motion through elastic collisions. Hall heating is dif-
ferent from the heating mechanism proposed by Lieberman,
Lichtenberg, and Savas [40], as it does not rely onmultiple col-
lisions with the expanding sheath. It also differs from Ohmic
heating; since it is not a matter of a diffusion process in energy
space. It is something entirely new. We propose to call it the
‘µ-mode’, to separate it from other discharge heating modes.
Contribution of this mechanism to the production of energetic
electrons participating in the ionization processes can be sig-
nificantly enhanced due to the fact that the electrons created

in the ionization will be energized by the same mechanism
via gaining a strong azimuthal E×B drift, which may res-
ult in an ionization avalanche. A companion study [56] will
investigate the newly described mechanism in a more real-
istic planar magnetron geometry and focus also on the elec-
tron motion along the magnetic field. A second companion
study [57] will present experimental observations obtained in a
planar RFmagnetron and interpret themwith help of the newly
gained knowledge.
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mabasierte Prozessfúhrung von reaktiven Sputterprozessen’
No. 417888799.

Appendix. Approximate solution of the equations
of motion

The electron motion in the cross-sectional r–θ plane under
the influence of a static magnetic field B= Bz(r)ez and a
dynamic electric field E= Er(r, t)er can be viewed as an inter-
play between gyrorotation and drift. For a dimensionless nota-
tion, we employ the length scale L of the system and the time
scale T of the applied RF excitation and write the fields and
the particle coordinates as

Er(r, t) =
1
η

meL
eT2

Ẽ(r/L, t/T) , (A1)

Bz(r) =
1
η

me

eT
B̃(r/L) , (A2)

r(t) = Lr̃(t/T), (A3)

θ(t) = θ̃(t/T), (A4)
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vr(t) =
L
T
ṽr(t/T), (A5)

vθ(t) =
L
T
ṽθ(t/T). (A6)

The quantity η≈ 0.1 (in the magnetized region) is a dimen-
sionless smallness parameter. The adopted scaling causes the
gyromotion to be fast compared to the RF frequency,

ωce =
eBz
me

=
1
η

1
T
B̃∼ 1

ηT
, (A7)

and the E×B drift comparable to the thermal speed which is
of order L/T,

vE×B =
Er
Bz

=
Ẽ

B̃

L
T
∼ L
T
. (A8)

Switching to dimensionless space and time coordinates, r→
Lr̃ and t→ T̃t, and then dropping the tilde, we formulate the
equations of motion as

dr
dt

= vr, (A9)

dvr
dt

=−1
η

(
E(r, t)+B(r)vθ

)
+
v2θ
r
, (A10)

dθ
dt

=
vθ
r
, (A11)

dvθ
dt

=
1
η
B(r)vr−

vθvr
r

. (A12)

We introduce the flux function Ψ(r) which is related to the
vector potential Aθ,

Ψ(r) =
ˆ r

0
B(r ′)r ′dr ′ = rAθ(r), (A13)

and express the magnetic field as

B(r) =
1
r
∂Ψ

∂r
. (A14)

Owing to the cylindrical symmetry of the configuration, there
is an exact constant of motion, the canonical momentum pθ in
θ direction. It is used to define a reference radius r̂:

pθ = rvθ −
1
η
Ψ(r)

!
=−1

η
Ψ(r̂). (A15)

The electric and magnetic fields at the reference radius r̂ are
also denoted by a circumflex; the spatial derivatives with an
additional prime:

Ê(t) = E(r̂, t) , (A16)

B̂= B(r̂) , (A17)

Ê ′(t) =
∂E
∂r

(r̂, t) , (A18)

B̂ ′ =
∂B
∂r

(r̂) . (A19)

Equation (A15) can be used to eliminate the variable vθ via

vθ =
Ψ(r)−Ψ(r̂)

η r
. (A20)

The remaining equations are then

dr
dt

= vr, (A21)

dθ
dt

=
Ψ(r)−Ψ(r̂)

η r2
, (A22)

dvr
dt

=−E(r, t)
η

+
(Ψ(r)−Ψ(r̂))2

η2r3
− (Ψ(r)−Ψ(r̂))Ψ ′(r)

η2r2
.

(A23)

To account for the time scale disparity, we distinguish between
the fast gyroscale tf = ηt and the slower RF scale ts = t. Split-
ting the time derivative accordingly, we obtain:

1
η

∂r
∂tf

+
∂r
∂ts

= vr, (A24)

1
η

∂θ

∂tf
+

∂θ

∂ts
=

Ψ(r)−Ψ(r̂)
η r2

, (A25)

1
η

∂vr
∂tf

+
∂vr
∂ts

=−E(r, ts)
η

+
(Ψ(r)−Ψ(r̂))2

η2r3

− (Ψ(r)−Ψ(r̂))Ψ ′(r)
η2r2

. (A26)

We nowmake a power series ansatz in η, displaying only those
terms that are actually used. Note that the leading order of r is
fixed to be the reference radius r̂:

r(tf, ts) = r̂+ η r(1)(tf, ts)+ η2 r(2)(tf, ts)+ . . . , (A27)

θ(tf, ts) = θ(0)(tf, ts)+ η θ(1)(tf, ts)+ . . . , (A28)

vr(tf, ts) = v(0)r (tf, ts)+ η v(1)r (tf, ts)+ . . . . (A29)

Expanding the equations of motion into a Taylor series in
the smallness parameter η and sorting for powers gives a hier-
archy of equations. In leading order, they are:

∂r(1)

∂tf
− v(0)r = 0, (A30)

∂θ(0)

∂tf
= 0, (A31)

17



Plasma Sources Sci. Technol. 32 (2023) 045007 D Eremin et al

∂v(0)r

∂tf
+ B̂2r(1) =−Ê(ts). (A32)

This system can readily be solved. The integration constants
ρ, ϕ̂, and θ̂ may still depend on the slow time ts (which we
suppress in the notation for brevity):

r(1)(tf, ts) = ρcos
(
B̂tf + ϕ̂

)
− Ê

B̂2
, (A33)

θ(0)(tf, ts) = θ̂, (A34)

v(0)r (tf, ts) =−B̂ρcos
(
B̂tf + ϕ̂

)
. (A35)

The dynamical equations of the next order appear as inhomo-
geneous differential equations for the quantities r(2), θ(1), and
v(1)r . Note that the homogeneous part is formally identical to
the equations of the leading order:

∂r(2)

∂tf
− v(1)r =

1

B̂2

∂Ê
∂ts

− cos
(
B̂tf + ϕ̂

) ∂ρ
∂ts

+ ρsin
(
B̂tf + ϕ̂

)∂ϕ
∂ts

, (A36)

∂θ(1)

∂tf
=− ∂θ̂

∂ts
+
B̂
r̂
ρ(ts)cos

(
B̂tf + ϕ̂

)
− Ê

r̂B̂
, (A37)

∂v(1)r

∂tf
+ B̂2r(2) =

ÊÊ ′

B̂2
+

3
2

(
1
r̂
− B̂ ′

B̂

)
Ê2

B̂2

+

(
3

(
B̂ ′

B
− 1
r̂

)
Ê− Ê ′

)
ρcos

(
B̂tf + ϕ̂

)
+

(
3B̂2

4r̂
− 3B̂B̂ ′

4

)
ρ2 +

(
3B̂2

4r̂
− 3B̂B̂ ′

4

)
× ρ2 cos

(
2
(
B̂tf + ϕ̂

))
+ B̂

(
sin
(
B̂tf + ϕ̂

) ∂ρ
∂ts

+ ρcos
(
B̂tf + ϕ̂

)∂ϕ̂
∂ts

)
.

(A38)

When solving these equations, care must be taken to avoid
terms that linearly diverge in tf. This poses consistency condi-
tions on the inhomogeneous terms on the right, which can be
solved for the evolution equations for the integration constants
ρ, ϕ̂, and θ̂ in the time ts. It turns out that ρ is a constant alto-
gether. (This fact is related to the adiabatic constancy of the
magnetic moment µ= v2⊥/2B which is valid for drift theories
under general conditions.) The angles ϕ̂, and θ̂0, in contrast,
exhibit slow drifts:

∂ρ

∂ts
= 0, (A39)

∂ϕ̂

∂ts
=

3
2

(
1

B̂r̂
− B̂ ′

B̂2

)
Ê+

1

2B̂
Ê ′, (A40)

∂θ̂

∂ts
=− Ê

B̂r̂
. (A41)

Under this condition, the next order quantities can be calcu-
lated as

r(2)(tf, ts) =
ÊÊ ′

B̂4
− 3B̂ ′Ê2

2B̂5
+

3Ê2

2B̂4r̂

+

(
3B̂ ′Ê

4B̂3
− Ê ′

4B̂2
− 3Ê

4B̂2r̂

)
ρcos

(
B̂tf + ϕ̂

)
+

(
−3B̂ ′

4B̂
+

3
4r̂

+

(
B̂ ′

4B̂
− 1

4r̂

)

×ρ2 cos
(
2
(
B̂tf + ϕ̂

)))
+ ρa cos

(
B̂tf +ϕ

)
+ ρb sin

(
B̂tf + ϕ̂

)
, (A42)

θ(1)(tf, ts) =
1
r̂
ρsin

(
B̂tf + ϕ̂

)
+ θ̂1, (A43)

v(1)r (tf, ts) =− 1

B̂2

∂Ê
∂ts

+

(
3B̂ ′Ê

4B̂2
− Ê ′

4B̂
− 3Ê

4B̂r̂

)
ρsin

(
B̂tf + ϕ̂

)
+

(
B̂
2r̄

− B̂ ′

2

)
ρ2 sin

(
2
(
B̂tf + ϕ̂

))
+ B̂

(
ρb cos

(
B̂tf + ϕ̂

)
− ρa sin

(
B̂tf + ϕ̂

))
.

(A44)

Using rule (A20), the first two orders of the azimuth velocity
vθ can be reconstructed as

v(0)θ (tf, ts) =− Ê

B̂
+ B̂ρcos

(
B̂tf + ϕ̂

)
, (A45)

v(1)θ (tf, ts) =
ÊÊ ′

B̂3
− B̂ ′Ê2

B̂4
+

Ê2

B̂3r̂

+

(
− B̂ ′Ê

4B̂2
− Ê ′

4B̂
+

Ê

4B̂r̂

)
ρcos

(
B̂tf + ϕ̂

)
+ ρ2

(
− B̂ ′

2
+
B̂
2r̂

+

(
B̂ ′

2
− B̂

2r̂

)
cos

(
2
(
B̂tf + ϕ̂

)))
+ B̂

(
ρa cos

(
B̂tf + ϕ̂

)
+ ρb sin

(
B̂tf + ϕ̂

))
. (A46)

In order to construct the most economical representation
possible for the electron trajectory, we proceed as follows.
First, we note that the leading order of the expansion can
absorb the homogeneous part of the higher order by redefini-
tion of the integration constants ρ, ϕ̂, and θ̂. Second, we restrict
ourselves to contributions of first order in either gyromotion or
drift. This leads to the form:

r(tf, ts) = r̂+ η

(
ρcos

(
B̂tf + ϕ̂

)
− Ê

B̂2

)
, (A47)

θ(tf, ts) = θ̂+ η
1
r̂
ρsin

(
B̂tf + ϕ̂

)
, (A48)
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vr(tf, ts) =−B̂ρcos
(
B̂tf + ϕ̂

)
− η

1

B̂2

∂Ê
∂ts

, (A49)

vθ(tf, ts) =− Ê

B̂
+ B̂ρcos

(
B̂tf + ϕ̂

)
. (A50)

For the integration constants, we have the slow drift

∂ϕ̂

∂ts
=

3
2

(
1
Br̂

− B ′

B2

)
Ê+

1
2B

Ê ′, (A51)

∂θ̂

∂ts
=− Ê

B̂r̂
. (A52)

Lastly, we remove the two-timescale formalism and the nor-
malization to obtain the desired approximation of the electron
trajectories:

r(t) = r̂− meÊ

eB̂2
r

+ ρcos

(
eB̂
me
t+ ϕ̂

)
, (A53)

θ(t) = θ̂+
ρ

r̂
sin

(
eB̂
me
t+ ϕ̂

)
, (A54)

vr(t) =− me

eB̂2

∂Ê
∂ts

− eB̂
me

ρcos

(
eB̂
me
t+ ϕ̂

)
, (A55)

vθ(t) =− Ê

B̂
+
eB̂
me

ρcos

(
eB̂
me
t+ ϕ̂

)
. (A56)

The parameters r̂ and ρ are constants; the parameters ϕ̂ and θ̂
follow drift equations:

∂ϕ̂

∂t
=

3
2

(
1

B̂r̂
− B̂ ′

B̂2

)
Ê+

1

2B̂
Ê ′, (A57)

∂θ̂

∂t
=− Ê

B̂r̂
. (A58)

By introducing the reference gyrofrequency Ω̂ = eB̂/me, the
drift velocity v̂E×B = Ê/B̂, and its spatial derivative v̂ ′E×B =

Ê/B̂ ′, the representation of a trajectory can be written

r(t) = r̂− v̂E×B

Ω̂
+ ρcos

(
Ω̂t+ ϕ̂

)
, (A59)

θ(t) = θ̂+
ρ

r̂
sin
(
Ω̂t+ ϕ̂

)
, (A60)

vr(t) =− 1

Ω̂

dv̂E×B

dt
− Ω̂ρcos

(
Ω̂t+ ϕ̂

)
, (A61)

vθ(t) =−v̂E×B+Ω̂ρcos
(
Ω̂+ ϕ̂

)
, (A62)

and the drift equations for the integration constants read:

∂ϕ̂

∂t
=

3
2

(
1
r̂
− B̂ ′

B̂

)
v̂E×B+

1
2
v̂ ′E×B, (A63)

∂θ̂

∂t
=− v̂E×B

r̂
. (A64)
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