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ABSTRACT

We report on a novel investigation of the nonlinear regime of the electron cyclotron drift instability using a grid-based Vlasov simulation. It
is shown that the instability occurs as a series of cyclotron resonances with the electron beam mode due to the E � B drift. In the nonlinear
regime, we observe condensation of fluctuations energy toward the lowest resonance mode and below, i.e., an inverse energy cascade. It is
shown that the characteristics of the nonlinear saturation state remain far from the ion-sound regime.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083081

It is widely accepted that the anomalous transport across the mag-
netic field in partially magnetized plasmas results from turbulent elec-
trostatic fluctuations. The exact mechanism of such fluctuations in
various conditions, in particular those typical for Hall thrusters, is still a
subject of debate. In recent years, the electron cyclotron drift instability
(ECDI), or simply the electron drift instability (EDI), has attracted a
great deal of attention as a mechanism of the anomalous transport in
partially magnetized plasmas, especially in the strong electric field
regions, where other effects, e.g., density and magnetic field gradients,
are less important.1–4 This instability is also of interest for space physics,
in particular, as a dissipation mechanism for collisionless shock waves.5

The ECDI is a reactive instability driven by the relative drift
velocity between electrons and ions in partially magnetized plasmas
with crossed E and B fields. An electric field E0 applied across the mag-
netic field generates an E� B drift velocity vd ¼ E0�B0

B2 of the bulk elec-
trons (the ions are assumed to be unmagnetized). The instability
occurs when the resonances of Bernstein-type (cyclotron) modes and
the ion-sound mode become possible due to the Doppler frequency
shift due to the electron E � B drift. Under the conditions in Hall
thrusters, where the magnetic field B0 and the electric field E0 are
applied in the radial and axial directions, respectively, the fluctuations
propagate in the azimuthal direction.6 Experiments7,8 report observa-
tions of such small-scale azimuthal fluctuations in the acceleration
region of Hall thrusters, which are presumably responsible for anoma-
lous axial electron transport.

The linear regime of the ECDI is well understood based on the
linear dispersion relation.9,10 However, understanding of the nonlinear

regimes remains elusive. In part, the understanding is obscured by the
results of the linear theory that for finite and sufficiently large values of
the wave vector along the magnetic field, kzvte > xce (vte is the elec-
tron thermal velocity and xce is the electron cyclotron frequency), the
cyclotron resonances are smeared out by the electron motion along
the magnetic field, and the instability is reduced to the ion-sound
instability driven by the electron E� B beam.

It has been suggested that even for purely perpendicular propaga-
tion, when kz ¼ 0 and the above linear effect is absent, the nonlinear
resonance broadening due to the nonlinear diffusion may result in the
overlapping resonances effectively demagnetizing the electron
response. A nonlinear theory of the ECDI based on the resonance
broadening in the strong turbulence regime11,12 was proposed in Refs.
13–15. As a result, an initial strong ECDI instability would saturate
and proceed further as a slow ion-sound instability, similar to the ion-
sound instability in plasmas without a magnetic field. Such behavior
was also demonstrated in earlier Particle-in-Cell (PIC) simulations.13

At the same time, it was argued that in similar PIC simulations, prop-
erties of the ECDI remain unlike those of unmagnetized ion-sound
instability.16 Comparison of the properties of ECDI with unmagne-
tized ion-sound instability in the context of the collisionless shock
waves in space also showed significant differences.5

A quasi-linear theory based on the assumption of unmagnetized
ion-sound turbulence was used to explain the anomalous mobility
caused by the ECDI.17 In this approach, the anomalous current is
calculated from the E � B drift, in the self-consistent electric field,

i.e., Jze ¼ hne
~E�B0i
B20

, where ne and ~E are the electron density and the
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self-consistent electric field, respectively, and are calculated as for
unmagnetized ion-sound turbulence. These results were validated
against some particle-in-cell (PIC) simulations.18–20

Many PIC simulations have been performed recently to investi-
gate the nonlinear regimes of the ECDI in various conditions.1–4,21–26

In Ref. 1, one-dimensional (1D) PIC simulations of the ECDI are pre-
sented in the parameter regime close to the typical conditions of Hall
thruster operation. Various aspects of the nonlinear behavior, such as
the significant flattening of the distribution function from Maxwellian
and the inverse cascade of electrostatic energy to low-k modes, were
revealed. It was shown that the criteria of Refs. 13 and 14 for electron
demagnetization are not generally satisfied. Two-dimensional (2D)
effects are also studied in a subsequent paper,2 where it is found that
the nonlinear regime is affected by the long-wavelength modified-two-
stream modes and the low harmonics of the ECDI modes, so that the
magnetic field remains important, unlike the unmagnetized ion-sound
instability.

A weakness of the PIC method is the significant amount of noise it
introduces in the simulations due to the finite number of macro par-
ticles. It is known that the noise of PIC simulations can significantly
affect the overall physics of a problem, potentially changing the out-
come.27 An example of such effects was observed in PIC simulations of
the heat transport in electron temperature gradient turbulence, which
can be dominated by noise effects.28 The noise of PIC simulations can
be reduced by increasing the number of the macro-particles, but this
reduction comes at a large computational cost because the noise only
decreases as the inverse square root of number of macro-particles. In
studies of the ECDI, there are concerns that the noise of PIC simulations
can facilitate resonance broadening and transition to the ion-sound
regime by enhancing the nonlinear diffusion effects.1,3,29

An alternative to the PIC method is based on the Vlasov equa-
tion, which is known to be free of the statistical noise introduced by
the discrete nature of the macro-particles in PIC simulations. In this
Letter, we report on novel investigations of the ECDI using low-noise,
grid-based Vlasov simulations in one spatial and two velocity dimen-
sions. Although Vlasov simulations of plasma instabilities are well
studied and widely used in various settings,30 including applications
relevant to Hall thrusters,31 to the best of our knowledge, this is the
first attempt to specifically address the nonlinear regime of the ECDI
using Vlasov simulations. We show that the nonlinear stage of the
mode growth exhibits several transitions between different regimes
dominated by the growth of the low-k modes, attaining increasing
growth rates much larger than those of the high-k modes. An intense
first cyclotron-resonance mode appears in the initial nonlinear stage,
with even longer wavelength modes appearing in the later stages.
Similar transitions are also observed in the spatial profile of the elec-
tron density. This behavior is a signature of the inverse cascade of the
electrostatic energy toward low-k modes. The wavelengths of these
high-growth-rate, low-k modes remain well below those of the ion-
sound modes, which have a maximum growth rate of 1=

ffiffiffi
2
p

kD, where
kD is the Debye length of electrons. This discrepancy suggests that the
nonlinear regime of ECDI cannot be explained by the ion-sound tur-
bulence theory for an unmagnetized plasma.

In our setup, we take B0 ¼ B0ŷ ; E0 ¼ E0ẑ, and ~E ¼Exx̂ . The
code used in this study is a 1D2V Vlasov code that uses the well-
known semi-Lagrangian method.32–35 A second-order operator split-
ting scheme is used in this method.36 The Vlasov equation of the

electrons and ions are split into three equations, the convection equa-
tion, the momentum balance equation in the x̂ direction, and the
momentum balance equation in the ẑ direction, noting that the ions
are unmagnetized, and hence, the last equation for ions is trivial. Each
equation is then solved using the method of characteristics with
cubic-spline interpolation. The Poisson equation is solved, following
the convection steps, using the fast Fourier transform (FFT). In our
simulation, we use parameters close to the typical operation regime
of the Hall thrusters that were also used in the PIC simulations of Refs.
1 and 2, i.e., E0 ¼ 200 V/cm, B0 ¼ 200 G, ion mass mi ¼ 133:3 u
(xenon), density n0 ¼ 1017 m�3, electron temperature Te0 ¼ 10 eV,
and ion temperature Ti0 ¼ 0:2 eV. The length of the system is taken
to be L ¼ 4.456 cm, and 2048 cells are used to resolve it, giving a par-
tial resolution of 0:29 kD. The velocity grids consist of 1200 � 1200
cells with a resolution of 0:054 vte for the electrons and 200� 200 cells
with a resolution of 10�4 vte for the ions. Due to the low-noise feature
of the Vlasov simulations, an initial perturbation is required to excite
the instability. Accordingly, we perturb the initial densities as ni ¼ ne
¼ n0½1þ 1:41� 10�4 cos ð2px=LÞ�. The boundary conditions are
periodic in physical space and open in velocity space. The time step in
our simulations is 1:1� 10�11 s � 0:2xpe. To confirm the validity of
our results, we have also repeated the simulation with finer grids and
smaller time steps, and the results were in good agreement.

In the linear regime, the overlapping resonances of Bernstein and
ion-sound modes lead to a resonance condition x=vd � nk0 � kx
¼ 0, where x is the real frequency, kx is the wave vector in the x-direc-
tion, k0 � xce=vd , and n ¼ 1; 2; 3;… shows the number of cyclotron
resonances. The full dispersion relation and some of its important lim-
its are discussed in Ref. 2. To find the linear growth rates, the disper-
sion relation can be solved by an iterative method as discussed in Ref.
37. For exclusive perpendicular propagation, that is ky ¼ 0, the unsta-
ble growth rates form discrete bands around the resonance wave vec-
tors kx ¼ nk0 [see Fig. 1(a)]. The maximum growth rate of each band
does not exactly belong to the corresponding resonance wave vector
but to a slightly larger one. On the other hand, from simulation, we
obtain the amplitude of the individual Fourier modes using the fast
Fourier transform (FFT) [Fig. 1(b)]. We note that only the modes
kx ¼ 2mp=L are resolved by our simulation (m ¼ 1; 2; 3;…). In Fig.
1(b), two modes around the first cyclotron resonance (m ¼ 31, 32),
two modes around the second resonance (m¼ 55, 56), and two modes
around the third resonance (m ¼ 77, 78) are plotted. These modes
start to grow linearly after a few nanoseconds, and the linear growth
for most of them ends after about 450 ns to 600 ns. The derivative of
the amplitude in the linear growth regime represents the growth rate
of each mode. These growth rates are compared with the theoretical
growth rates in Fig. 1(a). We note that due to the steep variations of
the unstable growth rates in the 1D configuration, direct growth rate
measurements can be highly affected by aliasing or numerical error in
the simulations. Therefore, providing data to accurately make this
measurement can be challenging for any numerical solver.
Nevertheless, Fig. 1(a) shows that our low-noise Vlasov solver is capa-
ble of reproducing the theoretical growth rates with a reasonable
accuracy.

Figures 1(b) and 2 show different modes and transitions observed
in our simulations. The modem¼ 26 is the dominant mode of the non-
linear regime. Because its wave vector is close to k0 (k0L=2p ¼ 24:95),
in what follows, we refer to this mode as the “k � k0” mode.
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The amplitude of this mode remains relatively small in the linear regime
and exhibits several transitions between different growth regimes in the
nonlinear regime [see Fig. 1(b)]. In Fig. 1(b), we have marked five of
these transition times with t1 ¼ 626 ns, t2 ¼ 718 ns, t3 ¼ 820 ns,
t4 ¼ 1090 ns, and t5 ¼ 1225 ns. Also, the mode m ¼ 2 shows some
transitions in Fig. 1(b). This mode does not show any clear growth in
the linear regime, whereas its amplitude grows significantly in the non-
linear regime. Several transitions can also be seen in the profile of the
electron density in Fig. 2, where we have marked five of these transition
times as t01 ¼ 626 ns, t02 ¼ 690 ns, t03 ¼ 800 ns, t04 ¼ 1090 ns, and
t05 ¼ 1200 ns. We note that these transition times are close to t1 to t5 in
Fig. 1(b), suggesting a possible correlation between the transitions in
electron density and the dominant mode of nonlinear regime.

In Fig. 2, for times before t01, the main observed mode is the dom-
inant mode of the linear regime. Between t01 and t05, several transitions
can be observed in the wave number and the phase velocity of the
dominant modes. A general tendency for transition from shorter

wavelengths to the longer wavelengths is observed (the inverse cas-
cade). These transitions can be seen, for example, at t03 and t04, where
some of the preexisting equi-density lines are truncated. At about t05,
we see a transition to the coherent regime (where k � k0 is the domi-
nant mode) along with the appearance of some long-wavelength
modes with a characteristic size of about the system length (m ¼ 1
andm¼ 2).

In Fig. 3(a), the amplitudes of various Fourier modes of the elec-
tric field (Ek) are shown. The simulated growth rates, defined by
csimðk; tÞ � d lnEk

dt , are shown in Fig. 3(b). To exclude the fast fluctua-
tions of amplitude, the moving average of Ek (with a window of 3=xpi

in length) is used to calculate csim. In Fig. 1(b) and at about t � 550
ns, the modes m ¼ 2 and 26 show a fast transition to high amplitudes.
Figure 3(b) shows that at the beginning of nonlinear regime (about t
¼ 600 ns), most of the modes with a small linear growth rate show a
similar transition. An explanation for this transition can be that the
low-growth-rate modes are nonlinearly locked to the high-growth-rate
modes of the linear regime. For some of the modes, such asm¼ 2 and
26, this transition starts sooner than for others, and the difference in
transition start times forms some “secondary discrete bands” of high-
growth-rate modes, with k � nk0=3, at the imminent nonlinear
regime [see t � 500 ns to t � 550 ns in Fig. 3(b)].

In the early nonlinear regime, the inverse cascade can be observed
in the spectrum of the electric field and the growth rates in Figs. 3(a)
and 3(b). It is observed that the inverse cascade continues until
t � 1200 ns to t � 1250 ns. We note that this time approximately coin-
cides with t5, which marks the transition of k � k0 to the saturated state
[see Fig. 1(b)]. The quantity k�simðtÞ is defined as the maximum k of the
function csim at each time instant and is also shown in Figs. 3(a) and
3(b). Figures 3(b) shows that during the inverse cascade, the maximum
growth rates mostly belong to low-k modes, leading to an increasing
amplitude of these modes in Fig. 3(a). On the other hand, Ref. 14 derives
the ion-sound growth rate for the nonlinear regime of the ECDI as

cisðk; tÞ ¼ ½p=8ðme=miÞ�1=2kvdð1þ k2k2DÞ
�3=2. Therefore, the maxi-

mum growth rate is expected to occur at k�is ¼ 1ffiffi
2
p

kD
. Nevertheless,

FIG. 1. (a) Comparison of theoretical growth rates (blue lines) and growth rates
found from simulation (red circles). (b) Amplitudes of individual Fourier modes of
electron density.

FIG. 2. The profile of the electron density in m�3.
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Figs. 3(a) and 3(b) show that k�is and k�sim remain far from each other
during the nonlinear evolution of ECDI. To calculate kD in k�is, we have
replaced the electron temperature from the simulation (see Fig. 6), i.e.,
kDðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0hTxeiL=n0e2

p
, where hTxeiL is the spatially averaged elec-

tron temperature along the x-direction.
The frequency spectrum of Ex in the nonlinear regime is shown

in Fig. 4. Similar to the PIC simulations,1 the dominant frequencies of
Ex are found to be close to xpi and its harmonics. Quite different from
the ion-sound dispersion relation, the frequency spectrum maintains
its discrete feature in the nonlinear regime. The discreteness of the fre-
quency spectrum is also shown in the PIC simulation of Ref. 1.
Another point in Fig. 4 is the appearance of the waves moving in the
opposite direction of the E � B drift (backward waves). These waves
(also seen at some locations in Fig. 2) are usually a result of the strong
modification of the electron distribution function due to trapping in
high-amplitude potential wells of the electric field.38–41 A similar

feature of the backward waves has also been observed experimentally
in the Hall thruster plasma.7,42

The inverse cascade can also be seen in the spectrum of the
anomalous current, Jk, in Fig. 5(a). Due to the inverse energy cascade,
intense modes are seen in the region k� k0, similar to previous
works.1,2,25,43 This is consistent with the notion that the long-
wavelength modes provide the dominant contribution to anomalous
transport. In the low-k region of this figure, k�sim appears in advance of
the intense modes of the anomalous current. This suggests that the
intense modes of anomalous current likely resulted from the growth of
low-kmodes of the electric field. This suggests that the inverse cascade
in the electric field fluctuations has an important role in the formation
of anomalous current. We note that the spectrum of the anomalous
current does not show the same coherency as the electric field in Fig.
3(a), and k � k0 (m ¼ 26) is just one mode among other intense
modes. Figure 5(b) shows the spatially averaged anomalous current
and its moving average. The moving average of the anomalous current
is close to the moving average of the E� B anomalous current, as sug-
gested in Ref. 17 and also confirmed in Ref. 44. This observation is in
contrast to the PIC simulation of Ref. 1, where the E � B current is
shown to be much smaller than the simulated current. Explaining this
discrepancy requires an accurate comparison between the two simula-
tions that takes into account any notable difference in the physical
parameters, numerical parameters, initial conditions, and post-
processing; such a comparison is beyond the scope of this study.

Figure 6 shows the evolution of the potential energy
Ep � 1

2n0L

Ð L
0 �0E

2
x dx and the spatially averaged electron temperatures.

The electron temperature in the x- and z-directions (hTxeiL and
hTzeiL) is essentially identical during the simulation. In the deep non-
linear regime (after about t¼ 1300 ns), the temperatures and potential
energy all grow as t2. The similarity between the growth rates of the
temperature and the potential energy is in contrast to those obtained
from the ion-sound turbulence theory developed in Refs. 13 and 15,
where these quantities are expected to have different growth rates.
Similar to previous PIC simulations,1,3 no saturation is obtained in the

FIG. 3. (a) Ek in V/m. (b) csim in xpi. The evolution of the k�is value is shown by a
green line. Green � markers show the (k, t) positions of the most unstable modes
in simulations (k�sim); the green color is not related to the mode amplitudes.

FIG. 4. The frequency spectrum of Ex in the nonlinear regime. The green solid line
and the green dashed line show the ion-sound dispersion relation with the initial
temperature and the average temperature at t ¼ 2139 ns, respectively. In the setup
of our problem k0kD ¼ 0:2615.
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nonlinear regime. In Ref. 3, it is suggested that the saturation occurs
because of the ion trapping and only when particles are artificially
replaced in the simulations when they are displaced beyond some fixed
axial distance (the virtual axial length model). No such particle
replacement process is present in our Vlasov simulation, although it
may exist naturally in azimuthal-axial simulations,23,24,44,45 where par-
ticles move out of the region where there is a strong electric field.

In summary, we investigated the nonlinear regime of the ECDI
using a high-resolution Vlasov simulation. This simulation is believed
to be free of the statistical noise inherent in PIC simulations. A mode
with k � k0 goes through some transitions before it becomes domi-
nant in the nonlinear regime. Somewhat similar behavior is observed
in the electron density profile. It is shown that in the early nonlinear
regime, many modes with low linear growth rates show a fast transi-
tion to large amplitudes. This growth occurs as a result of a nonlinear
locking of these modes to the modes with large linear growth rates,
resulting in fast-growing secondary (nonlinear) modes. These transi-
tions are followed by an inverse cascade toward the low-k modes in
the nonlinear regime. The inverse cascade terminates at a particular
time that is approximately the saturation time of the mode with

k � k0. The k0 mode remains the dominant electric field mode after
this time. As a result of the inverse cascade, the value of the maxi-
mum-growth-rate wave vector is much smaller than what is predicted
by ion-sound turbulence theory [k ¼ 1=

ffiffiffiffiffiffi
ð2Þ

p
kD], suggesting that the

conditions for the applicability of the ion-sound weak turbulence the-
ory are not likely to be valid in the nonlinear regimes of our simula-
tion. One can expect that the resonance broadening due to the
nonlinear diffusion will be even weaker in 2D and 3D simulations. In
simulations that involve the direction along the magnetic field, the
Modified Two-Stream Instability (MTSI) becomes important.2,23,25 It
is somewhat surprising that in the latter cases, the linear effects of the
finite wave vector along the magnetic field do not annihilate the reso-
nant nature of the ECDI,2,23,25 perhaps due to the fact that the most
unstable MTSI modes have long wavelengths. Such effects also depend
on the specific parameters of the system, e.g., length of the region
along the magnetic field. Finally, we note that some observations in
our Vlasov simulation are difficult to compare with existing published
PIC simulations. Direct head-to-head benchmarking of PIC and
Vlasov simulations is suggested for future work.
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Force Office of Scientific Research (No. FA9550-15-1-0226), the
Natural Sciences and Engineering Council of Canada (NSERC), and
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