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Self-organization and anomalous transport in gradient-drift driven turbulence in partially magnetized
plasmas with crossed electric and magnetic fields is demonstrated in two-dimensional fluid simulations. The
development of large scale structures and flows is shown to occur as a result of the inverse energy cascade
from short wavelength instabilities. The turbulence shows complex interaction of small scale modes with
large scale zonal flow modes, vortices, and streamers resulting in strongly intermittent anomalous transport
that significantly exceeds the classical collisional values. The turbulence driven secondary instabilities and
large scale structures are shown to dominate the anomalous electron current. Such anomalous transport and
structures are consistent with a number of experimental observations in laboratory plasmas.
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Partially magnetized plasmas with crossed electric and
magnetic fields are a common occurrence in many labo-
ratory plasma devices [1–4] and space conditions [5].
Because of the large spatial and temporal scale separation
(ρe ≪ L ≪ ρi where ρe, ρi are electron and ion Larmor
radii, respectively, L is a system size), the nature of plasma
instabilities and nonlinear physics in such plasmas is
different from situations in which both components (elec-
tron and ions) are magnetized. Many incarnations of such
plasmas show development of various instabilities [1,6,7]
leading to turbulence, structures, and anomalous electron
current. Despite their wide occurrence, the nonlinear
physics of such plasmas, in particular, the nature of the
instabilities, turbulence saturation, and associated anoma-
lous transport is not well understood.
The picture of basic eigenmodes and instabilities in

partially magnetized E ×B plasmas is somewhat different
from the standard case of fully magnetized plasmas. The
standard electron drift waves [8] are absent in plasmas with
unmagnetized ions, but there exists the specific density
gradient eigenmode with the frequency ω ¼ ωcikyLn [9],
where Ln ¼ ðn−10 ∂xn0Þ−1 is the density gradient length
scale, ky is the wave vector in the direction of the density
gradient, and perpendicular to the magnetic field
B0 ¼ B0ẑ, ωci ¼ eB0=mic is the ion cyclotron frequency.
This quasineutral mode exists for purely transverse propa-
gation with wave vector parallel to the magnetic field
kz ¼ 0 (contrary to the standard drift waves in fully
magnetized plasma). For smaller scales and higher frequen-
cies, the inertial response of electrons becomes important—
resulting in the lower-hybrid modes ω ¼ ωLH ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωceωci
p

,
where ωce is the electron cyclotron frequency. The model

can be extended into the third dimension with appropriate
boundary conditions along the magnetic field [10]. The
local linear theory, however, predicts the strongest insta-
bilities for modes with kz ¼ 0, which are therefore the
subject of our studies here.
The transverse electron current due the electron E × B

drift is a major driver of instabilities in partially magnetized
crossed-fields plasmas. In the long wavelength regime,
when the electron inertia can be neglected, the reactive
instability occurs for E0 ·∇n0 > 0, which is usually called
the collisionless Simon-Hoh instability [11–14]. For shorter
wavelength, when the electron inertia is involved, the
lower-hybrid mode can be destabilized by plasma gradients
as well as collisions [15–17].
In this Letter we study the turbulent regimes of gradient-

drift and lower-hybrid modes using the nonlinear reduced
fluid model [16]. In this model, two-dimensional (in the x,
y plane perpendicular to the magnetic field) the nonlinear
equation for electrons is

ð∂t þ u0∂yÞη ¼ n0v�∂y
eϕ
Te

− νðη − nÞ þ ωceρ
2
e

�
eϕ
Te

; η

�
:

ð1Þ

Here, η ¼ nþ ρ2eðn0∇2eϕ=Te −∇2nÞ is the generalized
vorticity, n, n0 are, respectively, the perturbed and equi-
librium electron density, ϕ is a perturbed electrostatic
potential, u0 is the equilibrium electron E ×B drift, v� ¼
−ρ2eωce=Ln is a diamagnetic drift speed, ν is an electron-
neutral collision frequency, ff; gg ¼ ∂xf∂yg − ∂yf∂xg is a
Poisson bracket.
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The velocity of unmagnetized ions is represented as
Vi ¼ v0x̂ −∇χ, where v0 is the equilibrium ion flow, and χ
is the “potential” function describing the perturbed ion
velocity. Then, the ion continuity and momentum balance
equations are

ð∂t þ v0∂xÞn ¼ ðn0 þ nÞ∇2χ þ∇n ·∇χ; ð2Þ

ð∂t þ v0∂xÞχ ¼ c2s
eϕ
Te

þ 1

2
ð∇χÞ2: ð3Þ

where cs is the ion sound speed. The equilibrium electric
field, equilibrium ion velocity, and the density gradient are
along the x̂ axis, and the equilibrium electronE ×B drift is
in the ŷ direction. Therefore, Cartesian coordinates ðx; y; zÞ
correspond to the axial, azimuthal, and radial directions of
the cylindrical geometry of the Hall thrusters and magnet-
rons, ðz;ϕ; rÞ → ðx; y; zÞ, and for cylindrical Penning
discharge configuration with the axial magnetic field,
ðr;ϕ; zÞ → ðx; y; zÞ, respectively.
For further studies, we use the following dimensionless

parameters Ln ¼ 48.8ρe, u0 ¼ 241.8cs, v0 ¼ 3.72cs,
ν ¼ 0.28ωLH,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p ¼ 427, which roughly correspond
to Hall thruster parameters [18], e.g., such as
E ¼ 2 × 104 V=m, B ¼ 200 G, Te ¼ 17.7 eV, v0 ¼
15 km=s, u0 ¼ 106 m=s, Ln ¼ 2.45 cm, ν ¼ 2.3 MHz.
From Eqs. (1)–(3), the linear dispersion equation [16] for

the long wavelength Simon-Hoh instability and [13,14] and
short wavelength lower hybrid modes [17,19] is

c2sk2

ðω − v0kxÞ2
¼ v�ky þ ρ2ek2ðω − u0ky þ iνÞ

ω − u0ky þ ρ2ek2ðω − u0ky þ iνÞ : ð4Þ

For our parameters, the growth rate is shown in Fig. 1,
where the most unstable modes have γ ¼ ImðωÞ ∼ 4ωLH. It
is important to note that the dispersion relation (4) also
reveals a pure axial linear instability with kx ≠ 0, ky ¼ 0 of
the resistive nature Refs. [20–22]. For our parameters, the
growth rate of the axial instability is of order γ ¼ 0.15ωLH,
and it is shown in the one dimensional slice ky ¼ 0 on the

inset of Fig. 1. As discussed below, despite the relatively
slow growth rate, the resistive axial instability plays an
important role in 2D nonlinear dynamics and turbulent
transport.
Nonlinear Eqs. (1)–(3) are solved with double-periodic

boundary conditions and for constant density gradient (as
well as for Ln ¼ ∞), and constant v0, u0, using the BOUT++

framework employing FFT along y and finite difference
with WENO reconstruction along x together with the
CVODE time integration solver [23]. Temporal and spatial
resolutions were varied to achieve convergence and to
resolve the linear spectrum predicted by the dispersion
equation (4) with error less than 10%. The hyperviscosity
of fourth order (∂t ∼∇4) was added to simulations to avoid
numerical instability, but its amplitude was chosen suffi-
ciently small in order not to change significantly linear or
nonlinear stages of simulations. All simulations (unless
stated otherwise) were performed until the nonlinear
saturation of the wave energy is reached [16,24]. The
linear growth benchmarking against analytical theory was
reported in Refs. [16,24].
One of the main results of our study is the first-principles

demonstration of significant turbulent (anomalous) electron
current driven by gradient-drift turbulence of azimuthal
modes in E ×B plasmas shown in Fig. 2. It shows axial
current evolution for different parameters: (a) for the full
system; (b) in the absence of ion flow and collisions
(v0 ¼ ν ¼ 0); (c) in the absence of equilibrium density
gradient (Ln ¼ ∞). As is evident from Fig. 2(a), the
turbulent electron current is orders of magnitude larger
than the classical (collisional) axial current. The anomalous
current Je due to turbulent E × B drift was evaluated as
je ¼ −ecn∂yϕ=B, Je ¼

R
jedxdy=ðLxLyÞ, and shown in

Fig. 2 [25] in units of classical collisional current Jν corre-
sponding to classical conductivity σν ¼ e2n0ν=meω

2
ce. It

can be recast in units of the effective Hall para-
meter, Ω ¼ ðωLH=νÞðmi=meÞ1=2ðJe=JνÞ−1, thus Ω ≃ 15
for Je ∼ 100Jν, which is generally consistent with exper-
imental values in Hall thrusters and the results of PIC
modeling [26].
To investigate the nature and the role of large scale

structures, we have performed simulations turning off the
resistivity and ion velocity, by setting ν ¼ 0 and v0 ¼ 0,
thus removing the linear resistive axial instability, which
leads to a noticeably smaller anomalous current [shown in
Fig. 2(b)].
The gradient-drift instability in the nonlinear stage

produces large scale azimuthally elongated (along ŷ axis)
shear zonal flows, kx ≫ ky, which subsequently form large
scale vortices via mechanism similar to Kelvin-Helmholtz
instability as shown in Figs. 3(a) and 3(b). Those structures
occur on the length scale significantly larger than the scale
of the most unstable linear modes in Fig. 1, which indicates
the inverse cascade predicted analytically for partially
magnetized plasmas in Ref. [27]. The vortices areFIG. 1. Linear growth rate. Inset shows ky ¼ 0 slice.
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quasistable; i.e., they exist for a period of time comparable
to the largest growth rate (t ∼ ω−1

LH), then collapsing back
into shear flows and reappearing again at larger and larger
length scale (up to the size of the simulation box).
Nonlinear formation of zonal flow type axial structures

due to the inverse cascade is further enhanced by the linear
and nonlinear instabilities of the axial modes, which, in the
presence of the ion flow v0 ≠ 0, produced by a finite
electron-neutral collision frequency ν [22] or as a secon-
dary instability of the anomalous electron current produced
by small scale gradient-drift fluctuations.
The axial modes in absence of the linear axial electron

current (Jν ∼ σν ∼ ν ¼ 0) are shown in Fig. 4. In this case,
the nonlinear axial current (created by small scale turbu-
lence) becomes unstable via the mechanism similar to the
linear axial resistive instability with ν ≠ 0. The exponential
growth of the axial modes driven by the anomalous current

was demonstrated earlier [24]. As a result, the large
amplitude axial mode is present together with azimuthal
drift waves and vortices. Note the high amplitude axial
variations in generalized vorticity visible in a 3D rendering
of Fig. 4. In simulations involving axial modes, the axial
system size Lx was increased to allow larger wavelengths of
the nonlinearly generated axial modes. As it was shown in
Ref. [24] the axial modes are saturated by nonlinear terms
in ion Eqs. (2) and (3).
The turbulent electron current in the presence of axial

modes is larger compared to the case when the linear axial
modes were turned off, compare Fig. 2(a) with Fig. 2(b). It
is important to note that axial modes themselves do not

FIG. 2. Anomalous axial electron current.

FIG. 3. Shear flows and vortices in simulation with v0 ¼ 0 and
ν ¼ 0.

FIG. 4. Coexisting small scale fluctuations, large scale vortices,
and axial modes in simulation with ν ¼ 0.
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produce any axial electron transport and can affect it only
via the excitation and enhancement of the azimuthal modes.
To confirm the generation of the azimuthal modes (and thus
the axial anomalous current) by the axial modes we have
performed the simulations where underlying gradient-drift
modes are removed (Ln ¼ ∞) and axial mode linear
instability is initially the only mode driven by collisions.
Note that the remaining instability of resistive azimuthal
modes [17] is much weaker than the axial instability so that
in the linear phase (t < 90ω−1

LH), only axial modes are
present in the system. Our simulation shows the slow
excitation and nonlinear saturation of the axial mode,
consistent with results of Ref. [22]. When the axial mode
grows to large amplitude, the axial density variations
(induced by axial mode) become sufficiently large for
the excitation of secondary azimuthal gradient-drift waves
for t ∼ 100ω−1

LH, as shown in Fig. 5 with anomalous current
shown in Fig. 2(c).
Thus, our nonlinear simulations have revealed the

following phenomena and stages in the nonlinear evolution
of the system (1)–(3): (i) the most unstable small scale
gradient-drift waves are excited and grow exponentially in
time; the nonlinear turbulent state is formed dominated by
nonlinear effects from the Poisson bracket term in Eq. (1);
the large scale shear flows form due to the inverse cascade
with subsequent development of vortices (similar to
Kelvin-Helmholtz instability); the turbulence significantly
enhances the axial electron conductivity; (ii) the anomalous
electron current triggers the axial instability and axial
modes grow; (iii) axial modes saturate into a high ampli-
tude axial structures [22]. The saturation mechanism for
axial modes is nonlinearities in the ion equations and
therefore their saturation amplitude are much larger than
that of gradient-drift waves. As a result, the axial modes
significantly change the density and electric field profiles,
affecting the underlying gradient-drift instabilities.
The generalized vorticity profile for full equations is

shown in Fig. 6(a). We also report the existence of
quasistable axial streamers existing up to tωLH ∼ 5 in
our simulations. Streamers are axially elongated and

azimuthally localized structures providing large contribu-
tion to the axial anomalous current. The large streamer is
shown in Fig. 6(b). We should note that streamers also
appear in the absence of axial modes (v0 ¼ 0).
In this Letter, we investigated the nonlinear gradient-drift

and lower-hybrid instabilities in partially magnetized plas-
mas with crossed electric and magnetic fields. These modes
are expected to play a central role in formation of long
wavelength structures and transport in various devices
employing E ×B configurations for electric propulsion
[1,3,28], material processing [2,6,29], and cylindrical
Penning type devices [4,30,31]. The large scale structures
(shear zonal flows and vortices) are produced via the
inverse cascade of the energy flow from short wavelength
modes. The turbulence self-organization in our simulations
is further enhanced by coupling to the axial modes
produced by linear and nonlinear mechanisms. This cou-
pling is twofold: (i) the anomalous current produced by
nonlinear interaction of azimuthal gradient-drift modes
results in a strong drive of the axial instability, thus
enhancing its growth; (ii) the axial modes modify the
density and electric profiles, providing feedback on turbu-
lent azimuthal modes. The ensuing turbulence demon-
strates the complex interactions of large scale shear
flows, vortices, and streamers that produce anomalous
electron current orders of magnitude higher than the
collisional current. This suggests that turbulent transport
observed in E ×B experiments [32,33] and kinetic sim-
ulations [26,34] can be explained as a result of turbulence

FIG. 5. Generation of azimuthal modes by axial modes in
simulation without density gradient Ln ¼ ∞.

FIG. 6. Shear flows, vortices, axial modes, and streamers in a
simulation of the full system.
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driven by gradient-drift modes. A notable feature of the
anomalous current in the presence of large scale structures
is its intermittent and blobby nature [32], as it is also shown
in our simulations, Fig. 2. Such anomalous current cannot
credibly be parametrized by the enhanced transport coef-
ficients, such as mobility, but rather requires avalanchelike
approaches as in self-organized-criticality models with
transport event at different scales [35].
We have confirmed [24] that fluctuation energy is well

saturated in our simulations, the anomalous transport,
however, as shown in Figs. 2(a) and 2(b), is not necessarily
saturated at long timescales. We consider this as another
manifestation of the intermittency. In part, it could be
attributed to inadequate saturation mechanisms of large
scale structures in our model. The model assumptions of
constant gradients should be revised at later times, when
coherent structure sizes becomes comparable to the sim-
ulation box size. Therefore, the longtime evolution of
anomalous current will be affected by the device geometry
and self-consistent modification of the mean profiles
(gradients), which are not accounted for in the considered
model. It should be noted that the simplified slab geometry
used in this work does not describe properly the finite and
curvature effects. Such effects are expected to be important
for large scale structures of the order of the box size;
however the general conclusions regarding the inverse
cascade and anomalous transport are expected to
remain valid.
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