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Plasma flow and acceleration in the magnetic mirror configuration (magnetic nozzle)

is important for many applications such as the expanding magnetic divertors in fusion

applications1–3 as well as devices for space propulsion4–6. Though plasma acceleration in

the magnetic nozzle was experimentally demonstrated long time ago7, the exact physical

mechanism(s) of the acceleration are still actively studied theoretically and experimentally.

Conditions for the formation of the accelerating potential structure have been discussed

widely2,8–13. It is generally understood that the diverging magnetic field is required, how-

ever other processes, such as deviations from quasineutrality8,14–16; electron kinetic, trapping

and non-stationary phenomena17–20; additional geometrical effects21 have also been invoked

to explain formation of the accelerating potential. In part, the mechanism of the accel-

eration in the magnetic nozzle is obscured by the relation to a more general problem of

double layers (DL). Originally, a double layer was identified as a localized non-quasineutral

step-like potential structure with the width of the order of the Debye length. Typically,

this is a kinetic problem and requires presence of several particle species with different

energies15. Such current-free structures are thought to be important for particle accelera-

tion in space plasmas. Double layer type structures were observed in expanding plasma22,23

that lead to the explanations8,16,24 that involve group of particles with different energies,

non-quasineutral effects, plasma expansion, and trapped particles. In this Letter, we discuss

only the quasineutral situation when the accelerating potential is formed by the magnetic

mirror, with the length determined by the width of the barrier, and typically much wider

than the Debye length. For such structures, the Debye length is not a relevant parameter,

and to avoid confusion, here we do not call the quasineutral accelerating layer as a double

layer, reserving the latter term for strictly non-quasineutral Debye length scale potential

structures.

It is well known that in quasineutral approximation accelerating plasma flow has a singu-

larity at the sonic point, where the plasma velocity vi is equal to the local sound velocity cs.

A regular smooth solution across the whole acceleration region from vi < cs to the region

with vi > cs by imposing the regularity condition at the sonic point25,26. As an example, in

case of the ion acceleration in the Hall thrusters, the regular solution is obtained by imposing

an analytical condition on the ion flux, electron current and ionization source, eventually,

defining the operational diagram for the Hall thruster discharge27,28.

The magnetic nozzle with the converging-diverging magnetic field offers a simplest case of
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quasineutral plasma acceleration from sub-sonic to supersonic velocity29. An exact solution

for a special case of the magnetic field and plasma parameters profile and isothermal electrons

was obtained in Ref. 30. The goal of this letter is to present exact solutions and discuss their

properties for the case of arbitrary profile of the magnetic field and for general polytropic

equation of state for electrons.

The exact solutions presented in this letter clearly demonstrate two related properties

of the quasineutral plasma acceleration: (1) a magnetic barrier with the maximum of the

magnetic field is required for the formation of the quasineutral accelerating potential struc-

ture; (2) the resulting velocity profiles are ”stiff”. The latter means that the velocity profile

has no free parameters to match with the plasma source region, raising interesting questions

on how such solutions can be matched to plasma sources where plasma flow is generated.

Despite of their simplicity, these results are not widely appreciated. Many theoretical works

deal with plasma acceleration in the region with vi ≥ cs, avoiding the singular point vi = cs,

and without a discussion how the plasma velocity approaches this point. Full numerical

solutions have been obtained in high fidelity two-dimensional models of plasma acceleration

in the magnetic nozzle, however the constraints imposed by the sonic point transition are

not not well studied. As we discuss below, the physics of the singular point defines the

global smooth solution for plasma velocity in the whole region from sub-sonic to super-sonic

velocity.

We consider a standard paraxial model for stationary quasineutral flow of plasma with

cold magnetized ions. Then plasma flow along the magnetic field is described by the equa-

tions

∇‖(nV‖/B) = 0, (1)

minV‖∇‖V‖ = enE‖, (2)

0 = en∇‖φ−∇‖pe, (3)

where V‖ = V ·B/B is the ion velocity along the magnetic field, and ∇‖ = B · ∇/B is

the gradient operator along the magnetic field, pe = nTe is the electron pressure In the

paraxial approximation, near the axis of the slender plasma tube confined by the magnetic

field, one can take ∇‖=∂/∂z. One has to note that in the paraxial approximation two-

dimensional effects are included to the first order of the parameter r/a < 1, where r is

the radial distance from the axis, and a is the characteristic radial length scale. It should
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be noted that for magnetized plasma flow, when the plasma velocity is strictly along the

magnetic field line, the magnetic field B plays the role of the physical nozzle of the variable

cross section, πr2 → B−1. Therefore, many conclusions of this paper will apply to the flow

constricted by the physical nozzle.

Assuming the isothermal electrons with Te = const, equations (1-3) are readily reduced

to a single equation for the ion velocity in the form

(
M2 − 1

) ∂M
∂z

= −M∂ lnB

∂z
, (4)

where the velocity V‖ is normalized to the speed of sound cs, M = V‖/cs, c
2
s = Te/mi, which

is constant and uniform for isothermal case. Equation (4) is equivalent to the equation for

the velocity in the Laval nozzle, and also appears in the problem of plasma acceleration by

the magnetic pressure31 such as in the Magneto-Plasma-Dynamics thrusters.

Equation (4) exhibits the ion-sound point singularity at M = 1 which is a well known

feature for the plasma flow in the quasineutral approximation. One can see that in the

subsonic regime M < 1, before the ion-sound point, the plasma is accelerated ”kinematicaly”

V
′

‖/V‖ ' B
′
/B > 0, so that the ion acceleration is mostly due to the decrease of the effective

cross-section in the converging magnetic field and the contribution of the ion inertia to

the acceleration can be neglected. It also means that the variations of plasma density are

also small, as it is expected for subsonic regimes with V‖ � cs. In the supersonic regime,

M > 1, ions continue to be accelerated by the electric field created by the electron pressure

of plasma expanding in the diverging magnetic field: miV‖V
′

‖ = −eφ′
= −Ten

′
/n and

n
′
/n ' B

′
/B < 0. The whole acceleration process in the converging-diverging magnetic

field is similar to the gas acceleration in Laval nozzle7.

It follows from (4) that the existence of a regular smooth solution for M = M (z) in

the whole range from the low velocity M < 1 to the region M > 1 requires the condition

∂ lnB (z) /∂z = 0 at the point M = 1. This condition fixes the value of the derivative of

the velocity near the sonic point M = 1. Expanding the equation (4) near M = 1 one finds

the equation (
∂M

∂z

)2

= −1

2

∂2 lnB

∂z2
> 0. (5)

Therefore, the condition ∂2 lnB (z) /∂z2 < 0 at M = 1 is required for the existence of

the regular solution, and the magnetic field should have a maximum at the point where
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∂ lnB (z) /∂z = 0 and M = 1. In other words, the magnetic barrier is required for the exis-

tence of the regular potential structure that can accelerate plasma to supersonic velocities.

Equation (4) can be integrated giving29,30

M2

2
− 1

2
= ln

(
M

Bm

B (z))

)
, (6)

The integration constant (corresponding to the condition (5)) was chosen to remove the

ion sound point singularity at M = 1, the point where the magnetic field has a maximum,

B(z) = Bm.

Ref. 30 has provided the particular solutions of equation (6) for the specific magnetic

field profile. Here, we present the general solution for an arbitrary magnetic field profile.

Writing equation (6) in the form

M2 = ln

[
eM2B2

m

B2 (z)

]
, (7)

plasma velocity for arbitrary magnetic field profile can be presented in the form of Lambert

function

M (z) =
[
−W (−b2 (z) /e

]1/2
, (8)

Here W (y) is Lambert function, which is the solution of the equation W exp (W ) = y,

b (z) ≡ B (z) /Bm < 1, e is the Euler’s number. It is interesting to note that Lambert

function32 appears in many physics and applied mathematics applications, including the

stationary plasma balance models taking into account neutral dynamics33.

Lambert function has two branches in the real plane, W0 ≡ W (0, y) and W−1 ≡

W (−1, y), which join smoothly at W = −1, for y = −1/e, see Fig. 1. The joining

point corresponds to the sonic point M = 1 located at the maximum of the magnetic field.

The upper branch W (0, y), for -e−1 < y < 0 corresponds to the M < 1 part of the solution

before the singular point M (z) = [−W (0,−b2 (z) /e]
1/2

. The lower branch W (−1, y), in

the same range −e−1 < y < 0, corresponds to the M > 1 part of the accelerating solution,

M (z) = [−W (−1,−e−1b2 (z)]
1/2

. The function W (−1, y) has a slow logarithmic divergence

for y → 0 − ε with the asymptotic W (−1, y) = ln(−y) − ln(− ln(−y). Thus the plasma

velocity outside of the nozzle for b(z)→ 0 can be approximated as

M (z) ' [− ln(−y) + ln(− ln(−y)]1/2 . (9)
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for y = B2 (z) / (eB2
m) → 0. Of course, this solution becomes invalid when the magnetic

field decreases so that the ions can no longer be considered magnetized.

It is important to note that the solution (8) is a truly global solution: regularization of

sonic point at M = 1 fixes the value of the velocity derivative at M = 1, and the profile and

the magnitude of the velocity in the whole range from subsonic M < 1 to supersonic region

M > 1 region. Also note that while the density profile is also fixed, the absolute value of the

density can be rescaled to a given value n0 at the left boundary of the accelerating region

0 < z < L.

As an example, the global profiles of plasma density, velocity, and potential are shown in

Figs. 2, 3, and 4, for the magnetic field in the form

B (z) =
B0 −Bm exp (−L2/4δ2)

1− exp (−L2/4δ2)
+

(Bm −B0)

1− exp (−L2/4δ2)
exp

(
−(z − zm)2

δ2

)
, (10)

where zm = L/2, B0 = B (0) , the maximum magnetic field at z = L/2, Bm = B (L/2). In

what follows, the point z = 0 will be called the nozzle inlet, and the z = L is the nozzle

exit. Here, we take the mirror ratio, R = Bm/B0 = 8.04.

In the example (10), we take B (0) = B (L) for simplicity, but this is not required. Any

converging-diverging configuration with a single maximum of the magnetic field will have a

global solution where the plasma velocity is fully determined by the magnetic field according

to the equation (6). The value of the velocity at the exit of the nozzle is only defined by the

mirror ratio at the exit. Similarly, velocity at any point along the nozzle is independent of

the velocity at the inlet point but fixed by the ratio of the local magnetic field at the point

to the magnetic field at the maximum. It also means that the velocity at the inlet cannot

be arbitrary and is also fully defined by the ratio of the magnetic field at the inlet to the

magnetic field in the maximum. For the magnetic field from equation (10), with R = 8.04,

the velocity at the entrance point V‖/cs = (−W0(−R2/e))1/2 = 7.56×10−2, and the velocity

at the exit V‖/cs = (−W−1(−R2/e))1/2 = 2.67.

In practice, experiments often show that electrons are not isothermal12,34–36. Therefore,

it is of interest to generalize this analysis for a polytropic equation of state for electrons in

the form

pe = p0

(
n

n0

)γ
. (11)

In general, electron pressure and density can be normalized to the values at any arbitrary

point, pe = p0 (n0). It is convenient however to define the p0 and n0 as the values at the
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inlet point z = 0.

Excluding the electron pressure and the electric field from equations (1-3), one obtains

the following equation for plasma velocity[
V 2
‖ − c20

(
n

n0

)γ−1] ∂V‖
∂z

= −c20
(
n

n0

)γ−1
V‖
∂ lnB

∂z
. (12)

where c20 = m−1i ∂pe/∂n|n0
= γp0/(n0mi) is the sound velocity at a point n = n0. The sonic

point singularity occurs at a point where the ion velocity becomes equal to the local value

of the sound velocity

c2s ≡
∂pe
mi∂n

∣∣∣∣∣
s

= γ
ps
mins

= c20

(
ns
n0

)γ−1
. (13)

The solution is made regular by requesting that at the sonic point ∂ lnB/∂z = 0. The

regularization near this point gives the condition(
∂V‖
∂z

)2

= − 1

γ + 1
c2s
∂2 lnB

∂z2
> 0. (14)

Equation (12) with the conditions (13) fully define the regular (smooth) solution across the

whole acceleration region.

Equation (12) can be integrated, but it is more convenient to obtain the solution directly

from integrals of equations (1-3). Energy conservation gives

V 2
‖ = c2s −

2e

mi

φ, (15)

the electron momentum balance

eφ =
ps
ns

γ

γ − 1

((
n

ns

)γ−1
− 1

)
, (16)

and the flux conservation
nV‖
B

=
nscs
Bm

. (17)

Note that here the potential is measured from the sonic point, so φ = 0 at z = zm where

V‖ = cs, as it follows from the regularization condition at z = zm with B = Bm.

Excluding the potential and density, one gets an implicit equation that defines the ion

velocity in terms of the magnetic field mirror ratio at any point inside the region 0 < z < L,

with the maximum magnetic field at z = zm inside the region, 0 < zm < L,

M2 − 1 = − 2

γ − 1

((
B

MBm

)γ−1
− 1

)
. (18)
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The Mach number here is defined as the ratio of the ion local velocity to the value at the

sonic point M = V‖/cs. Considering that

lim
γ→1

1

γ − 1

(
xγ−1 − 1

)
→ lnx, (19)

one can see that equation (18) for the isothermal case γ = 1 reduces to equation (6).

It is important to note that for general polytropic equation of state, in addition to a

free density normalization parameter, which can be taken either as the density at the entry

point, n = n0 for z = 0, or the density at the sonic point n = ns for z = zm, one has to

introduce the additional parameter - the electron pressure (or temperature) at the respective

reference point. Using the z = zm sonic point as a reference, the value at the entry point

z = 0 can be defined as

p0 = ps

(
n0

ns

)γ
. (20)

Respectively, one can redefine the Mach number in terms of the ion velocity to the sound

velocity c0 at the entry point M
′ ≡ V‖/c0.

The global solutions for the ion velocity and density with the magnetic field given by (6

are shown in Figs. 5 and 6 for different values of the polytropic coefficient γ. The solution

for the velocity is also ”stiff”: the full velocity profile is fully determined by the magnetic

field profile. The insert in Fig. 5 shows the values at the inlet side of the nozzle. The density

has a free normalization parameter n0, but the profile is stiff otherwise.

We have shown that the magnetic barrier (converging-diverging magnetic field) is required

for the formation of the quasineutral potential structure accelerating plasma, and presented

exact solutions for the general polytropic equation of state for electrons. An important

property of such solutions is that the normalized ion velocity at any given point is uniquely

determined by the ratio of the magnetic field magnitude at this point to the value of the

magnetic field in the maximum Bm, cf. Eqs. (8) and (18). Such global solutions (in the

whole acceleration region from the initial value of V‖0 < cs to the final exit value V‖ > cs)

are determined by the regularization condition at the sonic point. This also means that

the finite acceleration is independent from the details of the magnetic field profile but only

determined by the mirror ratio Bm/BL, where BL is the magnetic field at the apparent end

of the nozzle and therefore independent of the details of the profile inside the barrier, for

z < zm as long as the magnetic field has a maximum at z = zm.
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In reality, the assumptions of the model become violated at low values of the magnetic

field outside of the nozzle when the ions become unmagnetized and no longer follow magnetic

field lines. The detachment position depends on the mechanisms of the detachment which

are still under discussions37,38. The global nature of the velocity profiles raises another

question of how such solutions are matched to the plasma source inside the mirror region

at the entrance into the quasineutral accelerating potential structure and how the smooth

quasineutral solution can be obtained in the magnetic field with several extrema. It is worth

noting, that the sonic point regularization condition also allow the smooth decelerating

solution with ∂M/∂z < 0.

In general, equations of our simple model should be modified to include plasma sources

to self-consistently match the source regions with the accelerating solution which smoothly

continued through the nozzle. It is worth noting that while the value of plasma velocity

is fixed at the inlet point z = 0, the density profile has a free normalization parameter,

e.g. the density at the inlet n0. Therefore, the total plasma flux through the nozzle will be

determined by plasma density in the source, and eventually by the energy deposited into the

plasma source. Similarly, plasma thrust T , which is important for propulsion applications,

T = minV
2
‖ , at the exit will be determined by plasma density in the source; effectively by

plasma pressure, since the electron temperature is fixed at z = 0 and for a given equation of

state. We note that in the paraxial model considered here, the additional thrust due to the

plasma current induced by the external magnetic coil30 is not included, and the total thrust

is simply due to the electron pressure.

Our results are applicable to a simple case of cold fully magnetized ions. The effects of

finite ion pressure also contribute to the ion exhaust velocity (and therefore to the ther-

mal pressure generated thrust) via the mirror force but are neglected in our model here.

Additional forces (such as due to the ionization or collisions) in the momentum balance,

as well as geometrical expansion effects, will shift the position of the sonic point. With

additional forces it is also possible to have a smooth sonic point transition without the

maximum of the magnetic field26,27,29, however the resulting accelerating potential profiles

remain global, i.e. stiff, with a similar property of the unique solution defined by the sonic

point regularity condition. This property (based on the formally similar equations for the

acceleration in the Laval nozzle) is generally shared by a wide class of gasdynamics systems,

Hall thrusters25,26, and magneto plasma dynamics systems where plasma is accelerated by
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the magnetic pressure31.

In general, kinetic effects of the electron and ion trapping should be included, as well

as dissipative processes such as heat fluxes, charge-exchange interactions with neutrals,

and ionization. Such effects might be important in fusion applications of the magnetic

expanders1,3,39 and in propulsion applications (for a recent overview of the physics of the

magnetic nozzle for propulsion applications see Ref. 40). Presence of high energy species, and

coupling of plasma expansion with the Debye length phenomena and non-quasineutral effects

of classical double layers structures (in the sense of Ref. 15) bring further complications and

several different scenarios for the formation of the accelerating potential structures16. An

interesting question is a possibility of the formation of the Debye layer at the sonic point

analogous to the weak shock solutions in gas dynamics.

Nevertheless, despite a number of simplifications, the solutions presented here provide

useful insight on the mechanism for formation of accelerating potential structures in the

magnetic mirror configurations. These results provide a simple illustration to seemingly

surprising experimental results in VASIMR10 that did not find narrow Debye type double

layer but show the wide accelerating potential structures. According to the physical picture

presented here, such accelerating structure occurs due to presence of the magnetic barrier

in the converging-diverging magnetic field. These results should also be useful for the tests

and benchmarking of numerical simulations13,41 and interpretations of the results from more

complete models.
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FIG. 1. Lambert function
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FIG. 2. Global profile of the normalized ion velocity, M = V‖/cs, with M = 7.56 × 10−2 at the

inlet point, z = 0, and M = 2.67 at the exit, z = L.
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FIG. 3. Global profile of the normalized plasma density.
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FIG. 4. Global profile of the accelerating electrostatic potential.

FIG. 5. Normalized ion velocity for different γ values.
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FIG. 6. Normalized plasma density for different γ values.
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