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Gradient-drift (collisionless Simon-Hoh) instability is a robust instability often considered to be

important for Hall plasma discharges supported by the electron current due to the E�B drift. Most

of the previous studies of this mode were based on the local approximation. Here, we consider the

nonlocal model which takes into account the electron inertia as well as the effects of the entire

profiles of plasma parameters such as the electric, magnetic fields, and plasma density. Contrary to

local models, nonlocal analysis predicts multiple unstable modes, which exist in the regions, where

local instability criteria are not satisfied. This is especially pronounced for the long wavelength

modes which provide larger contribution to the anomalous transport. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971816]

I. INTRODUCTION

Plasmas with crossed electric E and magnetic B fields

are often used as ion sources in various applications. For

moderate values of the magnetic field, the discharge is main-

tained by the electron E�B drift, while allowing the extrac-

tion, separation, and acceleration of unmagnetized ions.

Such regimes, generally referred here as Hall plasmas, are

widely employed in material processing (magnetrons1–3) and

electric propulsion (Hall thrusters4,5) devices. The electron

current across the magnetic field in such systems often

exceeds the collisional value by orders of magnitude.

Presumably, this anomalously large electron current is a

result of plasma instabilities which are present in these devi-

ces for a wide range of plasma parameters and operational

regimes. Despite long history of Hall plasmas applications,

the understanding of the nature and mechanisms of plasma

instabilities and plasma turbulence is still lacking.

Among different types of unstable modes, relevant to

E�B Hall plasmas, gradient-drift modes have long been

considered as a possible source of fluctuations.6,7,18 These

modes are closely related to the so called anti-drift mode8

that exists in Hall plasmas with density gradient,

x ¼ k2
?c2

s

x�
; (1)

where c2
s ¼ Te=mi is the ion-sound velocity and

x� ¼ kyv� ¼ �
kyTe

eB0Ln

is the electron diamagnetic drift frequency due to density

gradient; Ln is the characteristic length scale of the density

gradient, L�1
n ¼ r ln n0ðxÞ; k2

? ¼ k2
y þ k2

x is the wave vector

perpendicular to the magnetic field, B0 ¼ B0ẑ. Note that the

standard drift waves do not exist in Hall plasmas with

unmagnetized ions. The frequency of the anti-drift mode (1)

in fact does not depend on the electron temperature and the

dispersion relation can also be written in the form

x ¼ �xcik
2
?Ln=ky, where xci¼ eB0/mi is the ion cyclotron

frequency. The condition x> kzvTe, where kz is along the

magnetic field lines, is required so that the mode is propagat-

ing almost perpendicular to the magnetic field. When the lat-

ter condition is not satisfied, the mode converts into the ion

sound mode, x2 ¼ k2c2
s , which may propagate at a finite

angle with respect to the magnetic field.9

When the stationary electron current due to the E�B

drift is present, the anti-drift mode becomes unstable due to

coupling with the ballistic mode x¼ kyV0.10,11 Resulting gra-

dient drift instability is described by the dispersion equation,

�xcik
2
?Ln

ky
¼ x2

x� x0

; (2)

where x0 ¼ k � V0 is the azimuthal (closed drift) flow of

electrons in crossed E�B fields and E0 ¼ E0x̂. This is the

reactive instability of negative energy perturbations with a

phase velocity below the stationary V0 ¼ E� B=B2 velocity.

This mode is referred here as the collisionless Simon-Hoh

instability.10–12 The condition E � rn > 0 is required for the

instability.13

The gradient-drift instability was identified in early Hall

thruster experiments6,14 as related to violent large scale

structures (spokes). It was shown7 that properly profiled

magnetic field improves the stability of the Hall thruster.

The modified condition for the instability was derived in the

form E � rðn=BÞ > 0.
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The gradient drift instability in plasmas with inhomoge-

neous magnetic field was revisited in Refs. 15 and 16 where

the full compressibility was included resulting in the modi-

fied dispersion relation

x� � xD

x� x0 � xD
¼ k2

?c2
s

x2
; (3)

where

xD ¼ kyvD ¼ �
2kyTe

eB0Ln

is the magnetic drift velocity due to the axial gradient of the

magnetic field; L�1
B ¼ rlnB0ðxÞ is the characteristic length

of such a gradient. One consequence of this modification

was that the magnetic field gradient enters in the combina-

tion rðn=B2Þ rather than r(n/B) in the original work.7 In a

finite temperature plasma, there also exists an additional con-

tribution due to magnetic field gradient because of the com-

pressibility of the electron diamagnetic velocity18 (the term

with xD in the denominator on the left hand side). It was

also shown in Ref. 15 that finite temperature fluctuations are

also important in situations with a strong magnetic field gra-

dient (complete dispersion relation for this case is given in

Ref. 16).

The collisionless Simon-Hoh instability has been con-

sidered among the most important sources of plasma fluctua-

tions, in particular, as a cause of large scale structures or

spokes.19–22 Much of the previous work on gradient-drift

instabilities,23–25 see also other works cited in Ref. 23, was

done within the local approximation neglecting the effects of

the density and electric field profiles. The authors in Ref. 26

have considered the nonlocal solution to compare the eigen-

mode structure and eigenmode frequency with the data from

Hall thruster experiments.26 However, the theoretical model

used in Ref. 26 (following to Refs. 27 and 28) does not apply

to the collisionless Simon-Hoh instability in which ions are

not magnetized. The global analysis has been employed in

Refs. 23, 29, and 30 for linear stability studies of Hall

thruster for rather general fluid model that included effects

of ionization, collisions, and heat flow. This model involved

several different unstable modes and destabilization mecha-

nisms; therefore, it is somewhat difficult to directly compare

the results of the local and nonlocal analysis.

The standard collisionless Simon-Hoh instability is con-

sidered to be a low frequency mode with the eigenfrequency

well below the E�B frequency.16 However, it was shown

recently17 that depending on the value of the kx wave vector

(along the electric field direction), the mode frequency

becomes comparable to the E�B frequency, x0 ¼ k � V0,

and thus, for the short-wavelengths, may become comparable

with the low hybrid frequency xLH ¼ ðxcexciÞ1=2
which

required to be accounted for electron inertia.

The goal of this work is to develop a nonlocal model for

the collisionless Simon-Hoh instability and related higher

frequency lower-hybrid modes and investigate the role of

density and electric field profiles on the eigenmode structure,

real part of the frequency, and growth rate in conditions

typical for Hall plasma experiments. In case of the general

profiles of the electric field and plasma density, the non-local

stability problem is reduced to the eigenvalue problem which

is solved here by the spectral method with Chebyshev poly-

nomials.35 The results from the spectral code have been veri-

fied by a finite-difference differentiation matrix, and

shooting method. Both spectral and finite-difference methods

show good convergence and precision for low mode num-

bers. However, higher modes require significant increase in

number of polynomials or number of steps for finite differ-

ence method to achieve the accurate solution.

For our simulations, we used parameters relevant to two

Hall plasma devices: Penning discharge and Hall thruster.

Typical plasma parameters and profiles for such devices

were taken from the experiments at Princeton Plasma

Physics Laboratory.31–34

Penning discharge is a device with cylindrical geometry,

in which the applied magnetic field is along the z-axis, and

the electric field is in the radial direction. Plasma is created

by the electron beam injected along the z-axis, from either

filament cathode or plasma cathode such as a hollow cathode

or RF plasma cathode. Magnetic field is created by

Helmholtz coils. The experiments with the Penning dis-

charges demonstrate range of instabilities and structures

(spokes) similar to the Hall thruster33,34 and provide easier

access for plasma diagnostics. Typical experimental parame-

ters are: electric field E¼�50 V/m, magnetic field B¼ 50 G,

v0¼ 1 � 104 m/s, Ln¼�0.1, …, �0.04 m, system length

L¼ 0.1 m, xci¼ 3.7 � 103 s�1, xLH¼ (xcexci)
1=2¼ 1.8 �

106 s�1. For calculations in Sections III A and III B, the

parameters of Penning discharge were considered in slab

geometry, with the magnetic field along the z-axis, and elec-

tric potential and density gradient along the x-axis.

Hall thruster is another device of interest in which the

gradient-drift instabilities play an important role. Typical

device has coaxial or cylindrical, for the Cylindrical Hall

Thruster (CHT),31,32 geometry. The discharge in the Hall

thruster is created in the channel between the anode, which

can be used as a gas distributor, and the cathode-neutralizer.

A gas propellant, typically argon or xenon, is supplied to the

channel through anode and then is ionized by high energy

electrons from the cathode and as well electrons heated in

the discharge. Magnetic field is sufficiently strong to make

the electron Larmor radius much smaller than the chamber

characteristic length thus creating the strong azimuthal

E�B current of electrons. Collisions allow the electrons

move to the anode in the axial direction, across the magnetic

field and in the direction of the stationary electric field. The

azimuthal current due to the E�B drift can be tens times

larger than the axial electron current. The axial field acceler-

ates the ions towards the channel exhaust, where they are

neutralized by electrons from the cathode neutralizer. The

thrust is a reaction force to this electrostatic acceleration,

applied to the magnetic circuit. Even though azimuthal cur-

rent is responsible for the ion thrust, axial current is impor-

tant as well, because it completes the electric circuit.

The axial electron current in the Hall thruster is typi-

cally an order of magnitude larger than the collisional

value. This anomalous current is created by fluctuations

122111-2 Romadanov et al. Phys. Plasmas 23, 122111 (2016)



driven by the electric field and gradients of the magnetic

field, plasma density, and electron temperature which are

strongly inhomogeneous along the thruster axis. For the

Hall thruster configuration, the electric field, magnetic field,

and density gradients are in the x–(axial) direction; the y-

direction is periodic (azimuthal) direction. Typical mag-

netic field, electric field, and density profiles will be pre-

sented in Section IV.

II. BASIC EQUATIONS

Here, we formulate the eigenmode problem for the slab

geometry with uniform axial magnetic field B0 ¼ B0ẑ, and

inhomogeneous plasma density n0¼ n0(x) and equilibrium

potential /0 ¼ /0ðxÞ. We consider the nonlocal modes in the

form ~U ¼ ~/ðxÞ exp ð�ixtþ ikyyÞ. The y direction is

assumed to be periodic, a finite length interval is considered

in the radial direction x. This geometry is an approximation

for the cylindrical geometry of the Penning discharge with

the axial magnetic field as in Ref. 31, in which case y is an

azimuthal direction and x is radial.

The linearized ion momentum equation has the form

�ixmivi ¼ �er~/: (4)

Here, we assume cold ions and neglect the effect of the

magnetic field on ion motion. The linear continuity equation

for ions is

�ixni þr � ðniviÞ ¼ 0: (5)

After substitution of vi into the ion continuity equation,

one finds

�ixni �
ie

mix
n0r2/þrn0 � r/
� �

¼ 0: (6)

In neglect of the electron inertia, electron motion along

the magnetic field, and electron temperature, the electron

velocity is a sum of the E�B drifts due to the stationary

electric field E0 ¼ �r/0, and the perturbed potential ~/,

with velocity ~vE ¼ r~/ � B. The resulting density perturba-

tion is

~ne ¼ �i
~vE � rn0

x� x0ð Þ
: (7)

Using the quasineutrality, one gets the eigenvalue equa-

tion in slab geometry

@2/
@x2
� k2

y/þ
n00
n0

@/
@x
� x2

x� x0ð Þ
ky

xci

rn0

n0

/ ¼ 0; (8)

where x is an eigenvalue problem for prescribed boundary

conditions on /. In general case, x and / are complex. This

eigenvalue problem is solved with the following boundary

conditions: ~/ðaÞ ¼ ~/ð�aÞ ¼ 0 or ~/ðaÞ ¼ ~/ð0Þ ¼ 0,

depending on the geometry type.

It is convenient to use the transformation

/ xð Þ ¼ 1

n0 xð Þð Þ1=2
w xð Þ: (9)

Then Equation (8) is reduced to the form

@2w
@x2
� k2

ywþ � x2

x� x0ð Þ
ky

xci

n00
n0

þ 1

4

n020
n2

0

� 1

2

n000
n0

" #
w ¼ 0:

(10)

For the constant gradient profile,

n0 xð Þ ¼ n0 exp
x

Ln

� �
; (11)

one has the following equation:

@2w
@x2
� k2

ywþ � x2

x� x0ð Þ
ky

Lnxci
� 1

4L2
n

" #
w ¼ 0: (12)

For constant Ln and x0, from (12) one gets the following

local dispersion relation:

FIG. 1. The growth rate as a function of kx, and ky¼ 10 m�1; (a) for Ln¼�0.1 m, and (b) for Ln¼�0.04 m. Bold lines—growth rates from Eq. (13); thin

dashed lines—growth rates from Eq. (2); squares—growth rates from Eq. (8).
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k2
? þ

1

4L2
n

� �
c2

s

x2
¼ x�

x� x0

: (13)

This equation, basically, is a modified Eq. (2). From this

equation, one can see that density gradient increases the

effective value of k? modifying the spectrum of unstable

modes. This is illustrated in Fig. 1(a) for Ln¼�0.1 m, and

Ln¼�0.04 m in Fig. 1(b). Profile of the x0 is uniform and

system size L¼ 0.1 m. Bold lines are growth rate calculated

from the local Eq. (13) with the effect of Ln. Thin dashed

lines indicate the growth rate from Eq. (2). Density gradient

effect leads to a slight increase of growth rates at low kx val-

ues. Square marks are the discrete unstable growth rates

obtained from numerical solution of Eq. (8) for the system

size L¼ 0.1 m.

It is important to stress that kx values are not arbitrary

and are defined by the size of the system. Another thing to

note is that stronger density gradients (smaller absolute val-

ues of Ln) significantly increase a number of unstable modes

and range of unstable values of kx; however, the maximal

value of the growth rate is not changed.

Dependency of growth rate on ky wavenumber with and

without the effect of Ln is shown in Fig. 2. Results were

obtained for Ln¼�0.04 m. Consideration of Ln term leads to

the constant shift of growth rate. Therefore, for moderate

gradient values, this effect does not lead to significant

change of the maximum growth rate. One can see from Figs.

1 and 2 that for the considered plasma parameters, the effect

of n00=n0ð@/=@xÞ term is not essential.

However, Eq. (8) does not take into account the effect

of electron inertia. The important result presented in Fig. 1 is

that the maximum of the eigenfrequency is close to the x0

frequency. In fact, one can show17 that for continuous kx, the

eigenmode with the maximum growth rate is x¼x0þ ix0.

Therefore, it may become comparable with the lower-hybrid

frequency and electron inertia has to be included. The

respective equation can be written as in Ref. 17 (similar

equation was also given in Refs. 37 and 38)

@2/
@x2
� k2

y/� F xð Þ 1

x� x0ð Þ
ky

xci

rn0

n0

/ ¼ 0; (14)

where

F xð Þ ¼ x2

1� x2=x2
LH

:

The full spectra of unstable solutions for two values of

ky with and without the effect of electron inertia are shown

in Fig. 3. These spectra were obtained by solving Eqs. (8)

and (14) for constant x0 profile and Ln¼�0.04 m. For low

values of ky (empty circles and squares), unstable frequencies

are much lower than xLH, so inertia effect does not play a

significant role; however, for the case of high ky values (solid

circles and squares) electron inertia leads to the significant

decrease of unstable frequency and growth rate values.

Another critical effect of the electron inertia is the stabi-

lization of the instability at large values of the ky. These

results are shown in Figs. 4(a) and 4(b). The results for the

fixed value of the kx are shown in Fig. 4(a); kx¼ 31 m�1 is

the value chosen as a minimal possible for this system. As

was shown above, the value of the kx at which the growth

rate is maximal changes as a function of ky. The dependence

of the maximum growth rate on the ky is shown in Fig. 4(b).

The value of kx is different at each ky value.

Dependency on kx obtained from Equations (8) and (14)

is presented in Fig. 5 for two different ky and Ln values. As

before, stronger density gradients lead to the increase in the

number of unstable modes. For low ky values, inertia does

not bring significant effect, but for higher ky values inertia

increases the range of unstable modes and causes the appear-

ance of unstable modes with much higher kx values.

Therefore, electron inertia causes qualitative change in

the behavior of unstable solution with the growth of ky,

bringing the cutoff of the instability at high kx values.

Changes in the dependency on kx are more quantitative, and

appear mostly at high ky values.

III. NONLOCAL EIGENMODES FOR SOME MODEL
PROFILES

Here, we analyze the properties of the eigenmodes for

different model profiles of E�B velocity. These simple pro-

files illustrate some characteristic features of the eigenmodes

which also persist in more realistic cases.

FIG. 2. The growth rate as a function of ky, for kx¼ 31 m�1 and

Ln¼�0.04 m. Bold line—growth rates from Eq. (2); thin dashed line—

growth rates from Eq. (13).

FIG. 3. The full spectrum of unstable solutions with (circles) and without

(squares) electron inertia effect for Ln¼�0.04 m: empty markers—

ky¼ 20 m�1; filled markers—ky¼ 100 m�1.
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A. Step-like profile of the E 3 B velocity

Eigenvalue problem (8) with a step-like profile of the

E�B drift frequency x0 is shown in Fig. 6. Solution inside

of each region can be obtained in the form of the harmonic

functions, / � Ai cos ðkixÞ þ Bi sin ðkixÞ, and the dispersion

relation is easily obtained from matching conditions. A for-

mal dispersion relation is not very illuminating. Here, we

just emphasize the main features of such solutions and com-

pare the nonlocal modes with the predictions of the local

theory.

First, we consider a case with the low ky wavenumber

values. As was noted above, the kx range of the unstable

modes is decreasing for lower values of ky. Since the allowed

wavenumber kx is discrete, the number of unstable eigenmo-

des decreases with decreasing ky. The effect of density gradi-

ent Ln on nonlocal unstable eigenmodes is similar to the

effect of ky; thus, the density gradient is fixed and taken

Ln¼�0.04 m for one wavenumber ky¼ 20 m�1. A character-

istic feature of the x0 profile, shown in Fig. 6, is that the

local theory predicts the instability only in the region

�5< x< 0, while the region 0< x< 5 should be stable. The

nonlocal solutions may exist in the locally stable region.

Full spectra of unstable solutions are shown in Fig. 7(a).

Three characteristic modes are chosen to show the shape of

eigenfunctions in Fig. 7(b): point (1) with the lowest value of

the real part of the frequency x ¼ ð0:01þ 0:04iÞ � xLH s�1;

point (2) with the largest growth rate x ¼ ð0:11þ 0:1iÞ
�xLH s�1; and point (3) with smallest growth rate x
¼ ð0:14þ 0:01iÞ � xLH s�1. All solutions have the nonlocal

structure across the whole domain �5< x< 5 including the

region 0> x> 5 which is locally stable.

The tendency toward the local theory increases for

larger ky, as is expected. The full spectrum of eigenvalues in

phase space for step-like profile of x0 with ky¼ 100 m�1 is

shown in Fig. 8(a). Some characteristic eigenfunctions are

FIG. 4. The growth rate as a function of ky at Ln¼�0.04 m. Dashed line—growth rate without electron inertia effect; solid line—growth rate with electron

inertia effect; squares and circles—growth rates from nonlocal model without and with electron inertia effect, respectively. (a) Fixed kx¼ 31 m�1; (b) maximal

growth rate at each ky value, kx changes with ky.

FIG. 5. The growth rate as a function of kx for ky¼ 20 m�1 (a), and ky¼ 100 m�1 (b). Circles—results with the inertia; squares—results without the inertia.

Filled markers—results for Ln¼�0.1 m; empty markers—results for Ln¼�0.04 m.

FIG. 6. Profile of x0.
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shown in Fig. 8(b); one can see that there are solutions

extending into the locally stable region.

General tendency is that the solutions with the lower

growth rates are more deeply extended into the locally stable

region.

B. Linear profile of the E 3 B velocity

Here, we investigate the eigenmode problem for the par-

abolic potential profile / ¼ ax2 corresponding to the case of

a constant shear of the E�B velocity and exponential den-

sity profile n ¼ n0 expð�x=aÞ which makes the density gra-

dient length scale constant, L�1
n ¼ n�1

0 @n0=@x ¼ const. Such

profiles may occur in Penning discharge configurations

where ions are confined radially by the inward radial electric

field.34

We assume that x0¼ kyv0x/L, where L is the width of

the region in the radial direction x. Several unstable

eigenfunctions for ky¼ 20 m�1 and L¼ 20 cm are shown in

Fig. 9. The full spectrum of the unstable solutions is pre-

sented in Fig. 9(a).

For the E�B velocity with a constant shear, there exists

a discrete spectrum of multiple unstable modes. Similar to

the local theory results, the ground state is not the most

unstable solution. The eigenmode with the largest growth

rate for ky¼ 20 m�1 is shown in Fig. 10(b) with respect to

the profile of the E�B frequency, x0(x). Lines with circles

and squares represent the growth rate obtained from local

theory for kx¼ 0 and kx¼ 63 m�1, respectively. As it is seen,

with the increase of kx value, unstable region shifts to the

right.

The eigenfunctions with the largest growth rate are

approximately localized close to the resonance point Re(x) ’
x0; however, there is an asymmetrical shift due to the finite

growth rate. Similar to the local theory, the growth rate

increases with the effective value of the radial wave number kx.

FIG. 7. Results for step-like profile of

the x0 with ky¼ 20 m�1 and

Ln¼�0.04 m. (a) The full spectra of

unstable eigenvalues. (b) The eigen-

functions are for eigenvalues (from top

to bottom): 1�x¼ (0.01þ 0.04i)�xLH

s�1, 2�x¼ (0.11þ 0.1i)�xLH s�1,

and 3�x¼ (0.14þ 0.01i)�xLH s�1.

FIG. 8. (a) Full spectrum of the eigen-

values for ky¼ 100 m�1. (b) The eigen-

functions are for eigenvalues (from top

to bottom): 1�x¼ (0.07þ 0.25i)�xLH

s�1, 2�x¼ (0.71þ 0.12i)�xLH s�1,

and 3�x¼ (0.71þ 0.004i)�xLH s�1.

FIG. 9. (a) Full spectrum of the unstable

eigenvalues; (b) unstable eigenfunctions

for the constant E�B shear profile;

wavenumber ky¼ 20 m�1. The eigen-

function with the largest growth rate,

x¼ (0.15þ 0.11)�xLH s�1� 1 (red);

the ground state unstable eigenfunction

with x¼ (0.002þ 0.014i)�xLH s�1� 2

(blue); the eigenfunction with largest

real frequency x¼ (0.27þ 0.05i)�xLH

s�1� 3 (black).
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This is illustrated by the eigenfunction for the same value of

ky¼ 20 m�1 as in Fig. 10(b) but for the extended domain

with the length L¼ 20 cm, see Fig. 10(d). In the extended

domain, the most unstable eigenfunction has larger growth

rate, higher effective kx, and the localization region shifts to

the right (toward higher local x0), compare Figs. 10(b) and

10(d). Again, there is very little resemblance between the

results of the local theory and the nonlocal solution. The

local growth rates for comparison are shown in Figs. 10(b)

and 10(d) for two different values of the radial wave number

kx. The local theory predicts that the mode with kx¼ 0 is

unstable in the wide region. For the kx¼ 84 m�1, the

FIG. 10. Left side: the eigenfunction with the largest growth rate x¼ (0.09þ 0.6i)�xLH s�1 (b), with respect to the profile of the E�B frequency (a),

ky¼ 20 m�1 and L¼ 10 cm. The growth rates from the local theory for the same parameters and kx¼ 0 — squares (red), kx¼ 63 m�1—circles (blue). Right

side: the eigenfunction with the largest growth rate x¼ (0.07þ 0.06i)�xLH s�1 (d) in the extended domain: L¼ 20 cm, for ky¼ 20 m�1, with respect to the

E�B frequency profile (c). The growth rates from the local theory for the same parameters and kx¼ 0—squares (red), kx¼ 84 m�1—circles (blue).

FIG. 11. The eigenfunction with largest growth rate x¼ (0.29þ 0.24i)�xLH s�1, ky¼ 100 m�1, L¼ 10 cm.
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instability exists locally only in the region for x> 6 cm. In

fact, the nonlocal solution has the effective kx which is

higher than kx¼ 84 m�1 and for which the local theory pre-

dicts no instability in the whole domain 0< x< 20 cm.

The growth rate increases almost linearly with the wave-

number ky, and the localization region becomes narrower

around the resonance point Re(x) ’ x0. The most unstable

eigenfunction for ky¼ 100 m�1 and system length L¼ 10 cm

is shown in Fig. 11(b) with respect to the profile of the x0(x).

Several unstable eigenfunctions in the extended domain

L¼ 20 cm with the same value of ky¼ 100 m�1 are shown in

Fig. 12. One can see that these modes are relatively local in

the sense that they are weakly dependent on the boundary

conditions at x¼ 0 and x¼L. The eigenfunction with x ¼
ð0:29þ 0:24iÞ � xLH s�1 and localized at x ’ 5 cm, shown in

Fig. 11, corresponds to almost the same frequency Re(x) and

localized at the same x ’ 5 cm as mode (2) which is shown

in Fig. 12(b). However, localization of mode (1) is far from

resonant point for this eigenmode, see line (1) in Fig. 12.

This is due to the effect of the electron inertia.

Therefore, another property of nonlocal modes can be

understood from the example with the linear profile of x0. For

unstable eigenmodes with absolute values of frequencies and

growth rates well below of the xLH, the localization region is

approximately determined by the point of the resonance

Re(x)¼x0. For higher frequencies this is not true, in general.

IV. NONLOCAL EIGENMODES IN PLASMAS WITH
TEMPERATURE, DENSITY, AND MAGNETIC FIELD
PROFILES

Inhomogeneous magnetic field plays an important role

in operation of Hall thrusters4,5 and magnetrons.1–3

Modification of the instability criteria due to the magnetic

field was noted in Refs. 4 and 5. An additional effect of the

magnetic field gradient occurs due to the finite tempera-

ture.15,18 The appropriate eigenvalue equation36 is

@2/
@x2
� k2

y/þ
1

1� x2=x2
LH

x2 x� � xDð Þ
x� x0 � xDð Þ

1

c2
s

/ ¼ 0: (15)

For simulations, we use typical parameters from experi-

ments in a Hall thruster.39,40 The density n0, electron

FIG. 12. Several eigenfunctions are

shown for the extended domain L
¼ 20 cm, ky¼ 100 m�1. The eigenfunc-

tion with the largest growth rate for the

extended domain, x¼ (0.56þ 0.48i)
�xLH s�1� 1 (blue); x¼ (0.24þ 0.29i)
�xLH s�1� 2 (red). The eigenfunction

with the eigenvalue x¼ (0.24þ 0.29i)
�xLH s�1� 2 (red) has approximately

the same frequency and localization as

mode on with Fig. 11, for L¼ 10 cm.

FIG. 13. Initial profiles of electric, magnetic fields, electron density, and electron temperature for Hall thruster experiment.39

FIG. 14. Characteristic frequencies profiles and unstable solutions for

ky¼ 8.1 m�1.
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temperature Te, electric field E, and magnetic field B profiles

along the thruster axis (x-direction) are shown in Fig. 13.

The profiles of the drift frequencies x0, x*, xD, and

xLH are shown in Fig. 14. Calculations were done for param-

eters from Fig. 13 and ky¼ 8.1 m�1. For the complex profiles

of plasma parameter, the nonlocal solution in general

requires high number of polynomials in the spectral method.

To verify the solutions obtained with spectral and shooting

methods, and confirm the convergence, we have also used

the integral relations that follow from Eq. (15)

FIG. 15. Full spectra of unstable solutions for Hall thruster profiles at ky¼ 8.1 m�1. Three groups of unstable solutions are marked as (a)–(c). Eigenvalues for

numbered dots are presented in Table I.

TABLE I. Eigenvalues for Fig. 15.

Fig. 15(a) 1 x¼ (1.2þ 0.9) � 106 s�1

2 x¼ (1.0þ 0.6) � 106 s�1

3 x¼ (0.6þ 0.1) � 106 s�1

Fig. 15(b) 1 x¼ (�0.6þ 0.5) � 106 s�1

2 x¼ (�0.5þ 0.2) � 106 s�1

3 x¼ (�0.6þ 0.3) � 106 s�1

Fig. 15(c) 1 x¼ (�3.4þ 0.8) � 106 s�1

2 x¼ (�2.1þ 0.9) � 106 s�1

3 x¼ (�4.0þ 0.1) � 106 s�1

FIG. 16. Unstable eigenfunctions from each group of unstable solutions at ky¼ 8.1 m�1.
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ð
j/j02 þ k2

y j/j
2

� �
dx

¼
ð

Re
1

1� x2=x2
LH

x2 x� � xDð Þ
x� x0 � xDð Þ

 !
1

c2
s

j/j2dx (16)

and

0 ¼
ð

Im
1

1� x2=x2
LH

x2 x� � xDð Þ
x� x0 � xDð Þ

 !
1

c2
s

j/j2dx: (17)

The ratio of left hand side and right hand side integrals

was tracked with the increase in the number of polynomials.

Desired accuracy was 10�5.

Similar to general trend, for a given ky, there exist mul-

tiple eigenmodes with different growth rates and different

localization regions. However, full spectra of unstable solu-

tions look very different from spectra for simple profiles.

An example of such spectra for ky¼ 8.1 m�1 is presented in

Fig. 15. Three distinct groups of unstable solutions can be

identified.

An important difference is the sign of the real part of the

frequency. There exist unstable modes with positive and neg-

ative frequencies. Note that the negative sign of the real part

of the frequency correspond to the rotation in the E�B

direction. Corresponding eigenvalues and eigenfunctions for

the numbered point in each group are given in Table I and

Fig. 16, respectively.

Unstable eigenfunctions for marked points are shown in

Fig. 16. Eigenfunctions, corresponding to different groups,

have different localization. Contrary to the case of simple

profiles, narrowly localized modes appear even for low ky

value. Modes in group (c) have almost exactly the same

localization, thus local theory should work very well in this

region. However, modes in group (a) are located in the

region, where the local theory does not predict any instability

(see in Fig. 20).

FIG. 17. Full spectra of unstable solutions for Hall thruster profiles at

ky¼ 81 m�1. Four distinct groups of the unstable solutions can be identified.

FIG. 18. Each group of unstable solu-

tion from Fig. 17. Eigenvalues for num-

bered dots are presented in Table II.
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For higher value of ky, full spectra of unstable solutions

is modified, there appeared fourth group of unstable solu-

tions, see Fig. 17. Group (d) appeared in between of groups

(a) and (b) from Fig. 15.

A detailed view of each group is presented in Fig. 18.

Corresponding eigenvalues and eigenfunctions for the num-

bered point in each group are given in Table II and Fig. 19,

respectively.

Unstable eigenfunctions are presented in Fig. 19. Modes

for groups (a) and (b) become local, as it is expected for

higher ky values. However, unexpected result is that the

modes in groups (c) and (d) become highly nonlocal.

Absolute values of frequencies are comparable in these

two groups, but growth rates are lower in the region farther

from the anode (group (d)).

Moreover, the real and imaginary parts of the most unsta-

ble eigenvalue almost do not change with the ky wavenumber.

Growth rate of the unstable mode mostly depend on mode

localization. Real part of frequencies for fastest modes is com-

parable with low-hybrid frequency xLH ¼ 3:4� 106 s�1.

The nonlocal modes (with the least number of nodes)

have the lower growth rates compared to the localized (with

the higher effective higher kx) modes. The nonlocal unstable

modes, presented in Figs. 16 and 19, are present in the

regions where local modes are stable (shown in Fig. 20). It is

important to note that the fast instabilities are absent in the

acceleration region where the electric field is large.

TABLE II. Eigenvalues for Fig. 18.

Fig. 19(a) 1 x¼ (3.0þ 0.6) � 106 s�1

2 x¼ (3.1þ 0.4) � 106 s�1

3 x¼ (2.8þ 0.4) � 106 s�1

Fig. 19(b) 1 x¼ (�0.9þ 0.23) � 106 s�1

2 x¼ (�0.8þ 0.13) � 106 s�1

3 x¼ (�1.0þ 0.1) � 106 s�1

Fig. 19(c) 1 x¼ (�2.9þ 0.14) � 106 s�1

2 x¼ (�2.4þ 0.03) � 106 s�1

3 x¼ (�3.4þ 0.02) � 106 s�1

Fig. 19(d) 1 x¼ (1.2þ 0.01) � 106 s�1

2 x¼ (1.0þ 0.17) � 106 s�1

3 x¼ (0.8þ 0.02) � 106 s�1

FIG. 19. Unstable eigenfunctions from

each group of unstable solutions at

ky¼ 81 m�1.

FIG. 20. The growth rate from local model are shown as a function of dis-

tance along the thruster axis for ky¼ 8.1 m�1, and kx¼ 0 m�1, kx¼ 100 m�1.
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The integral forms, Eqs. (16) and (17), were used to

track the convergence. An example of the convergence for

one group is shown in Fig. 21. Each marker and color repre-

sents different number of polynomials. Green markers are

solutions for low polynomials number. With the increase in

the number of polynomials, eigenvalues reach asymptoti-

cally the limit values which are shown as solid black circles.

V. CONCLUSION

Linear, nonlocal model for gradient-drift modes includ-

ing the collisionless Simon-Hoh and lower-hybrid instabil-

ities was developed and used to study the nonlocal structure

of unstable mode in Hall plasma with inhomogeneous pro-

files of plasma density, temperature, electric and magnetic

fields. The eigenvalue problem was solved numerically by

using spectral and shooting methods and verified by the inte-

gral relations.

Our model includes the collisionless Simon-Hoh desta-

bilization mechanism13 E � rn> 0 and electron inertia that

couples this mode to the lower-hybrid mode. A number of

factors were not included in the model, such as collisional,41

ionization23 effects, and additional terms that explicitly

include the shear flow effects.17,41 In general, neglect of

these effects may limit the applicability of our model to

some practical Hall devices. Our emphasis, however, was on

the higher frequency modes with frequencies much higher

than some typical low frequency (kHz range) oscillations,

such as breathing mode due to ionization process. We have

considered the eigenmode structure in the axial direction of

the Hall thruster, and the radial direction for the Penning dis-

charge. One of the important results of our analysis is dem-

onstration of the existence of multiple modes with the

eigenmode frequencies comparable to the electron drift

frequency.42

There are significant differences between predictions of

the local and nonlocal models, as it has been noted

earlier.23,30 The nonlocal model for the step-like x0 profiles

shows that for the low wavenumbers ky nonlocal solutions

can propagate into the region of the domain where local

instability criteria are not satisfied. For higher ky modes, the

results of nonlocal model become similar to the local model

where the unstable mode is highly localized. However, there

are still unstable modes that extend into the region of stabil-

ity and grow there even for high ky values.

Simulations for the E�B flow with a constant shear

and constant density gradient show that there exist multiple

unstable eigenmodes with different growth rates and differ-

ent localization regions. Mode localization becomes more

evident with increase of ky. Moreover, such modes are

almost independent on boundary conditions at x¼ 0 and

x¼ L.

We have also studied the eigenmode structure for com-

plex profiles of the magnetic field, electric field, and electron

temperature relevant to Hall thruster experiments.39 In gen-

eral, the results demonstrate characteristic features similar to

the outlined above. There exist multiple eigenmodes with

different growth rates and different localization regions. The

most unstable modes tend to localize in the region with

higher gradients; however, modes with lower growth rates

are present in the whole domain. There are significant differ-

ences between the predictions of the local and nonlocal mod-

els. This discrepancy is especially important for the modes

with low ky(m) and low effective kx (longer wavelength).

Often, the modes with largest growth rate are thought to

dominate the dynamics on the longer time scales. However,

in case of complex profiles, different eigenmodes may be

localized in different spatial regions, even in regions which

are locally stable. For example, in case of Hall thruster pro-

files there are modes which reside at the middle of the

domain, where the local model predicts no instability. Some

modes propagate from locally unstable regions to locally sta-

ble. The anomalous current in these conditions is due to the

electron convection in the direction of the equilibrium elec-

tric field, �h~n ~Vxi.43 Then one can estimate the diffusion

transport using a mixing length formula, Da ’ c=k2
y , where c

is the mode growth rate, ky is the azimuthal wave number.

Hence, significance of multiple modes is especially impor-

tant for low ky modes which have the nonlocal character and

whose stability criteria could be very different from the pre-

dictions of the local theory and which provide larger contri-

bution to the anomalous transport (Da ’ c=k2
y ). These

features of nonlocal solutions will be important for nonlinear

transport calculations. In view of different stability criteria

for multiple modes, especially for low ky values, the predic-

tions of the local theory may be misleading.

ACKNOWLEDGMENTS

The authors thank Ivan Halzov and Winston Frias for

the help with numerical methods and model formulation, and

Edward Startsev for the fruitful discussion. This work was

supported in part by NSERC of Canada and U.S. Air Force

Office for Scientific Research FA9550-15-1-0226. S.R. was

partially supported by the Russian Ministry of Science and

Education (Minobrnauka), Project No. 13.79.2014/K.

FIG. 21. Convergence of group (b) in Fig. 15 with the increase in the num-

ber of polynomials. Filled black circles—the stage when convergence is

reached.

122111-12 Romadanov et al. Phys. Plasmas 23, 122111 (2016)



1P. Kelly and R. Arnell, Vacuum 56, 159 (2000).
2T. Ito, C. V. Young, and M. A. Cappelli, Appl. Phys. Lett. 106, 254104

(2015).
3S. N. Abolmasov, Plasma Sources Sci. Technol. 21, 035006 (2012).
4A. I. Morozov, Plasma Phys. Rep. 29, 235 (2001).
5A. I. Morozov and V. V. Savelyev, “Fundamentals of stationary plasma

thruster theory,” in Reviews of Plasma Physics (Springer US, Boston, MA,

2000), pp. 203–391.
6A. I. Morozov, Y. V. Esipchuk, A. M. Kapulkin, V. A. Nevrovskii, and V.

A. Smirnov, Sov. Phys. Tech. Phys. 17, 482 (1972).
7Y. V. Esipchuk, A. I. Morozov, G. N. Tilinin, and A. V. Trofimov, Sov.

Phys. Tech. Phys. 43, 1466 (1973).
8A. M. Fridman, Sov. Phys. Dokl. 9, 75 (1964).
9A. I. Smolyakov, W. Frias, I. D. Kaganovich, and Y. Raitses, Phys. Rev.

Lett. 111, 115002 (2013).
10A. Simon, Phys. Fluids 6, 382 (1963).
11F. C. Hoh, Phys. Fluids 6, 1184 (1963).
12Y. Q. Tao, R. W. Conn, L. Schmitz, and G. Tynan, Phys. Plasmas 1, 3193

(1994).
13Y. Sakawa, C. Joshi, P. K. Kaw, F. F. Chen, and V. K. Jain, Phys. Fluids B

5, 1681 (1993).
14L. A. Artsimovich, I. M. Andronov, Y. V. Esipchuk, I. A. Bersukov, and

K. N. Kozubskii, Kosm. Issled. 12, 451 (1974).
15W. Frias, A. Smolyakov, I. D. Kaganovich, and Y. Raitses, Phys. Plasmas

20, 052108 (2013).
16W. Frias, A. Smolyakov, I. D. Kaganovich, and Y. Raitses, Phys. Plasmas

21, 062113 (2014).
17A. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T.

Tang, M. Umansky, Y. Raitses, I. Kaganovich, and V. Lakhin, Plasma

Phys. Controlled Fusion 59, 1, 14041 (2016); see http://stacks.iop.org/

0741-3335/59/i=1/a=014041.
18A. Kapulkin and M. M. Guelman, IEEE Trans. Plasma Sci. 36, 2082

(2008).
19J. P. Boeuf and B. Chaudhury, Phys. Rev. Lett. 111, 847 (2013).
20M. J. Sekerak, B. W. Longmier, A. D. Gallimore, D. L. Brown, R. R.

Hofer, and J. E. Polk, IEEE Trans. Plasma Sci. 43, 72 (2015).
21C. L. Ellison, Y. Raitses, and N. J. Fisch, Phys. Plasmas 19, 013503

(2012).
22A. Kapulkin and M. Guelman, “Lower-hybrid instability in Hall thruster,”

in Proceedings of the 29th International Electric Propulsion Conference

(Electric Rocket Propulsion Society, 2005).
23D. Escobar and E. Ahedo, Phys. Plasmas 22, 102114 (2015).

24Y. V. Esipchuk and G. N. Tilinin, Sov. Phys. Tech. Phys. 21, 417 (1976).
25A. Kapulkin and M. Guelman, “Low frequency instability and enhanced

transfer of electrons in near-anode region of Hall thruster,” in Proceedings

of the 30th International Electric Propulsion Conference (Electric Rocket

Propulsion Society, 2007).
26B. A. Jorns and R. R. Hofer, Phys. Plasmas 21, 053512 (2014).
27R. F. Ellis, E. Marden-Marshall, and R. Majeski, Plasma Phys. 22, 113

(1980).
28F. F. Chen, Phys. Fluids 10, 1647 (1967).
29S. Barral, Y. Jayet, S. Mazouffre, M. Dudeck, E. Vron, and P. Echegut,

“Hall effect thruster with an AlN discharge channel,” in Proceedings of

the 29th International Electric Propulsion Conference (Electric Rocket

Propulsion Society, 2005).
30D. Escobar and E. Ahedo, IEEE Trans. Plasma Sci. 43, 149 (2015).
31Y. Raitses, P. Baele, and V. M. Donnelly, in Proceedings of the 64th

Gaseous Electronics Conference (2011).
32A. Smirnov, Y. Raitses, and N. J. Fisch, J. Appl. Phys. 95, 2283 (2004).
33Y. Raitses, J. B. Parker, E. Davis, and N. J. Fisch, “Background gas pres-

sure effects in the cylindrical Hall thruster,” in Proceedings of the 46th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

(American Institute of Aeronautics and Astronautics, 2010), Paper No.

AIAA-2010-6775.
34Y. Raitses, I. Kaganovich, and A. Smolyakov, “Effects of the gas pressure

on low frequency oscillations in E � B discharges,” in Proceedings of the

Joint Conference of 30th ISTS, 34th IEPC, and 6th NSAT (2015).
35L. N. Trefethen, Spectral Methods in MATLAB (Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000).
36W. Frias, A. I. Smolyakov, I. D. Kaganovich, and Y. Raitses, Phys.

Plasmas 19, 072112 (2012).
37A. M. DuBois, T. Edward, W. Amatucci, and G. Ganguli, Phys. Plasmas

21, 062117 (2014).
38G. Ganguli, Y. C. Lee, and P. J. Palmadesso, Phys. Plasmas 31, 823

(1988).
39Y. Raitses, D. Staack, M. Keidar, and N. J. Fisch, Phys. Plasmas 12,

057104 (2005).
40A. A. Litvak and N. J. Fisch, Phys. Plasmas 8, 648 (2001).
41A. A. Litvak and N. J. Fisch, Phys. Plasmas 11, 1379 (2004).
42A. Lazurenko, V. Krasnoselskikh, and A. Bouchoule, IEEE Trans. Plasma

Sci. 36, 1977 (2008).
43R. Spektor, “Quasi-linear analysis of anomalous electron mobility inside a

Hall thruster,” in Proceedings of the 30th International Electric Propulsion

Conference (Electric Rocket Propulsion Society, 2009).

122111-13 Romadanov et al. Phys. Plasmas 23, 122111 (2016)

http://dx.doi.org/10.1016/S0042-207X(99)00189-X
http://dx.doi.org/10.1063/1.4922898
http://dx.doi.org/10.1088/0963-0252/21/3/035006
http://dx.doi.org/10.1134/1.1561119
http://dx.doi.org/10.1103/PhysRevLett.111.115002
http://dx.doi.org/10.1103/PhysRevLett.111.115002
http://dx.doi.org/10.1063/1.1706743
http://dx.doi.org/10.1063/1.1706878
http://dx.doi.org/10.1063/1.870473
http://dx.doi.org/10.1063/1.860803
http://dx.doi.org/10.1063/1.4804281
http://dx.doi.org/10.1063/1.4885093
http://stacks.iop.org/0741-3335/59/i=1/a=014041
http://stacks.iop.org/0741-3335/59/i=1/a=014041
http://dx.doi.org/10.1109/TPS.2008.2003359
http://dx.doi.org/10.1103/PhysRevLett.111.155005
http://dx.doi.org/10.1109/TPS.2014.2355223
http://dx.doi.org/10.1063/1.3671920
http://dx.doi.org/10.1063/1.4934352
http://dx.doi.org/10.1063/1.4879819
http://dx.doi.org/10.1088/0032-1028/22/2/002
http://dx.doi.org/10.1063/1.1762340
http://dx.doi.org/10.1109/TPS.2014.2367913
http://dx.doi.org/10.1063/1.1642734
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1063/1.4886145
http://dx.doi.org/10.1063/1.866818
http://dx.doi.org/10.1063/1.1891747
http://dx.doi.org/10.1063/1.1336531
http://dx.doi.org/10.1063/1.1647565
http://dx.doi.org/10.1109/TPS.2008.2000972
http://dx.doi.org/10.1109/TPS.2008.2000972

	d1
	s1
	d2
	l
	n1
	n2
	n3
	n4
	n5
	n6
	d3
	s1
	s2
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	f1
	d14
	s2
	s3
	f2
	f3
	s3A
	f4
	f5
	f6
	s3B
	f7
	f8
	f9
	f10
	f11
	s4
	d15
	f12
	f13
	f14
	d16
	f15
	t1
	f16
	d17
	f17
	f18
	t2
	f19
	f20
	s5
	f21
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43

