
Evolution of the electron cyclotron drift instability in two-dimensions
Salomon Janhunen, Andrei Smolyakov, Dmytro Sydorenko, Marilyn Jimenez, Igor Kaganovich, and Yevgeny
Raitses

Citation: Physics of Plasmas 25, 082308 (2018); doi: 10.1063/1.5033896
View online: https://doi.org/10.1063/1.5033896
View Table of Contents: http://aip.scitation.org/toc/php/25/8
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1123670462/x01/AIP-PT/COMSOL_PoPArticleDL_072518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Janhunen%2C+Salomon
http://aip.scitation.org/author/Smolyakov%2C+Andrei
http://aip.scitation.org/author/Sydorenko%2C+Dmytro
http://aip.scitation.org/author/Jimenez%2C+Marilyn
http://aip.scitation.org/author/Kaganovich%2C+Igor
http://aip.scitation.org/author/Raitses%2C+Yevgeny
http://aip.scitation.org/author/Raitses%2C+Yevgeny
/loi/php
https://doi.org/10.1063/1.5033896
http://aip.scitation.org/toc/php/25/8
http://aip.scitation.org/publisher/


Evolution of the electron cyclotron drift instability in two-dimensions

Salomon Janhunen,1,a) Andrei Smolyakov,1 Dmytro Sydorenko,2 Marilyn Jimenez,1

Igor Kaganovich,3 and Yevgeny Raitses3

1University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
2University of Alberta, 3-235 Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G2E9,
Canada
3Princeton University/Princeton Plasma Physics Lab, 100 Stellarator Rd., Princeton, New Jersey 08543-0451,
USA

(Received 6 April 2018; accepted 20 July 2018; published online 14 August 2018)

The Electron Cyclotron Drift Instability driven by the electron E�B drift in partially magnetized

plasmas is investigated with highly resolved particle-in-cell simulations. The emphasis is on two-

dimensional effects involving the parallel dynamics along the magnetic field in a finite length

plasma with dielectric walls. It is found that the instability develops as a sequence of growing

cyclotron harmonics demonstrating wave breaking and complex nonlinear interactions, being par-

ticularly pronounced in ion density fluctuations at short wavelengths. At the same time, nonlinear

evolution of fluctuations of the ion and electron density, as well as the anomalous electron current,

shows cascade toward long wavelengths. Tendency to generate long wavelength components is

most clearly observed in the spectra of the electron density and the anomalous current fluctuations.

An intense but slowly growing mode with a distinct eigen-mode structure along the magnetic field

develops at a later nonlinear stage enhancing the tendency toward long wavelength condensation.

The latter mode having a finite wavelength along the magnetic field is identified as the Modified

Two-Stream Instability (MTSI). It is shown that the MTSI mode results in strong parallel heating

of electrons. Published by AIP Publishing. https://doi.org/10.1063/1.5033896

I. INTRODUCTION

Partially magnetized plasmas immersed in crossed

E�B fields are used in various devices such as Hall thrusters

for electric propulsion. Such plasmas are subject to a number

of instabilities that affect device operation—and in particu-

lar—the level of anomalous transport that is typically found

to be orders of magnitude larger than the classical (colli-

sional) transport. The nature of the anomalous transport

(mobility) is still poorly understood and has been attributed

to several candidate instabilities that may interact with each

other to bring about the observed levels of anomalous trans-

port. The electron cyclotron drift instability (ECDI) driven

by the electron E�B drift, and independent of any plasma

gradients and collisions, has been recently actively discussed

as a possible candidate.1–3

In earlier works,4–7 electron cyclotron instabilities have

been studied in relation to turbulent plasma heating by the

electric current perpendicular due to the relative electron-ion

drift. Electron cyclotron instability driven by ion beams was

also identified as a possible source of anomalous resistivity

explaining the width of collisionless shock waves, in particu-

lar in space conditions; for more recent work and references

see Refs. 8–10.

In the context of the anomalous transport in Hall thrust-

ers, the cyclotron instability driven by the electron E�B drift

was studied in 1D simulations,3,11–13 2D axial-azimuthal sim-

ulations,14–16 and 2D radial-azimuthal simulations.17–19 Many

of these works focused on the possibility that ECDI simply

becomes the ion sound instability analogous to the case of

unmagnetized plasma.13,20 We have shown in our previous

nonlinear simulations that the transition to ion sound (which

for the 1D case is only possible due to nonlinear diffusion in

the short wavelength regime) does not occur21 and the insta-

bility is driven by the dominant m¼ 1 cyclotron resonance.

We also found in our previous 1D simulations that when a

larger azimuthal length is used, anomalous transport cascades

to low-k modes. Curiously in Ref. 13 the authors see the emer-

gence of a large-scale structure in their simulation when they

use a larger simulation box, but reject it as an artifact.

In this paper, using highly resolved particle-in-cell simu-

lations, we study instabilities and transport in the 2D (azi-

muthal-radial) geometry. Periodic boundary conditions are

used in the azimuthal direction, along the E�B drift. The

magnetic field is in the radial direction bound by the dielec-

tric wall boundaries. Curvature effects of the channel are not

included in this work.

In 2D geometry, a new class of unstable mode appears

for finite values of the wave number kz along the magnetic

field, namely the Modified Two-Stream Instability (MTSI).22

For larger values of kz, the unstable mode looks similar to

the unmagnetized ion sound.5,20,23 In this paper, we study

the linear and nonlinear evolution of the interacting ECDI

and MTSI modes, their saturation, and associated turbulent

transport for typical conditions of a Hall thruster. Our simu-

lations demonstrate that like in the 1D case, the instability is

driven by nonlinear cyclotron resonance modes that domi-

nate the anomalous transport and that the cascade to long

wavelengths observed in 1D simulations is further enhanced
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by the linear long wavelength instabilities that occur when

finite kz is allowed. Moderate values of the anomalous elec-

tron current of the order of X ¼ Xce/�eff ’ 200 are obtained

in a nonlinear stage similar to the 1D case.21 An important

new result is strong parallel electron heating due to the

modes with a finite kz.

This paper is structured as follows: we discuss the 2D

linear regime and the unstable normal modes therein and

show that they appear as expected in fully non-linear simula-

tions in the very early part of the simulation. The early

non-linear saturation processes are discussed, such as mode

competition between the ECDI harmonics and apparent cou-

pling to the modified two-stream instability (MTSI). In the

development of the strong turbulence regime, we show how

the MTSI compresses the ECDI wave packet and produces

large fluxes to the sheath with accompanied rapid heating of

the parallel temperature. We discuss the spectral cascade of

the anomalous current, the features of the anomalous current

as a function of the radial (parallel to magnetic field) direc-

tion, and the time evolution of the overall anomalous current.

Finally, the sheath losses and decay of the plasma column

in the absence of sources are discussed, and a summary

follows. We discuss technical details such as numerical

parameters and analysis methods in the Appendix.

II. LINEAR FEATURES OF THE ELECTRON
CYCLOTRON DRIFT-INSTABILITY

The electron drift cyclotron instability (ECDI) occurs in

partially magnetized E�B plasma due to the significant

E�B flow of electrons with respect to ions. It is convenient

to discuss the characteristics of the ECDI with reference to

the linear dispersion relation. We consider the electrostatic

waves with v0 ¼ E� B=B2 streaming of electrons across a

uniform magnetic field B, with unmagnetized ions, in homo-

geneous unbounded plasma. The two-dimensional linear dis-

persion equation has the form23

� x; kð Þ ¼ 1þ �i x; kð Þ þ �e x; kð Þ ¼ 0; (1)

where �e and �i are the electron and ion susceptibilities

�i ¼ �
1

2k2k2
Di

Z0
xffiffiffi
2
p

kvi

� �
; (2)

�e ¼
1

k2k2
De

�
1þ x� k � v0ffiffiffi

2
p

kzve

X1
m¼�1

e�bIm bð Þ

� Z
x� k � v0 þ mXceffiffiffi

2
p

kzve

� ��
; (3)

where b ¼ k2
yq

2
e ; q2

e ¼ v2
e=X

2
ce; v2

e;i ¼ Te;i=me;i; k2
De;i ¼ �0Te;i=

n0q2
e;i; ZðnÞ is the plasma dispersion function, Im(x) is the

modified Bessel function of the 1st kind, B ¼ B0ẑ is the mag-

netic field in the z– direction, and E ¼ E0x̂ is the external

electric field in the x-direction, so that v ¼ E� B=B2 ¼ v0ŷ

is in the y direction (or, against if v0 ¼ –E0/B0 < 0). Then,

kz and ky are the components of the wave vector k along

the magnetic field and in the E� B= directions, k � jkj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z þ k2
y

q
. Given the physical parameters, it remains to

assign kz and ky values; solving the dispersion relation pro-

vides us with the frequency x, which generally gets a com-

plex value.

For the geometry of the Hall thruster with a radial mag-

netic field, we define a few auxiliary quantities and relations

that aid in the following discussions: k0 ¼ Xce=v0; kz

¼ 2pnz=Lr; ky ¼ 2pny=lh, where Lr is the extent of the sys-

tem in the radial (along the magnetic field) direction, and

lh is the extent of the system in the azimuthal direction, so

the quantum numbers nz and ny characterize the radial and

azimuthal wave vectors that satisfy the boundary conditions.

The local Cartesian coordinates y, z correspond to the h, r
coordinates of the coaxial Hall thruster. It is important to

emphasize however that while the y-direction is periodic in

our simulations, periodicity is not imposed in the radial

direction. The eigenmode structure in the radial direction is

formed self-consistently by the mode parallel dynamics and

by the sheath effects at z¼ 0 and z ¼ Lr. The ensuing mode

structure will be discussed below. In this work, we assume

the gap to be a straight box, for simplicity.

In the limit of cold ions where x > kvi, the ion response

becomes

�i ¼ �
x2

pi

x2
; (4)

where x2
pi ¼ e2n0=e0mi is the ion plasma frequency.

In the one-dimensional case, kz ! 0, k ¼ ky, the disper-

sion equation (1) takes the form

�e ¼
1

k2k2
De

�
1� exp �k2q2

e

� �
I0 k2q2

e

� �

� 2 x� kv0ð Þ2
X1
m¼1

exp �k2q2
e

� �
Im k2q2

e

� �
x� kv0ð Þ2 � m2X2

ce

�
: (5)

The form of Eq. (5) emphasizes the role and the interaction

of different cyclotron harmonics. Note that there is no reso-

nance for the m¼ 0 harmonic, while all higher harmonics

with m¼ 1, 2,… are resonant at ðx� kv0Þ2 ¼ m2X2
ce. In the

cold electron limit Te ! 0, only m¼ 0 and m¼ 1 harmonics

contribute and the dispersion relation reduces to the

Buneman magnetized plasma instability driven by transverse

current24

1�
x2

pi

x2
�

x2
pe

ðx� kv0Þ2 � X2
ce

¼ 0: (6)

The instability is a result of reactive coupling of the electron

(Doppler shifted) upper hybrid mode ðx� kv0Þ2 ¼ x2
pe þ X2

ce

with the short wavelength ion oscillations x2 ¼ x2
pi. In the

long wavelength low frequency limit, ðx; kv0Þ < Xce, Eq. (6)

describes the lower-hybrid modes, x2
LH ¼ XciXce. The contri-

bution of higher m> 1 harmonics (which are absent for Te ¼ 0)

grows with electron temperature and has the maximum at

shorter wavelengths k2q2
e ’ 1 due to the exp ð�k2q2

eÞImðk2q2
eÞ

factors. The temperature effects also add dispersion to the

lower hybrid modes x2 ¼ X2
LHð1þ k2q2

eÞ, which eventually

becomes the high frequency ion sound for k2q2
e � 1; x2
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¼ X2
LHk2q2

e ’ k2c2
s . In this limit, the contribution of the

cyclotron harmonics decreases with kqe: expð�k2q2
eÞ

� Imðk2q2
eÞ ! 1=ðkqeÞ, so that the real part of the electron

susceptibility becomes

�e ’ 1= k2k2
De

	 

; (7)

and Eq. (1) produces the ion sound mode

x2 ¼ k2c2
s= 1þ k2k2

De

	 

: (8)

The imaginary part in �e (neglected so far) originates in the

series of cyclotron resonances. In the limit k2q2
e � 1, the infi-

nite series of cyclotron resonances can be summed resulting

in the imaginary contribution equivalent to the pole contribu-

tion 1/(x – kv0) as for the case of unmagnetized electrons.

Thus, even for strictly perpendicular propagation, in the

k2q2
e � 1 limit, one has the ion sound instability as in the

unmagnetized plasma case. This case is directly related to the

resolution of the Landau-Bernstein paradox: the sequence of

Bernstein modes which are undamped in magnetized plasma

results in collisionless Landau damping when B! 0.

Another kind of instability occurs near the resonances

ðx� kv0Þ2 ’ m2X2
ce. This is a strong (fluid) reactive instabil-

ity due to coupling of the ion and electron modes,25 facili-

tated by the Doppler shift. For cold electrons, only the m¼ 1

exists, resulting in the Buneman instability described by Eq.

(6). For finite Te, all higher modes with m> 1 are present. In

our previous work, it was shown that in the 1D case a set of

modes with higher m are excited, but eventually, via the lin-

ear (due to electron heating) and nonlinear effects, a domi-

nant m¼ 1 strongly coherent cnoidal wave appears.21 The

cyclotron resonance nature of the mode, defined by the con-

dition x < kyv0 ’ Xce, extends far into the nonlinear stage.

Similar results were also obtained in other simulations rele-

vant to space plasma conditions.8

In 2D where plasma motion along the magnetic field is

present, new regimes become possible due to finite values of

the kz. There have been a number of studies of the full linear

dispersion equation with (2) and (3), for example see Refs. 5,

20, 23, and 26. One of the results of these studies is that for

sufficiently large values of the parallel wave vector kz, the

solution of the dispersion relation (1) produces a mode which

is close to the ion sound instability in unmagnetized plasma

driven by the electron beam with v0 velocity.

The general behavior of the growth rate of the instability

is shown for several values of the kz parameter in Fig. 1 as a

function of the azimuthal wave vector ky. We solve the dis-

persion relation numerically in Python27 using the technique

described in Ref. 20, where the solution is obtained through a

fixed point iteration using the relative error as a stopping con-

dition. We use the convergence condition that j1� xiþ1=xij
< 10�6 for i� 15. The SciPy28 Faddeeva function is used to

get good numerical accuracy of the plasma dispersion func-

tion for a wide range of arguments. We show the first

four roots obtained in the (kz, ky) phase plane in Fig. 2 for a

10 eV Xenon plasma with ne¼ 1017 m�3, B0¼ 0.02 T, and

E0¼ 20 kV/m, which are typical Hall thruster parameters.

The normalization scheme for the dispersion relation solver

code is the same as defined in Ref. 20, where frequencies are

normalized to xpi, velocities to cs, and lengths to kDe. The

physical parameters given above are also used as the initial

state of nonlinear simulations presented in this paper, unless

otherwise noted. The Python code is also used for solving

the dispersion relation in a simple case of Te ! 0, as shown

in Fig. 3 where the limit of the full dispersion relation is

presented for kzkDe ¼ 0.005.

For small values of the kz, one can see in Fig. 1 the fluid

type reactive instability peaks near the resonant values of ky

¼ m � k0. For larger values of kz, the fluid resonance is broad-

ened by the thermal effects and for kzvTe � x, the resonance

becomes kinetic, resulting in the smooth curve correspond-

ing to the kinetic resonance instability of the ion sound in

unmagnetized plasma.23

The regimes for different values of kz can be seen from

the dispersion equation (1). In the limit kz! 0, nm� 1, and

using ZðnmÞ ! �1=nm, the terms involving plasma disper-

sion functions result in cyclotron resonances

FIG. 1. Growth rate of instabilities for kzkDe of 0.01, 0.02, 0.04, and 0.08,

respectively, found from the full dispersion equation (1)–(3). The first root

from left is the MTSI (m¼ 0), and subsequent roots are from m¼ 1, 2, 3,…

ECDI resonances. Parameters for this figure are: v0 ¼ –369 cs, vTe ¼ 489 cs,

Xce ¼ 96.5 xpi, and k0kDe ¼ 0.262.

FIG. 2. Phase space plot of growth rate c(kz, ky)/xpi for the full dispersion

relation. Notice the modified two-stream instability (MTSI) in the sub-

cyclotron low-k region, indicating possible instability for simulations which

are able to accommodate the mode in the azimuthal direction. Parameters for

this figure are: v0 ¼ –369 cs, vTe¼ 489 cs, Xce¼ 96.5 xpi, and k0kDe ¼ 0.262.
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x� k � v0ffiffiffi
2
p

kzve

Z nmð Þ ! �
x� k � v0

x� k � v0 þ mXce
; (9)

nm ¼
x� k � v0 þ mXceffiffiffi

2
p

kzve

: (10)

This is the regime of the fluid (reactive) instability due to

coupling of the ion sound and ion modes25 which occurs for

cold plasma (and in the limit of kz! 0).

The thermal broadening of the resonance and the transi-

tion to the kinetic ion sound instability can be clearly seen in

the example when only m¼ 0 is retained in the sum (3)

1�
x2

pi

x2
þ 1

k2k2
De

1þx� k � v0ffiffiffi
2
p

kzve

e�bI0 bð ÞZ x� k � v0ffiffiffi
2
p

kzve

� �� �
¼ 0:

(11)

The first three terms in this expression describe the ion sound

mode (8). Considering the last term as a small perturbation in

Eq. (11), one gets the so called modified ion sound instabil-

ity.26,29 Similar resonance broadening occurs for higher m reso-

nances, so that the resonant fluid type instability (kz ! 0) is

replaced by the kinetically driven mode for a finite kz. This

behavior is illustrated in Figs. 1 and 4, where the mode frequen-

cies and growth rates are calculated retaining only individual

terms with different m of the Bessel function series (lower

panel) and partial sum up to the mth order (upper panel). Note

that the real part of the mode frequency for individual m and

partial sum m modes always remains close to the ion sound

mode frequency from Eq. (8), see Fig. 4. For sufficiently large

kz, the summation of several components in the Bessel series

illustrates the transition to unmagnetized ion-sound instability

as shown in Fig. 4, where the solutions of the partial sum

slowly converge to the unmagnetized curve as terms are added.

III. MODIFIED TWO-STREAM INSTABILITY AND
MODIFIED TWO-STREAM BUNEMAN INSTABILITY

The discussion in Sec. II remains silent on one important

feature of the instability with finite kz: namely on the regime

of the Modified-Two-Stream Instability (MTSI)22,30,31 where

the effect of the electron parallel motion is typically consid-

ered in the context of the following dispersion equation:30

1�
x2

pi

x2
�

x2
pek2

z

ðx� kyv0Þ2k2
þ

x2
pek2

y

X2
cek2
¼ 0: (12)

It is instructive to analyze the nature of this equation

starting from the electron response in the form of Eq. (7)

which together with Eq. (4) results in the ion sound mode.

The electron susceptibility in the form of Eq. (7) is equivalent

to the Boltzmann response for the perturbed electron density

~ne ¼
e~/
Te

n0: (13)

This expression follows from the parallel electron balance in

neglect of the electron inertia:

0 ¼ enrjj~/ � Terjj~n: (14)

The electron inertia however can be neglected in the par-

allel momentum balance only when the condition x < kzve is

satisfied. In the presence of the strong transverse electron

flow v0, apparent mode frequency has to be modified due

to the Doppler shift: x! x� kyv0. When the condition

x� kyv0 < kzve is violated, the electron inertia terms have

to be included. In this case, the electron continuity and

momentum balance equations

�i x� kyv0ð Þ~n þ ikzn0vjj ¼ 0; (15)

�ime x� kyv0ð Þvjj ¼ iekz
~/; (16)

result in the electron density response in the form

ne ¼ �
ek2

z
~/

meðx� kyv0Þ2
: (17)

Note that when ðx� kyv0Þ ’ kzve, the assumption of the iso-

thermal electrons becomes invalid, and the only consistent

approximation in the fluid theory is to assume Te ¼ 0, so the

pressure term in (16) was omitted. In this equation, the third

term corresponds to the electron density perturbation from

Eq. (17) and the last term is due to the electron inertial per-

pendicular current. It is worth noting that Eq. (12) is not fully

consistent. The second term in this equation is obtained

under ordering ðx� kyv0Þ ’ kzve, while the last term is

obtained with the low frequency approximation ðx� kyv0Þ
� Xce. The latter may not be satisfied for some applications

such as Hall thrusters. A more accurate dispersion equation

is obtained from Eqs. (1) and (3) by taking a rigorous limit

Te! 0 which yields the relation

1�
x2

pi

x2
�

x2
pek2

z

ðx� kyv0Þ2k2
�

x2
pek2

y

ððx� kyv0Þ2 � X2
ceÞk2

¼ 0;

(18)

which includes both the modified two-stream instability and

the upper hybrid Buneman instability. In the following, we

FIG. 3. Comparison of the growth rate from a 2D simulation and a 1D simu-

lation with 40 000 particles/cell, using Te ¼ 0.001, with the solution of the

linear dispersion in the Te ! 0 limit. Parameters for this figure are:

v0 ¼ �36:9 � 103 cs; vTe ¼ 489 cs; Xce ¼ 96:5 xpi.
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will call this case the Modified Buneman Two-Stream

Instability (MBTSI).

The MBTSI regime is of particular importance as a

finite value of kz results in the long wavelength instability at

small ky/k0 � 1, well below the cyclotron resonances with

ky ’ m � k0. This long wavelength mode, the leftmost peak in

Fig. 1, also shown in Fig. 5, has a small growth rate, but as

discussed in Sec. V, turns out to be important in the nonlin-

ear saturation regime enhancing the tendency toward long

wavelength condensation.

In our 2D simulations, which are bounded in the z-direc-

tion, it is observed generally that up to the non-linear regime

the instability grows uniformly everywhere, with kz ’ 0, and

only after the non-linear regime is reached does the wave

like structure develop in the parallel direction. This can be

explained by the fact that the linear growth rates increase

monotonically towards kz! 0, while the sheath allows fluc-

tuations to extend up to the boundary by “insulating” the per-

turbations from the wall.

Generally in the literature, the ECDI instability was con-

sidered20 for typical values of the parallel wave length of

kzkDe ’ 0.01–0.09 corresponding to a parallel wave length of

k ¼ 7.4–0.8 cm, for typical Hall-effect thruster parameters. It

FIG. 5. Close-up of the modified two-stream instability (MTSI) growth rate

c/xpi given as a function of sinðaÞ ¼ kz=k and k/k0. Parameters for this figure

are: v0 ¼ �369 cs; vTe ¼ 489 cs; Xce ¼ 96:5 xpi; k0kDe ¼ 0:262.

FIG. 4. Growth rate obtained from partial sums of the full dispersion relation (1); top row: terms up to I6k included solving for x and c; bottom row: only terms

I6k of the sum included while solving for x and c. The solution from the unmagnetized dispersion relation is included (labeled as IS); partial sum including

terms up to m¼ 50 is virtually indistinguishable from the unmagnetized solution. Parameters for this figure are: v0 ¼ �369 cs; vTe ¼ 489 cs; Xce ¼ 96:5 xpi.

082308-5 Janhunen et al. Phys. Plasmas 25, 082308 (2018)



could be misleading, however, to estimate kz and relevant

dynamic regimes of the ECDI based on full wave lengths in

a Hall-effect thruster gap. It has been noted earlier32–35 that

in a bounded plasma the sheath effects allow the wavelength

along the magnetic field to be much longer than would other-

wise follow from the geometrical constraint kz ¼ 2p/Lr,

where Lr is the plasma width between the boundaries. In our

2D simulations, we observe that the parallel structure along

the magnetic field is consistent with a half-wavelength fit

between the boundaries. This corresponds to kzkDe ¼ 0.00434.

We used this value for calculations of the linear growth rates

in Figs. 3 and 6.

IV. GROWTH AND SATURATION OF THE CYCLOTRON
HARMONICS OF ECDI AND MTSI MODES

PIC2D is a 2D3V PIC code developed by Dmytro

Sydorenko at the University of Alberta based on his earlier

1D3V PIC code, EDIPIC.36 The initial state of the PIC2D

simulation is a v0-shifted Maxwellian distribution for the

electrons and a stationary Maxwellian for the ions. The ini-

tial state is quasi-neutral and homogeneous, equipped with

the typical Hall-effect thruster parameters presented in Sec.

II (and Appendix A). The magnetic field lines are terminated

at a dielectric boundary, so a sheath potential develops soon

after time starts running. The simulation box is Lr¼ 53.8 mm

by lh ¼ 13.45 mm, and the numerical parameters are detailed

in Table II in Appendix A. Even though to code allows to do

so, no collisions were used in our simulations.

Chronologically, the evolution of the simulations goes as

follows (see Figs. 7 and 8). First, in the linear-like stage the

fastest growing modes—the ECDI with m¼ 3–5—grow and

introduce some heating to the electrons primarily in the per-

pendicular direction. Due to heating and nonlinearities, the

lowest m¼ 1 resonance becomes the ECDI mode with the

largest energy content, even though linearly it is the slowest

growing mode. The resonance condition ky ¼ mXce/v0 gives

FIG. 6. Growth rate and frequency for ECDI instabilities for kzkDe ¼ 0.005

at Te ¼ 10 eV. Growth rates as obtained from the 2D simulation (Fig. 8) are

indicated by the symbols. Note the existence of the MTSI below the first

cyclotron resonance. Refer to Table I for the values. Parameters for this fig-

ure are: v0 ¼ �369 cs; vTe ¼ 489 cs; Xce ¼ 96:5 xpi; k0kDe ¼ 0:262.

FIG. 7. Time slices of the ion density fluctuation ni � hniiyðz; tÞ, showing growth and saturation of the predominant m¼ 1 cyclotron mode followed by the

development of the structure parallel to the magnetic field.
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with our choice of lh ¼ 13.45 mm the quantum numbers ny

¼m � 7.534, but due to kinetic effects the maximum growth

rates are found at higher values of ny. It is observed consis-

tently with the linear dispersion relation that the maximum

growth rates for the m cyclotron resonances correspond to

ny(m¼ 1, 2, 3.) ¼ {10, 17, 24, 31,…} as ECDI modes. For

higher resonances, the up-shift in ky is lower, diminishing the

gap between maximum growth rates of m-resonances to Dny

¼ 7. The mode amplitudes are shown in Fig. 7, and growth

rates are given in Table I. As can be also seen from Fig. 6,

these locations are very close to the maximum growth rates

obtained from the linear dispersion relation. After the m¼ 1

and m¼ 2 modes saturate, the MTSI mode starts growing,

suggesting non-linear feedback between the modes. During

the growth of the MTSI, mode competition between m¼ 1

and m¼ 2 ECDI modes is observed. The MTSI mode grows,

heating the electrons predominantly in the parallel direction

due to the parallel electric field. Heating in the parallel direc-

tion results in enhanced losses to the sheath and saturation of

the MTSI. The ECDI modes stay at their saturated level that

was established earlier, but after the saturation of the MTSI

the m¼ 1 and 2 modes grow by 5%–10%, while m¼ 3 and 4

modes lose energy correspondingly. At this stage, we observe

the saturation of the anomalous axial current, as shown in

Fig. 16.

Linear growth rates may be determined directly from

simulation data when the runs are performed with good

enough resolution. The procedure for finding the linear

growth rates from the spectrogram of a simulation is outlined

in Appendix A. The linear and early non-linear stage of the

evolution of individual mode resonances is shown in Fig. 8,

where we also provide the values for the normalized wave

number from the linear fits that can be made to the modes.

The values obtained from simulations are given in Table I

and also plotted for the comparison with the linear dispersion

relation solutions in Fig. 6. As can be seen, the growth rates

are of the right magnitude, although depressed due to the

short time of growth available for fitting. The MTSI mode

(first peak) is well represented though, showing the impor-

tance of good statistics. The MTSI peak is well represented

because it grows to a higher amplitude, giving a larger range

for least-squares fitting. This explains why the ECDI growth

rates are generally slightly underestimated by the 2D simula-

tions; the mode energy for the ECDI modes has only four

periods of growth (before nonlinear stage), whereas the

MTSI has more than ten periods for fitting (see Fig. 8). Part

of the ECDI growth curve is affected by early nonlinear satu-

ration processes, decreasing the apparent growth rate.

To emphasize this point, we ran a case for Te 	 0 with

the 2D code, and a case with 1D version of the code using

very good statistics (Fig. 3) that gives a remarkably good

value for both the growth rate and frequency of the Modified

Buneman Two-Stream instability [Eq. (18)].

A curious feature of the ECDI/MTSI energy in Fig. 8 is

how the growth of the MTSI commences only after the ECDI

modes have saturated, and how the energy of the ECDI modes

remains relatively constant, while the MTSI is growing. This

emphasizes that the modes are not in fact independent, but are

nonlinearly coupled instead. It is observed that in the sheath-

bounded radial direction the mode assumes a half-wave

pattern with nz ¼ 1/2, whereas in the azimuthal (periodic)

direction the mode is a full wave with ny ¼ 1. If we use this

observation to prescribe kz ¼ p/Lr, we get Fig. 6 from the dis-

persion relation, and our MTSI peak aligns well with the peak

of the MTSI in ky ¼ 2p/lh, and the fit to ECDI modes with ny

¼ {10, 17, 24, 31,…} is also satisfactory.

There are 3D simulations that indicate the existence of

long-wavelength modes very similar to those found in our

simulations,37 suggesting that the presence of the MTSI is a

robust feature even in full Hall-effect thruster geometry.

V. NONLINEAR SPECTRA OF ION AND ELECTRON
DENSITY: SHORT WAVELENGTH FEATURES

We have earlier noted that the cyclotron resonances

drive strongly coherent cnoidal type waves which are limited

by saturation through ion dynamics,21 while the waves retain

their cyclotron resonance characteristics far into the simula-

tion even with significant electron heating and nonlinear

interactions between modes.

In 2D, the dispersion relation admits a long wavelength

instability that is absent in 1D, namely the modified two-

stream instability of Sec. II. The latter mode is observed to

modify the nonlinear dynamics compared to the 1D case,

resulting in significantly faster evolution of the long wave-

length components, and a lower energy content (or, fluctua-

tion level) is retained in the ECDI modes.

FIG. 8. Logarithmic amplitude of the azimuthal electric field energy jEyj2,

showing stages of linear growth and early nonlinear saturation of the cyclo-

tron and MTSI modes. Linear least-squares fitting has been used to obtain

values of the growth rates for each mode (labeled by their k values wrt/k0),

given in Table I.

TABLE I. The wave length and growth rate of unstable modes observed in

the linear stage simulations as shown in Figs. 8 and 6.

Symbol ny k/k0 c/xpi

� 1 0.1325 0.4957

10 1.3248 0.7133

� 17 2.2521 0.7629


 24 3.1794 1.2568

� 31 4.1068 1.1628
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After the early nonlinear stage, the convective nonlinear-

ity compresses/expands the ECDI in the hills/troughs of the

now-dominant MTSI mode (Fig. 10), causing jet-like injection

into the sheath from the compressed maxima (particularly evi-

dent in the 4th figure of Fig. 7) with accompanying faster

decay of the plasma profile. Transient large fluctuations in the

electron density predominantly in the parallel direction are

observed to originate from the sheath at this stage, also seen

as parallel ripples in the ion density, which likely act as a

relaxation mechanism. At this stage (around 1 ls into the sim-

ulation), the linear mode characteristics become a poor

descriptor of the system: electron density fluctuations do not

significantly increase, but ion density fluctuations grow (see

Figs. 9–11), and group velocity of the wave packet increases

significantly. Feedback between the ECDI- and MTSI-scale

modes is apparent, with expansion and compression of the

wave crests as the wave packet progresses.

An important feature of the nonlinear dynamics observed

in our 2D simulation is the difference in the behavior of the

ion and electron density. After heating, electron fluctuations

become fairly uninteresting (and low-amplitude), but the ion

density exhibits a wealth of non-linear phenomena. This dif-

ference is especially apparent in the short wavelength kykDe

< 1 part of the spectrum. The ECDI still remains the dominant

mode of energy injection into the short wavelength ion-sound

fluctuations, whose frequency approaches xpi in this limit, but

strongly modified by signatures of nonlinear wave breaking38

due to ion dynamics. In the strong turbulence state, the ion

density fluctuations in the azimuthal direction become

cnoidal-like and are led by a wave with a very sharp peak of

positive amplitude, after which a train of crests of decreasing

amplitude follow. As apparent from Fig. 11, where a radial

section of the plasma at 5 mm is shown, the crests do not prop-

agate as much as exchange energy through elastic-like colli-

sions (akin to soliton collisions), so the amplitude maximum

travels at a higher speed than the individual crests do, as may

be the case for envelope solitons.39 Similar features were

FIG. 10. Stages of the nonlinear development of the ion density fluctuations

at four time slices. A large scale mode is formed, the wave crest compress-

ing the EC waves, merging of the peaks with shift to lower k and reshaping

of the wave packet to a more triangular form. Plots are from r¼ 5 mm.

FIG. 9. Ion and electron density fluctuation levels over the whole simulation

volume; standard deviation and maximum.

FIG. 11. Left: Azimuthal ion density fluctuations as a function of time. Individual wave crests propagate at different phase velocities with respect to the wave

packet, exchanging energy with one another. Right: Azimuthal electron density fluctuations as a function of time. After saturation, electron density assumes a

smooth profile. The volume-averaged root-mean-square fluctuation level is roughly half of the ion fluctuation level. The figures are scaled the same way, n0

¼ 1017 m�3 to fix units although dn ¼ n� hniyðz; tÞ, and both are measured at z¼ 5 mm.
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observed in 1D simulations as well, although realized after a

significantly longer time of simulation.

VI. PARALLEL ELECTRON HEATING DUE TO MTSI

A new feature with respect to our earlier 1D simulations

is the rapid parallel heating in the 2D simulations, observed

to occur in the same pattern as the MTSI mode. It is well-

known that the MTSI is an effective heating mechanism for

electrons along the magnetic field22 and the heating is the

likely saturation mechanism for the MTSI, as larger parallel

temperature will induce large losses of high energy electrons

into the sheath.

After saturation of parallel temperature Tek, electron

heating in the perpendicular direction catches up to parallel

heating (which has saturated through sheath losses), after

which the state of strong turbulence is reached (see Fig. 12).

Even in this stage, the ECDI mode structure is prominent in

density spectra and is clearly affected into a “wave street”

(alternating maxima and minima) characteristic to the MTSI

mode, although the large scale structure is less apparent.

These features are unchanged in simulations with half time-

step, ruling out the possibility of numerical heating. The

heating profile is shown in Fig. 13, clearly indicating the

MTSI mode as the cause of parallel heating (and to a lesser

degree, perpendicular). The growth of the MTSI mode termi-

nates when the Tek growth terminates in Fig. 8.

VII. SPECTRAL CASCADE DOWN TO LONG WAVE
LENGTHS

In the previous work,21 linearly stable long wavelength

components attributable to nonlinear processes were

observed to arise in the 1D system. Energy cascade toward

long wavelengths is also observed in 2D simulations, with

the difference that in 2D the saturation and nonlinear stage is

reached much more quickly due to the presence of the line-

arly unstable long wavelength MTSI mode. A salient feature

observed in Fig. 8 is that the MTSI becomes active only

once the cyclotron modes have saturated, and the cyclotron

modes respond to the saturation of the MTSI by resuming

growth. This enhances the modulational nonlinear coupling

through a faster linear response. The ion density ky spectrum

at r¼ 1.35 cm, shown in Fig. 14, clearly demonstrates the

progression towards lower-k modes through inverse cascade,

and emergence of the turbulent spectrum soon after the

MTSI mode saturates.

Cascade to low-k is even more drastic in electron den-

sity, where the m> 1 resonances become all but absent. This

process coincides with the generation of low-k components

in the anomalous current and subsequent growth of net cur-

rent. For the anomalous current, a similar spectrum may be

FIG. 12. Anisotropic heating of the Te? and Tek components. Parallel heat-

ing is due to the MTSI mode. The curves show the volume averaged parallel

and perpendicular temperatures.

FIG. 13. Spatial structure of the perpendicular Te? and parallel Tek electron

temperatures.

FIG. 14. Evolution of the azimuthal ion density (top) and electron density

(bottom) k-spectra over time at L/4 of the simulation, plotted as log10~ni;eðkyÞ.
Discrete peaks occur at the x – kv0– ¼ mXce resonances, and the lowest peak

(after 0.5 ls) is the MTSI mode around ky ¼ 2p/lh, or ny ¼ 1.
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obtained (Fig. 15) illustrating the initial cascade towards

low-k during the saturation of the ECDI modes.

The present simulations encompass only a small fraction

of the total Hall-effect thruster gap in the azimuthal direc-

tion, due to their computational expense, and even the lon-

gest wavelength modes remain short compared to the total

gap circumference.

VIII. ANOMALOUS CURRENT

The axial anomalous current can be calculated from

PIC2D as the relative charge flux between ions and electrons.

The electric field exists only in the (y, z)-plane, but the axial

anomalous current arises because of the cyclotron rotation in

the (x, y)-plane. In particular, azimuthal electric field fluctua-

tions (in y-direction) result in the electron displacement in

the x-direction. The anomalous current Jx obtained as the

total charge flux in the x-direction is calculated directly from

particle motion in the code.

The inverse cascade is particularly apparent in the spec-

trum of the anomalous current (Fig. 15). Another feature of

the spectrum is the dominance of the ny ¼ 1 mode that corre-

sponds to the MTSI scale length. The mode also has the

same radial envelope as the current profile (Fig. 17).

The spatial structure of the anomalous current in 2D has

some special features which are not possible in 1D

simulations. The net axial current is associated with the ky

¼ 0 component, which is plotted in Fig. 16 as a function of

time. Like in the 1D simulations, we observe that the anoma-

lous current experiences an overshoot in the saturation stage

and settles down to a much lower level. The anomalous cur-

rent spectrum is dominated by low-k modes, particularly by

the lowest mode available to the system in the azimuthal

direction, but also has a strong radial variation that is illus-

trated in Fig. 17. Even though the MTSI creates a large tran-

sient in the total anomalous current, after the strong

turbulent regime is established the net anomalous current

falls to levels that are similar to those observed in 1D simula-

tions. The long-wavelength features in the parallel direction

do not contribute to the total volume-averaged current, but

could perhaps be observed in localized measurements as

large alternating axial jets in the anomalous current.

IX. SHEATH LOSSES AND DECAY OF THE PLASMA
COLUMN

The plasma in these simulations is bounded by dielectric

boundaries in the z-direction. Charge accumulation on the

dielectric surface was allowed and the displacement current

in the dielectric with � ¼ 4.5 was taken into account using

the model of Ref. 40.

A sheath (potential) develops very quickly in the simula-

tion before any modes have had time to grow. After having

formed, the sheath does not in fact expand much into the

plasma (evident in Fig. 18), but once the MTSI saturates we

observe a faster decay rate of the plasma, likely due to the

rapid electron heating during wave breaking. At 0.5 ls, the

transition to a different regime is apparent particularly in

Fig. 19, where the rate of sheath losses increases drastically

and the pre-sheath begins to rapidly expand into the plasma.

This is the reason why our simulation box is larger than typi-

cal Hall-effect thruster gaps in the magnetic field direction—

without sources the expansion of the pre-sheath would hap-

pen too soon, and physics present in a steady-state thruster

gap would be dynamically obscured.

FIG. 15. Evolution of the anomalous current spectrum log10j~JzðkyÞj over

time at z ¼ Lr/4 of the simulation. It is notable that the ny ¼ 1 mode domi-

nates soon after nonlinear saturation of the modes.

FIG. 17. Total anomalous current components ny ¼ {0, 1} for the nominal

case. The total current is positive definite (blue curve), but the dominant ny

¼ 1 component has a sheath-bounded half-wave radial profile corresponding

to nz ¼ 1/2.

FIG. 16. Evolution of the total anomalous current density Jz averaged over

the simulation region. The anomalous current is normalized to the inverse

of the Hall parameter.13 The value obtained from 1D presented in Ref. 21,

1/164.
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Because the simulations presented in this paper do not

have sources, it is an important question whether the decay

due to sheath losses is significant enough to alter interpreta-

tion of the simulation results, and if so, in what manner.

Decay of the density profile is shown in Figs. 18 and 19,

where the electron density profile in the magnetic field direc-

tion and the total volume averaged electron density are

shown as a function of time. Decay of the plasma column

and its effect on the modes are evident from Fig. 7, where

the modes terminate in the z-direction where the density

drop-off of the pre-sheath begins, except at later stages for a

more gradual profile. Even at 2 ls, it appears that the nonlin-

ear mode structure has remained largely intact (exhibiting

characteristics of the cyclotron mode) although the plasma

column has already decayed significantly (40%). The profile

is largely unaffected by pre-sheath expansion up to 1 ls as

seen from Fig. 18, and about 10% of the electron density is

lost so far.

Hence, we contend that the plasma column decay

appears to have fairly little effect on the modes. Larger

effects could be expected from the increase in electron tem-

perature, which tends to modify the linear spectrum towards

lower cyclotron resonances, as well as with secondary elec-

trons (not included) that may even reverse the sheath. It is

therefore likely that the robust features observed in these

simulations would remain in the presence of sources and

sinks too if a steady state can be achieved. There are some

inherent difficulties in using sources (axial feeding and ioni-

zation) to achieve a steady-state even in 1D simulations,

because of feedback between the modes and the sources

(heating for ionization, transport for axial feeding).

Particularly in contrast to earlier work by H�eron et al.,19

it is somewhat disappointing that the parallel heating mecha-

nism has not been investigated to a greater degree in the lit-

erature. This makes it difficult to assign relative importance

to the inclusion of secondary emission.

X. SUMMARY AND CONCLUSION

In earlier numerical studies of the electron cyclotron

instability in 1D geometry Refs. 6 and 41, it was found that

the linear (exponential growth) stage of the fast beam cyclo-

tron instability is saturated due to nonlinear turbulent broad-

ening, which smears out the cyclotron resonances and the

instability transitions into much slower ion-sound instability

much like in the ordinary unmagnetized plasma. The authors

of Refs. 4 and 42 have performed analogous numerical stud-

ies for similar conditions and maintained that many proper-

ties of the observed instabilities are unlike those of the ion-

sound mode of unmagnetized plasma. The apparent contro-

versies from these simulations with regard to the importance

and role of nonlinear electron diffusion and electron and ion

trapping, as well as the role of the finite ion temperature,

have been discussed and contrasted at some length in two

complementary papers, Refs. 43 and 44.

The electron cyclotron drift instability driven by the

electron current has been suggested as a possible candidate

for enhanced electron transport in Hall thruster in more

recent Refs. 11 and 14. The authors of Refs. 2, 3, 12, 13, 15,

and 17 have performed a number of numerical simulations

of ECDI and mostly concluded that the instability is analo-

gous to the ion sound instability in the absence of the mag-

netic field. Our recent 1D simulations21 performed with

higher resolution and with a longer azimuthal simulation box

have not confirmed this conclusion. In our simulations, we

found that the criteria for the nonlinear resonance broadening

and the destruction of cyclotron resonances is not satisfied

and the instability proceeds as a coherent mode driven at the

main cyclotron resonance (of the reactive fluid type) kyv0

¼Xce well into the nonlinear stage. A strong inverse energy

cascade towards the longer wavelength was identified and it

was shown that the anomalous current is dominated by the

long wavelength modes.

In the 1D case, the transition to the ion sound regime

may only occur due to the nonlinear resonance broadening

and/or collisions. The role of numerical collisions was also

discussed in Ref. 44. Numerical noise as well as particle re-

injection (to limit the energy growth and mimic the axial

direction) may also work as collisions. As it was discussed in

Sec. II above, in 2D geometry, when the direction along the

magnetic field is resolved, the resonance thermal broadening

due to a finite kzcs may also facilitate the transition to the ion

sound regime. However, arbitrary fluctuations are allowed at

a sheath boundary, facilitating access to the kz 	 0 regimeFIG. 19. Evolution of the volume-averaged electron density over time.

FIG. 18. Evolution of the azimuthal mean of the electron density as a func-

tion of time.
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where linear growth is largest. In this paper, we have dis-

cussed the normal modes that are obtained from different

limits of the full electrostatic dispersion relation and com-

pared them with the simulation results. Using the value of

the effective kz obtained from simulations, we have found

that the linear dispersion relation predicts the discreet cyclo-

tron resonance driven modes and the long wavelength MTSI

modes which were also confirmed in the simulations. It

appears therefore that for our parameters the full ion sound

regime appears not to be realized, but instead a more effec-

tive regime of discrete cyclotron resonance instabilities and

the long wavelength MTSI occur. The magnetic field

remains to be a defining feature of these regimes (contrary to

the unmagnetized ion sound regime) as also was concluded

in Ref. 44.

An important feature of the strong turbulence regime

observed in our simulations is the difference in the ion and

electron density fluctuations. While the electron density

perturbations are rather benign and lower amplitude, the

ion density perturbations have much larger amplitude and

contain much larger short wavelength (non-quasineutral)

content with kykDe � 1. Such short wavelength modes do

exhibit some interesting ion sound-like characteristics, such

as the nonlinear xpi harmonics, nonlinear wave breaking,

tendency for wave crests to become shock-like, and the

elastic-like collision of wave crests without interference. It

is important to note that the intense fluctuations in the short

wavelength part of the spectrum are less effective in sup-

porting the anomalous electron current as well as for the

electron heating. We note that rich short wavelength fea-

tures are observed in ion density but not in electron density,

which is much more smooth and coherent. This difference

in the electron and ion response can be important for inter-

pretation of the fluctuation diagnostics data.45 The coherent

nature of the electron density wave and coherent electron-

wave interaction is crucial for the electron heating mecha-

nism44 that also precludes the application of the quasilinear

theory.46

An interesting feature in our simulation is the strong ny

¼ 1 component of the axial anomalous current, resulting in

the alternating jets caused by the MTSI activity. The

Modified Two-Stream Instability (MTSI) that was naturally

absent from the 1D simulations is shown to amplify the

inverse cascade tendency due to the long wavelength nature

of the MTSI even in the linear regime. Development of the

Modified Two-Stream Instability results in rapid parallel

heating due to the finite electric field along the magnetic

field. Intense parallel heating results in increased losses of

high energy electrons into the sheath that serves as an addi-

tional saturation mechanism. Similar heating was also

observed in Ref. 19. Their simulations also suggest that

effects of secondary emission could significantly increase

anomalous transport, but unfortunately restrict wave vector

space for heating studies. They too observe modulations in

the sheath, however. In our simulations, the anomalous

electron transport sets at the level similar to that in our 1D

simulations,21 perhaps due to the absence of secondary

emission.

SUPPLEMENTARY MATERIAL

See supplementary material for movies of three quanti-

ties discussed in the paper: dni, dne, and Te over the simula-

tion box Lr � lh. They illustrate the dynamics observed and

reported in this paper.
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APPENDIX A: ON LINEAR GROWTH RATE ANALYSIS
AND OTHER TECHNIQUES

It is possible to determine all the linear growth rates

directly from the spectrogram obtained from the simulation,

when the simulations are run with good resolution both in

space and particle number to have the modes well resolved

with kDxkDe/4� 1 and deep in the linear regime. Growth

rates from the non-linear 2D simulation are obtained by dis-

crete Fourier decomposition in space, and expressing the

Fourier coefficients as a function of time

/ðz; y; tÞ ¼ 1

N

XN=2

k¼�N=2

ckðz; tÞ exp iky; (A1)

and with the usual expression for a traveling wave, we have

ckðz; tÞ ¼ ~ckðzÞ exp i
Ð

xðtÞ dtÞ, where x(t) is complex-

valued. Particularly in the linear regime where x ¼ xr þ ic
we may obtain the growth rate and frequency as a linear fit

to the main branch of the complex logarithm of the Fourier

coefficients as ixðtÞ ¼ d=dt logðckÞ.
Waves are largely observed to propagate in the periodic

y-direction, so fluctuations of quantities are measured against

the y-mean for convenience. Namely, the subtracted

“average,” here for electron density, is defined by hneiyðz; tÞ
¼ 1

lh

Ð lh
0

neðy; z; tÞ dy. Using this density as the reference also

suppresses the large drop that is observed in the sheath.

In Fig. 8, we illustrate this process as performed on our

simulation data. The MTSI mode (first peak) is well repre-

sented though, showing the importance of good statistics. To

emphasize this point, we ran a case for Te 	 0 with the 2D

TABLE II. Numerical parameters for the 2D ECDI simulations.

Symbol Value

Te 10 eV

ne,i 1017

kDe/{Dy, Dz} 4=
ffiffiffi
2
p

Np/Ng 800

lh/Dy 512

Lr/Dz 2048

B0 0.02 T

E0 20 kV/m

Ncyc 3
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code, and a case with the 1D code with very good statistics

(Fig. 3) that gives a very good value for both the growth rate

and frequency of the Buneman instability [Eq. (18)]. In the

1D simulation, we had Np/Ng ¼ 40 000 particles per cell and

Ng ¼ 3400 cells, allowing for resolution that is difficult to

get with 2D simulations due to computational limitations. It

would be possible to extend the growth region for ECDI by

decreasing the noise level by increasing the particle number,

but the simulations up to the nonlinear stage would become

unfeasible. The 2D simulations use electron sub-cycling with

a modest ratio of Ncyc ¼ 3 electron steps per ion step.
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