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ABSTRACT

Nonlinear development of electron drift instability is studied using 2D3V azimuthal-radial Particle-in-Cell simulations of an annular Hall
thruster channel of 10 cm diameter. The full 2p azimuthal domain of the annular cross section is simulated with reflecting boundary condi-
tions at the radial boundaries. It is shown that the instability, which starts as a short length scale linear instability, undergoes a sequence of
nonlinear transitions into longer wavelength modes. The transitions in the mode wavelengths are accompanied by related transitions of the
magnitude of anomalous axial current. In the nonlinear stages, there is evidence of azimuthal trapping and dragging of ions by the propagat-
ing wave resulting in saturation of instability. It is demonstrated that the size of the azimuthal domain influences mode dynamics and,
thereby, the anomalous cross field electron transport.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139035

I. INTRODUCTION

The electron drift instability (EDI) is a common phenomenon in
plasma systems that are classified as partially magnetized E� B
plasma.1–3 In such systems, electrons drift under a crossed electric E
and magnetic field B, while ions remain unmagnetized owing to
their large Larmor radius compared to the system dimensions. The
unmagnetized ions are accelerated by E across B while the magnetized
electrons are constrained to drift in the E� B direction. This configu-
ration finds application in space propulsion devices,3–5 magnetron
devices used in material processing,6 and magnetic filters used in nega-
tive ion sources,7 and also appears in Penning discharge experi-
ments.8,9 The partially magnetized E� B configuration is also set up
naturally in the collisionless shock waves in space conditions.10–12

The free energy for the growth of the EDI originates from the dif-
ferential drift between the electron and ion component, due to the
E� B streaming of magnetized electrons with respect to unmagne-
tized ions.2,13,14 Differential drift may also occur due to the difference
in collisionality of two components (as in collisional Simon–Hoh
instability15–17) or from the differential rotation of ions and electrons
in strongly rotating configurations in non-neutral plasmas.18,19

Operation of propulsion devices and ion sources is based on the
principle that electrons are held in place by the magnetic field, allow-
ing ions to be extracted and propelled by the electric field.3 Plasma
instabilities, such as EDI, produce fluctuating electrostatic fields

resulting in drift-transport of electrons across the magnetic field B and
along the applied electric field E, thus reducing the confining effects of
the magnetic field on the electrons.20,21 The increased mobility of elec-
trons along the externally applied electric field is much higher than the
mobility expected from classical electron scattering and, hence, termed
anomalous electron mobility.

Understanding the nature of the anomalous electron mobility is
an important problem of the E�B devices, in particular, the Hall
thrusters. The EDI has been suggested as a source of plasma fluctua-
tions that would lead to enhanced electron transport3,14,22,23 and has
been actively studied using 1D and 2D numerical simulations. Many of
such simulations were done in Cartesian geometry with a limited span
of 1–2 cm in the (periodic) azimuthal direction based on the assump-
tion that the most unstable modes have the wavelength of the order of
millimeters.13,20,24–32 These numerical models have all demonstrated
substantially enhanced cross field transport of electrons over classical
collisional diffusion, and presented strong evidence for the EDI being
the potent source of anomalous electron transport in a Hall thruster.

Some analytical and numerical models also focus on the possibil-
ity that the EDI evolves nonlinearly to the ion sound mode.13,33,34

Recent simulations of EDI in 1D and 2D indicate that the nonlinear
development of the instability causes energy flow to large length scales,
resulting in the appearance of large scale (up to the simulation box
size) coherent nonlinear structures.26,27 The cascade of energy to long
length scales has also been observed in recent modeling of fluid
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instabilities in the Hall thruster configuration35 and in the Hall
thruster experiment.36,37 Therefore, it is important to perform simula-
tions of the Hall thruster using an azimuthal domain that accommo-
dates nonlinear mode transformations up to the full azimuthal length
of the device. This is one of the goals of this work.

Cartesian-box simulations do not take into consideration the role
played by device curvature and divergence in the radial magnetic field
of the annular Hall thruster channel. Effects, such as centrifugal forces
on rotating electrons and radial variation of the magnetic field in the
thruster channel, can affect the radial and azimuthal wave structure
and the resulting anomalous transport.38

In the numerical experiments of this paper, 2D3V Particle-in-
Cell (PIC) radial-azimuthal simulations are performed in the entire
annular cross section of a Hall thruster to investigate the nonlinear
transitions and anomalous transport. Effects of curvature and diverg-
ing magnetic field of the Hall thruster are thus naturally included in
the simulations. The radial wall boundaries are maintained grounded
with specular particle reflection. Effects of particle absorption and
plasma sheath formation near the annular walls are not included in
this model. Simplification of the mirror reflection of particles from the
walls and fixed (grounded) wall potential allows focusing on the inter-
nal nonlinear dynamics of the instability without complications of the
plasma sheath and additional effects due to ambipolar field that might
occur for a floating wall. The linear theory predicts that the transition
to the ion sound regime occurs for sufficiently large values of the radial
wave-vector1,34,39 along the magnetic field. Our model permits self-
consistent linear and nonlinear development of the radial structure of
the eigenmodes. One of the goals of this paper is to investigate the
radial mode structure and its effect on the possible transition to the
ion-sound regime.

The numerical experiments are performed for three ion species:
xenon, argon, and hydrogen to investigate the ion mass effects. The
effects of the magnetic field are fully retained in ion dynamics.

The simulations of this paper have revealed that EDI in the
annular plasma profile evolves through a series of mode and mobility
transitions. An inverse cascade process increases the azimuthal wave-
length in discrete steps by a full order of magnitude from its initial
value. Radial wave structures emerge in the nonlinear phase of the
instability and undergo their own transitions to evolve into a sheared
radial profile that is evidently strongly influenced by centrifugal
forces on the rotating electrons. The measured anomalous electron
mobility makes transitions correlated with the azimuthal structure of
the eigenmodes, by evolving from a linearly growing phase, to a
quasi-stationary phase, and to a nonlinear evolution to saturation.
During the nonlinear transitions, some ions are trapped and dragged
along by the propagating mode, leading to saturation of the instabil-
ity. The focus of the paper is on numerical modeling of the transi-
tional dynamics and investigating how these collisionless processes
scale with variation of the ion mass.

In the linear analyisis, EDI is well understood as the Electron
Cyclotron Drift instability (ECDI)1,2 and has been referred to as such
in parts of the paper, where the linear form of the instability is indi-
cated (mainly Sec. II). In the rest of the paper, when referring to non-
linear dynamics and transport, the term Electron Drift instability
(EDI) is used.

In Sec. II, some background information on the theory of ECDI
is presented. Section III describes the details of the numerical setup of

the simulations. EDI mode transitions in xenon plasma, and its com-
parison with the lighter argon and hydrogen plasmas make up
Subsections IVA and IVB of Sec. IV. A supplementary experiment to
understand the role of the system size in the evolution of the instabil-
ity, and some numerical convergence tests are also presented in
Subsection IVB of Sec. IV. The final Sec. V presents a summary of the
results.

II. ECDI: A LINEAR MODEL

In this work, PIC simulation is used to model the kinetic electron
drift instability in an annular configuration of the E� B plasma. It is
therefore useful to briefly consider the results from existing linear the-
ory of this instability in slab geometry. As mentioned earlier, in its lin-
ear analytical model, the instability is called as Electron Cyclotron drift
instability or ECDI.

Consider a uniform, partially magnetized, E� B plasma configu-
ration with crossed electric and magnetic fields: E ¼ Ex; B ¼ Bz, so
that the electron drift velocity, vd ¼ �vdy ¼ E� B=B2 ¼ �ðE=BÞy,
where x, y; z are the Cartesian unit vectors. The electrons are drifting
with vd while the ions are unmagnetized and motionless.

Buneman had derived the cold plasma dispersion relation for the
differential-drift driven fluctuations in the above system using 3D
wave-vector k ¼ ðkx; ky; kzÞ and x, the wave angular frequency.40 For
the present numerical experiment, it is convenient to work with a
reduced 2D form of this dispersion equation expressed in the labora-
tory frame (rest frame of ions), as shown below:27

k2yx
2
pe

k2 ðx� kyvdÞ2 � x2
ce

h iþ k2zx
2
pe

k2ðx� kyvdÞ2
¼ 1�

x2
pi

x2
: (1)

Here, xpe andxpi are the electron and ion plasma frequencies, andxce

is the electron cyclotron frequency.
The fluid reactive instability represented by the dispersion rela-

tion, Eq. (1), is known as the Modified Buneman Two Stream insta-
bility (MBTSI). For a sufficiently small value of the cross field wave
vector ky, the resulting solution of Eq. (1) is a 2D mode called the
Modified Two Stream Instability (MTSI), which can be a significant
source of transport and heating along the magnetic field.41 For ky
larger than a lower cut-off value defined by resonance of the first
term in Eq. (1), i.e., ðx� kyvdÞ2 � x2

ce ¼ 0, the unstable solution has
a continuous spectrum in the (ky, kz) space between this lower cut-
off and a another upper cut-off on ky, defined by plasma parameters.
Illustrative examples of MBTSI dispersion solution are available in
Fig. 3 of Ref. 26.

Effects of finite electron temperature, Te, change the instability
in the kinetic regime. The dispersion relation in this case is given by
Eq. (1),

�ðx; kÞ ¼ 1þ �iðx; kÞ þ �eðx; kÞ ¼ 0; (2)

�i ¼ �
x2

pi

x2
; (3)

�e ¼
1

k2k2D
Z0 1þ x� k:vdffiffiffi

2
p

kzve

X1
j¼�1

exp ð�bÞIjðbÞ
"

�Z x� k:vd þ jxceffiffiffi
2
p

kzve

� ��
: (4)
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Equations (2)–(4) represent the ECDI dispersion relation. Here,

b ¼ k2yq
2
e ; q2

e ¼ v2e=x
2
ce; ve ¼

ffiffiffiffiffiffiffi
kBTe
me

q
,me is the electron mass, kD is the

electron Debye length given by kD ¼
ffiffiffiffiffiffiffiffiffiffi
�0kBTe
nee2

q
, e is the electron charge,

ZðnÞ is the plasma dispersion function, IjðxÞ represents the modified
Bessel function of the first kind, and the index j ¼ 1; 2; 3;…; 1 will
be referred to as the resonant mode index.

As evident from the sample numerical solutions of Eqs. (2)–(4)
in Fig. 1, the finite electron temperature results in unstable 2D ECDI
modes due to the kinetic resonances near the conditions
ðx� kyvdÞ2 � j2x2

ce ¼ 0, along with the sub-cutoff MTSI mode at
small ky. The modes primarily propagate in the cross field, i.e., ky
direction, and get coupled in the parallel direction with a relatively
smaller kz. The influence of kz on the ECDI þ MTSI dispersion spec-
trum (Fig. 1) is that at higher kz and/or higher electron temperatures
the sharp ECDI resonances spread out and merge into one another,
tending toward an ion sound dispersion solution.1,34,39

For ECDI modes for the typical Hall thruster parameters, the fre-
quencies of the resonant modes at j � 1 are such that x� kyvd
� jxce and hence, their resonance conditions may be approximated as
kyvd � jxce. This resonance condition can be expressed in cylindrical
co-ordinates of the annular thruster as nX � jxce, where n is the azi-
muthal mode number, and X is the rigid angular velocity of electron
drift in the annular channel, expressed as X ¼ Ez=ðr BðrÞÞ. Here, Ez is
the constant axial electric field, and the term ðr BðrÞÞ is also a constant,
as B(r) is the value of the radial magnetic field at radius r.

As the ECDI dispersion Eqs. (2)–(4) is in slab geometry, it is
meaningful to obtain a set of local solutions in the annular channel
(Fig. 2) at different radii, to account for the radial variation in the xce

that is used in Eqs. (2)–(4). Figure 1 is a set of graphical solutions27,34

for the growth rate a from Eqs. (2)–(4) obtained for values of xce at
different radial locations, viz., the inner wall, the mean radius, and the

outer wall. The solutions are for a xenon plasma at an electron temper-
ature of 10 eV. A constant value of kz (equivalent to kr in the annular
configuration) is used in the solution that corresponds to a wavelength
twice the radial width of the thruster channel. The choice of electron
temperature and radial wave vector used in the solution Fig. 1 roughly
corresponds to the early linear phase of the Xe-thruster simulation, as
will be explained in Sec. IV.

III. THE NUMERICAL SETUP

The numerical experiments in this paper have been performed
using the 2D3V Electrostatic PIC code PEC2PIC developed by
Sengupta and Ganesh.42 PEC2PIC is short for Parallelized Electrostatic
Cartesian 2D Particle-In-Cell code. The key operational features of the
code include Open Multi-Processing (Open-MP) parallelization,
Cartesian grid, cumulative density inversion method for initial loading
of plasma,43,44 first order Cloud-in-Cell (CIC) scheme42,43 for charge
distribution on grid and a corresponding first order ðCICÞ�1 scheme
for field interpolation from grid to particle position,42,43 a red–black
parallelized Successive-Over-Relaxation (SOR) Poisson Solver, and a
first order Chin’s exponential splitting scheme as the numerical inte-
grator for moving particles.45 Detailed description of these numerical
methods can be found in earlier works and references therein.42,46

Multiple numerical benchmarks of PEC2PIC were demonstrated in
device simulation of Penning–Malmberg trap experiments.19,42,46–49

The essential modifications and integration of new features in
PEC2PIC for simulation of the annular thruster cross section are
explained below.

A. Specular particle reflections from the walls

In the current model, physical sources and sinks for electron and
ions that exist in a real thruster system are not included in the simula-
tion. In line with this simplification, is the use of perfectly reflecting
radial walls to keep the loaded particles confined through the

FIG. 1. The growth rate from 2D Cartesian ECDI dispersion at Te ¼ 10 eV and (i)
xce ¼ 2:638� 109 rad=s, the value at inner radial wall, (ii) xce ¼ 2:173
�109 rad=s, the value at the mean radius of the annular channel, (iii)
xce ¼ 1:847� 109 rad=s, at the outer radial wall. a is the linear growth rate and
xpi is the ion oscillation frequency. Debye length kD ¼ 74:3 lm and
kz ¼ 209:44 radm�1, n is the azimuthal mode number and X is the rigid rotational
velocity of electron drift in the annular channel.

FIG. 2. Diagram of the 2D simulation region, 0:1m� 0:1m. The color coding
depicts the topology of the radial magnetic field in the annular channel. RiW and
RoW are the radii of the inner and outer reflecting wall, respectively.
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simulation. The algorithm adapted to execute radial wall reflections is
as follows.

In a given simulation time step, a particle that overshoots a
radial boundary with fixed time step velocity v is back traced in time
checking its radius at every point. As soon as the particle’s radius hits
the wall radius value, the back trace is stopped. At this radius and
corresponding azimuthal angle, the cylindrical components of the
velocity v are obtained through transformation of the Cartesian
velocity components. Now, only the radial component of v is
reversed and the modified cylindrical velocity components are trans-
formed back to Cartesian to yield a reflection modified velocity vrm.
The particle is then moved forward in time with vrm for the same
length of time it was back traced. This procedure implements specu-
lar particle reflections on the inner and outer radial walls of the
device.

B. Virtual axial domain

In these simulations, the Poisson equation is solved in the 2D
(x, y) plane, while the third direction, along the axis of the dis-
charge, is not resolved. In Hall thruster devices, anomalous elec-
tron transport and ion propulsion result in continuous removal of
heated/accelerated particles and their replacement with “fresh”
cold particles. It has been proposed by Boeuf50 to mimic this effect
using a virtual finite length axis in the simulation. The application
of the virtual axial domain following Boeuf’s procedure is outlined
below.

The particles are loaded cold, i.e., with zero velocities and to
each is assigned an initial axial position uniformly distributed
through the thruster channel’s axial length of 1 cm. The axial posi-
tions are updated in every time step of the 2D3V simulation. If a par-
ticle crosses any one axial end of the channel in a given time step, it
is re-introduced cyclically through the opposite end as a fresh cold
particle. The procedure can also be described as a replacement of
energetic particles with cold particles thus restraining particle heat-
ing. Note that the particle’s position on the PIC plane remains unal-
tered by the process, keeping the planar simulation free of any
spurious phase mixing.

C. Numerical integration for Cartesian mesh with
diverging magnetic field in the simulation plane

A planar Cartesian decomposition of the radially divergent
magnetic field, Br acting on particle p at time t, is a function of the
cylindrical polar co-ordinates of the particle, rpðtÞ and hpðtÞ. Any
particle pusher defined on the Cartesian mesh will have to be
adapted to include this functional dependence of the Cartesian
magnetic field components on the cylindrical polar co-ordinates.
To demonstrate how this adaptation was implemented in
PEC2PIC, the general form of the numerical integrator as derived
by Chin is first concisely presented in Eqs. (5)–(10), and then, the
adapted form of the integrator for the Hall thruster topology is
expressed in Eq. (11).

Consider a charged particle of charge q and mass m with position
and velocity vectors x and v in an electric field EðxÞ plus a magnetic
field BðxÞ. The equations of motion for this system are42

m
dv
dt
¼ q v � BðxÞ þ EðxÞ½ �: (5)

From (1), the Evolution Operator of this system can be obtained
as etðT þVBFÞ, where42

T ¼ v � $x; VBF ¼ � qBðxÞ
m

B̂ðxÞ � v þ q
m
EðxÞ

� �
� $v: (6)

Now, the first component of the evolution operator etT is the
translation operator, which operates simply as42

etT
x
v

� �
¼ x þ tv

v

� �
: (7)

The operation of the second component, etVBF , can be shown to
be42

etVBF
x

v

 !
¼

x

vBðx; v; tÞ þ vFðx; tÞ

 !

where

vBðx; v; tÞ ¼ v þ sin ðhðx; tÞÞ ðB̂ðxÞ � vÞ
�
þð1� cos ðhðx; tÞÞÞ B̂ðxÞ � ðB̂ðxÞ � vÞ

� 	

and vFðx; tÞ ¼ t

q
m
EðxÞ þ t

hðx; tÞ B̂ðxÞ � q
m
EðxÞ

� ��

� 1� cos ðhðx; tÞÞð Þ þ t

�
B̂ðxÞ

� B̂ðxÞ � q
m
EðxÞ

� ��
1� sin ðhðx; tÞÞ

hðx; tÞ

� ��
and; hðx; tÞ ¼ �ðtqBÞ=m: (8)

Equations (7) and (8) represent operation of the components of
the evolution operator, etT , and etVBF in a closed form.45 Now using
the exponential splitting technique in Eq. (9), the numerical integrator
of any ðMþ 1Þ order may be obtained as shown below:42,45

etðT þVBFÞ ¼
YM
l¼0

etdlðT Þ etclðVBFÞ þ OðtMþ2Þ: (9)

Here, cl and dl are constant coefficients to be determined by expo-
nential series expansion of Eq. (9). PuttingM¼ 0 gives a first order
approximation etðT þVBFÞ � etd0ðT Þ etc0ðVBFÞ which yields d0 ¼ c0 ¼ 1.
The resultant first order integrator is expressed in vector as well as
component form in Eq. (10):

v1 ¼ vBðx0; v0;DtÞ þ vFðx0; v0;DtÞ
) v1i ¼ vBiðx0; v0;DtÞ þ vFiðx0; v0;DtÞ

x1 ¼ x0 þ Dt v1
) x1i ¼ x0i þ Dt v1i
where; ðx0 v0Þ is transformed toðx1 v1Þ in time� stepDt;

i ¼ 1; 2; 3 are Cartesian components: (10)

The adaptation of the Cartesian-decomposed, first-order expo-
nential splitter, Eq. (10), for a radially diverging magnetic field,
Br ¼ B0 Riw=r, is expressed in Eq. (11):
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vx1 ¼ vx0 þ vz0 sinw sin hþ ð1� cos hÞ ðvy0 cosw sinw� vx0 sin 2wÞ þ Dt
q
m
Ex þ

Dt
h
ð1� cos hÞ q

m
Ez sinw

þDt 1� sin h
h

� �
q
m
ðEy cosw sinw� Ex sin 2wÞ

vy1 ¼ vy0 � vz0 cosw sin h� ð1� cos hÞ ðvy0 cos 2w� vx0 sinw sinwÞ þ Dt
q
m
Ey �

Dt
h
ð1� cos hÞ q

m
Ez cosw

�Dt 1� sin h
h

� �
q
m
ð�Ey cos 2wþ Ex cosw sinwÞ

vz1 ¼ vz0 þ ðvy0 cosw� vx0 sinwÞ sin h� vz0 ð1� cos hÞ þ Dt
q
m
Ez þ

Dt
h
ð1� cos hÞ q

m
ðEy cosw� Ex sinwÞ � Dt 1� sin h

h

� �
q
m
Ez

where; sinw ¼ ðy0 � ycÞ=r0 ; cosw ¼ ðx0 � xcÞ=r0 ;

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xcÞ2 þ ðy0 � ycÞ2

q
and; sin h ¼ DtqB0Riw

mr0
and then;

x1 ¼ x0 þ vx1Dt

y1 ¼ y0 þ vy1Dt: (11)

D. Parameters of simulations

The simulations are performed on the Cartesian grid, covering
the annular channel such as shown in Fig. 2. The dimensions of the
outer box are 0:1m� 0:1m. The box is uniformly meshed by
700� 700 Cartesian PIC cells.

These outer and inner circular boundaries have radii Row

¼ 0:05m and Riw ¼ 0:035m, respectively. As shown in Fig. 2, the
radial magnetic field Br falls as 1=r from 0:015T to 0:0105T between
the inner and outer radial walls. The annulus is initially filled with a
cold (zero-velocity) plasma with the uniform density ne ¼ ni ¼ 1:0
�1017 m�3. The radial boundaries are specularly reflecting for particles,
so there is neither any sheath here, nor plasma losses.

Crossed electric and magnetic fields are applied externally in the
cavity to produce the E�B plasma. The radial magnetic field falls
with the radius r, as Br ¼ B0 Riw =r, where B0 ¼ 0:015T , and the
applied uniform axial electric field out of the simulation plane is
Ez ¼ 2� 104 V=m. This gives the value of the rigid angular drift
velocity of electrons to be X ¼ Ez=ðB0RiwÞ ¼ 3:8095� 107 rad=s.

The electron and ion components are represented by 2:5� 106

superparticles distributed as 13 particles-per-cell in the annular chan-
nel. Convergence test simulations are also performed with ppc¼ 30,
60 that show a similar result (see Figs. 19–21). Both species are moved
with the same simulation time-steps, Dt ¼ 5� 10�12 s. This
Dt ¼ 5� 10�12 s resolves the smallest electron cyclotron time in the
annular channel, Tce ¼ 2:382� 10�9 s as well as the electron oscilla-
tion time, Tpe ¼ 3:522� 10�10 s.

The shortest wavelength mode is excited in course of the simula-
tions, with an azimuthal mode number n¼ 246 corresponding to the
wavelength of around 1mm. The milli-metre length scale of this
mode26,27,51 is an order longer than the Debye length kD ¼ 0:074 mm at
the linear phase temperature of 10 eV. As is discussed in more detail
below in Sec. IV, the linear excitedmode corresponds to the cyclotron res-
onance condition ðnX=xceÞ ¼ 3� 5. The 700� 700 mesh used in the
simulation has a resolution of Dx ¼ 0:14mm that finely resolves the
shortest wave structure, but not the Debye length. Hence, it is necessary
to consider the possibility and extent of numerical grid heating in the sim-
ulation. This is done with the help of a test simulation outlined below.

A supplementary simulation is performed on the 700� 700 mesh
for a half-sized (5 cm diameter) device with a grid resolution of
Dx ¼ 0:07mm. The objective is to demonstrate the global effect of the
system size on nonlinear saturation of the EDI at long wavelengths.
Divergence between 10 cm and 5 cm device simulations in the satura-
tion stage of the instability is indicative of this effect. However, in the lin-
ear phase, when the mode wavelength (1mm) is too small to be affected
by the system size, the two simulations are equivalent, except for the fact
that the 5 cm device is simulated on a grid of twice finer resolution,
Dx ¼ 0:07mm, which is even shorter than the linear phase Debye
length of 0:074mm. A fairly good linear phase convergence is obtained
between the two simulations, which indicates that the plasma evolution
on the Dx ¼ 0:14mm mesh is not significantly deviated by numerical
grid heating. A possible explanation for this is that the electron heating
in the system is substantially controlled by the continuous cold re-
injection of lost electrons in the virtual axial domain. That being said,
there is still an initial jump in the electron temperature from zero to
10 eV observed in the 10 cm device simulation on the Dx ¼ 0:14mm
mesh. This jump happens at a very fast time scale of around 0:01 ls
and could be possibly due to grid heating on the initially cold plasma.

IV. LINEAR AND NONLINEAR DYNAMICS OF EDI IN THE
ANNULAR CONFIGURATION

Evolution of an initially cold, xenon plasma in the annular
thruster cross section is investigated in Subsection IVA. To under-
stand how different aspects of the EDI such as the growth rate and
electron transport scale with the mass of the ion species, the same
numerical experiment has been conducted using two lighter ion spe-
cies, that of argon and hydrogen. The lighter ion experiments are
reported in Subsection IVB.

A. Evolution of EDI and anomalous electron transport
in annular xenon plasma

1. Phases of the instability

From the plasma electrostatic energy plot of Fig. 3, it is evident
that for Xeþ, the initial linear exponential growth of the instability, at a
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growth rate of a ¼ 3:48� 106 rad= sec, lasts up to t ¼ 0:62 ls.
Thereafter, the instability proceeds nonlinearly in two stages: a quasi-
stationary energy phase (0:62 ls to 2:5ls), followed by a nonlinear
energy transition between 2:4 ls and 4:0ls to reach another saturation
near the end of the simulations at 4:55ls.

2. Anomalous axial electron transport

The electron axial mobility lez depicted in Fig. 4 is calculated as
ð
Pne

p¼1 vpzÞ=ðneEzÞ, where p is the index of electron superparticles and
vpz is the axial component of its velocity, ne is the total number elec-
tron superparticles, and Ez is the magnitude of the applied axial electric
field. In these collisionless simulations, electrons are transported across
the magnetic field due to the fluctuating electric field Eh crossed with
the Br.

52

When collisional effects are negligible, the estimate for lez can be
obtained as follows les

ez ¼ hneEhi=ðneBrEzÞ where superscript “es”
means the estimated value, hneEhi is the volume average of neEh in the
simulation domain, while the ne in the denominator can be taken as
the initial uniform density, and Brmay be approximated by its value at
the mean radius. The values of les

ez have been plotted (yellow square)
for a set of time-points in the Xe-plasma subplot of Fig. 4. These are
instantaneous values without any smoothing in time, and, as such,
they are very noisy.13 Nevertheless, there is reasonable agreement
between the directly measured and estimated values of the cross field
mobility, with the latter roughly showing the transitional characteris-
tics of the experimental lez curve. The transition of the mobility to
larger values in the nonlinear stages of the instability indicates the
strengthening of the negative correlation between ne and Eh by the
inverse cascade of azimuthal structures.

In the xenon plasma subplot of Fig. 4, the lez shows distinct tran-
sitions in the three phases of the instability. In the linear phase, there is
a linear exponential growth of lez from zero to a magnitude of about
45m2 V�1 s�1. Thereafter in the quasi-stationary energy phase, the
magnitude of lez remains stable. Again in the nonlinear energy transi-
tion phase, the lez curve also makes a nonlinear transition to saturate
at a value around 115m2 V�1 s�1.

The anomalous electron mobility values obtained from these
radial-azimuthal simulations are higher than the corresponding values
obtained from 1D and 2D Cartesian box simulations in similar para-
metric conditions,13,26,27,29 by roughly half an order of magnitude. The
availability of the full 2p rad azimuthal domain allows the EDI modes
to nonlinearly cascade to longer wavelengths compared to smaller
periodic domain simulations. The transition to longer wavelength
enhances the anomalous electron transport. A verification of this
hypothesis is demonstrated later in Subsection IVB with the help of a
hydrogen plasma simulation on a reduced azimuthal domain.

Another reference point of interest in the mobility curve is the
Bohm mobility lBm ¼ ð16BrÞ�1 plotted as a dashed red line in Fig. 4.
The value of lBm has been obtained using the Br at the mean radius of
the channel. The anomalous transport due to large scale structures cre-
ated by the inverse cascade in the full sized azimuthal domain takes
the anomalous mobility to values as high as 20 times the Bohmmobil-
ity in the course of simulation. The transition of mobility to such large
magnitudes has also been verified with convergence tests performed
with higher particles-per-cell in Subsection IVB. Mobility in other col-
lisionless PIC simulations (or collisional simulations at sufficiently low
pressures) in much smaller azimuthal domains,13,53 as well as corre-
sponding estimates from hneEhi fed from the same simulations also
give values that are two to –three times larger than Bohm mobility. At
this time, we do not have a clear explanation for these observations. It
is plausible that anomalous transport is generally overestimated due to
the absence of some stabilizing and loss mechanisms that are present
in real discharges, e.g., due to sheath losses. We also note that the tur-
bulent transport does not conform to the 1=B scaling and that some
experimental studies have also measured turbulent collisionless trans-
port in the thruster channel as large as 10 times that expected from
Bohm transport,54,55 whereas other experimental studies56 and simula-
tions27,57 suggest that effective mobility should be less than or equal to
the Bohm value.

The collisional effects of electron scattering against the radial
walls, and the axial replacement of energetic electrons by cold electrons

FIG. 3. Potential (logscale)energy, Ep as a function of time, t. (Inset) A power law fit
of the EDI growth rate a as a function of ion-mass 	ðmi=meÞ�0:6.

FIG. 4. Electron mobility, lez as a function of time. As a reference the Bohm mobil-
ity, lBm ¼ 1=ð16Br Þ is plotted for the value magnetic field at the mean radius of
the channel, Br ¼ 0:01235 T . In the Xe-plasma subplot, the yellow dots represent
the estimated value of the mobility from analytical expression les

ez .
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which are in effect inelastic collisions, are determined to be inconse-
quential in the transport process. In Fig. 5, a sample electron from the
Xe-plasma simulation undergoes 68 reflections between the radial
walls in an interval of 0:76ls, and in the same interval its virtual axial
displacement counter gets reset 53 times after traversing the virtual
channel length. These collision statistics give a net electron collision
frequency, � ¼ 1:59� 108 s�1. Substituting this � and the xce at
mean radius of the channel, in the collisional (classical) axial mobility

expression, lcol
ez ¼

e=ðm�Þ
½1þx2

ce=�
2�, its value can be estimated to be,

lcol
ez ¼ 5:893m2 V�1 s�1. This is insignificant compared to the values

of lez measured in Fig. 4.

3. Electron heating

Figure 6 demonstrates the evolution of electron 1D temperatures
in h, r, and z over the simulation period. For the Xe-plasma, there is a
jump in the electron 1D temperatures from zero to around 10 eV at a
very fast time scale of about 0:01ls.It is hypothesized that the quick
jump of electron temperature from Te ¼ 0 to Te ¼ 10 eV could be a
combination of grid heating (more effective in the initial cold plasma),
and radial profile relaxation through bounce motion of electrons
between the curved reflecting surfaces. The bounce time of electrons
in the annular channel with a typical radial velocity of 2:0� 106 m=s
is in the same ballpark as the temperature ramp up time of 0:01 ls.

After the initial temperature jump, a smooth linear exponential
growth to 25 eV is observed in Fig. 6—Xeþ subplot. This is primarily
due to the collisionless heating by the linearly growing EDI mode.
With the transition to the nonlinear phase, and the continuous process
of cold particle re-injection, the electron 1D temperatures saturate
around the 25 eV mark.

A set of energy distributions at different points of time post tem-
perature saturation is plotted in Fig. 7. The electron distribution is
near-Maxwellian except at very low energies where there is a peak of
electrons that have undergone axial replacement cooling around that
point of time. The ion distribution curves have similar features at very
low energies for the same reason. Beyond the low energy distribution,

the ion energy distributions have a non-Maxwellian bell shape. The
small peak in the tail of the ion distribution observed around 200 eV is
formed by the axially extracted ions in the propulsion device.

4. Azimuthal mode transitions

Figure 8 is a set of time-frames of the normalized Xeþ density in
an arbitrary polar section of the simulated device. The full annular
profile of the normalized Xeþ density is also shown for selected few
time-frames in Fig. 9. Together Figs. 8 and 9 are the visual representa-
tion of the linear and nonlinear dynamics of the excited 2D modes in
the plasma. In Fig. 8, the first four snapshots (t ¼ 0:0095 ls to
0:5795 ls) belong to the linear growth phase, snapshots 5–8
(t ¼ 0:7695 ls to 2:0995 ls) are in the quasi-stationary energy phase,
while snapshots 9–12 (t ¼ 2:8595ls to t ¼ 4:5505 ls) are in the non-
linear energy transition phase. In Fig. 9, the first snapshot is in the

FIG. 5. Estimation of electron collision frequencies in Xe-plasma using an electron’s
trajectory in the 0:76 ls interval between t ¼ 0:76ls and t ¼ 1:52ls. (top) The
radial trajectory in the interval measures 68 wall reflections. (bottom) The virtual z
counter gets re-set to 53 times in the interval.

FIG. 6. Radial, (Ter), azimuthal (Teh), and axial (Tez) electron temperatures as a
function of time.

FIG. 7. Energy distribution functions for electrons, fe and ions, fi at different stages
of the Xe-plasma simulation. Ek is the particle kinetic energy.
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linear growth phase, the second and third are in the quasi-stationary
phase, and the fourth is in the nonlinear energy transition phase.

In Fig. 10, the 2D annular Xeþ density profile is first radially
averaged, and then scanned for excited azimuthal modes with the azi-
muthal FFT operation. Three stacked subplots in each time-frame of
Fig. 10 depict the ion density function in full 2p domain (top), a
zoomed-in depiction of the same density function on a smaller azi-
muthal angular domain (middle), and angular FFT of the density
function in the 2p domain (bottom). The time frames chosen are the
same as in Fig. 8. In the linear stage [Figs. 10(a)–10(d)], the azimuthal
profile has a growing n¼ 246 mode, whose linear growth rate
extracted from Fig. 3 is a ¼ 3:48� 106 rad=s. The linear phase
dynamics in the annular profile agrees well with the dispersion analysis
of the ECDI in 2D Cartesian geometry, Fig. 1, as explained below.

The plateau profile of the radial density function in the linear
stage [see Figs. 11(a)–11(c)], approximately forms half a wave in the
radial width of the channel. Such a half-wave in the direction parallel
to the magnetic field has also been observed in a Cartesian box simula-
tion using dielectric radial boundaries.27 In the dispersion analysis of

Fig. 1, the value of the radial wave vector used is, kz ¼ 209:44 radm�1

(kz of Fig. 1 is equivalent to the kr in the cylindrical system). This kz
represents a radial wave having wavelength twice the radial width of
the channel. Again, as linear growth of the n¼ 246 commences after
the initial electron temperature jump to 10 eV, the value of Te used in
Fig. 1 is also 10 eV.The three curves in Fig. 1 represent the EDI disper-
sion at the three values of xce, corresponding to the inner wall radius,
mean radius, and the outer wall radius of the channel.

For the dispersion relation at the inner wall radius, the most pow-
erful resonance peak is around ðnX=xceÞ ¼ 3, i.e., n¼ 208 and reso-
nance index j¼ 3. In the spectrum of the dispersion relation at the
mean radius, the second most powerful resonance is around
ðnX=xceÞ ¼ 4, i.e., n¼ 228 and j¼ 4. The solution at the outer wall
radius has the third highest peak around ðnX=xceÞ ¼ 5, i.e., n¼ 242
and j¼ 5. The linearly growing azimuthal mode from simulation,
n¼ 246, falls inside the width of these particular, maximum or near-
maximum resonant peaks of the solutions in Fig. 1. This observation
intuitively explains why the EDI excites n¼ 246 on the annular profile.
Furthermore, the growth rates at ðnX=xceÞ ¼ 3; ðnX=xceÞ ¼ 4, and

FIG. 8. The evolution of the ion density, for xenon plasma. The same azimuthal segment of the annular device is shown at selected time frames. The ni color bar is logscaled
and normalized by the initial value ni0.

FIG. 9. The evolution of the ion density, for xenon plasma. Selected time frames of the full annular device are shown. Normalization and color scheme are the same as in Fig. 8.
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ðnX=xceÞ ¼ 5 in the three physically relevant solutions in Fig. 1 are all
approximately a � 0:1xpi ¼ 3:65� 106 rad=s, which agrees well with
the observed linear phase growth rate, a ¼ 3:48� 106 rad=s.

Although the linear growth phase is dominated by the n¼ 246
mode, a weak envelope of a n¼ 82 mode is transiently excited during
the initial 10 eV ramp up electron temperature [Fig. 10(a)]. Close to the
end of the linear evolution, there is a re-emergence of the n¼ 82 mode
observed in Fig. 10(d). This is the first sign of nonlinearity in the sys-
tem. The nonlinear phase commences from Fig. 10(e), with the azi-
muthal waveform merging in groups of three (see Fig. 8 frame
t ¼ 0:7695 ls), in an inverse cascade of wave energy from n¼ 246 to
n¼ 82. Between t ¼ 0:0 ls and t ¼ 0:7695ls [Figs. 10(a)–10(e)], the
weakening and disappearance of the n¼ 82, giving way to n¼ 246, fol-
lowed by the resurgence of the n¼ 82 at the cost of the n¼ 246 can be
identified as a form of nonlinear plasma wave recurrence in the system.

The inverse cascade of energy to longer azimuthal wavelengths
continues nonlinearly beyond the n¼ 82 in Figs. 10(f)–10(i), taking

the azimuthal profile through several transient longer wavelength
modes, finally saturating in a stable nonlinear n¼ 9 mode [Figs. 10(k)
and 10(l) and frame t ¼ 4:3795ls of Fig. 8].

5. The radial structure of the unstable modes

Radial modes are excited in the nonlinear stage of the EDI. In
Fig. 11, the dynamics of radial modes is investigated by first azimuth-
ally averaging the 2D annular Xeþ density profile, and then scanning
the averaged profile for excited radial modes via FFT operation. The
time frames analyzed are the same as in Figs. 8 and 10.

Figures 11(a)–11(c) clearly show that in the early linear stage the
radial density forms a sharp plateau between the walls, devoid of any
internal modes.31 The first radial wave-structures are formed in the
early nonlinear stage of the instability [Figs. 11(e) and 11(f)], and take
the form of a m¼ 4 mode. In the late nonlinear stage [Figs.
11(g)–11(l)], the annular profile forms a steep double edged plateau,

FIG. 10. Xenon plasma: the azimuthal mode structure of the radially averaged Xeþ density profile is shown at different times. Arbitrary normalization is common for all frames.
For each time frame: The top—the radially averaged Xeþ density function over the full 2p range. The middle—zoomed-in segment of Xeþ density, showing detailed structure
of the azimuthal waveform. The bottom—the azimuthal FFT of the function on the top plot. The x axis of the bottom plot represents the value of the azimuthal mode number, n.
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with a wide monotonically rising table-top in between. Such a quarter
wavelength profile gets registers as a m¼ 1 in the FFT analysis [Figs.
11(g)–11(l)]. It is evident from Figs. 11(g)–11(l), and from the radial
shears in the Xeþ density, in the t ¼ 4:3795ls frame of Fig. 9, that in
the final stages of the instability, the radial plasma profile is strongly
shaped by the centrifugal forces acting on the rotating electrons, and
ambipolarly on the ions. The saturated profiles [Figs. 11(j)–11(l)] are
smooth except for two small peaks very close to the two walls. The sin-
gle cell width of the peaks suggests that these structures could be the
result of a mismatch between the perfect circular boundaries used in
the specular reflection operation, and the ragged circular boundaries
used in the Cartesian potential solver.

6. Evolution of ions in azimuthal phase space

The time frames in Fig. 12 are the azimuthal angular phase space
scatter plots of the xenon ions at different stages of the instability.
Note that the range of the x-axes (angular space) in each time frame is
different, and adjusted for the best depiction of the corresponding
mode in that frame.

Figure 12, frame 0:304ls is in the linear growth phase (see Fig. 3)
with the ion arrangement showing nearly stationary oscillations,
matching the wave structure of the n¼ 246 mode. The second frame at
0:684 ls is plotted just after the transition to the longer n¼ 82 mode in
the quasi-stationary stage of the instability (see Fig. 3). Here, the first
signs of ion trapping and dragging by the wave are observed. Closed

loop orbits of ions in the positive velocity space along with a shift in
their angular velocity distribution in the positive propagating direction
of the n¼ 82 mode indicate that trapped ions are following the wave.
Similar closed loop orbits in the ion phase have also been observed in
other 1D and 2D EDI simulations.3,13,20,29 It can be deduced from the
0:684 ls time-frame of Fig. 12 that the ion trapping by the wave causes
saturation of the instability in the quasi-stationary stage.

The third and fourth frames of Fig. 12 at 2:204 ls and 3:724 ls
are both in the stage of nonlinear transition to the saturated n¼ 9
mode (again refer Fig. 3). The continued presence of the closed loop
ion orbits and average ion motion in the direction of wave propagation
in these frames indicates that growth of the EDI saturates via the ion
trapping mechanism.

B. Modeling EDI using ions species lighter than xenon

1. Argon plasma

The argon plasma potential energy curve in Fig. 3 has a linear
phase that lasts only up to 0:34ls with a growth rate of
6:3� 106 rad=s. The quasi-stationary phase lasts from 0:34ls to
1:5 ls, followed by the nonlinear transition and saturation phase from
1:5 ls to the simulation termination at 4:55ls.

The electron axial mobility of the argon plasma subplot in Fig. 4
shows the same distinct phase transitions as its potential energy curve.
The magnitudes of lez attained in the first and second saturation is

FIG. 11. Xenon plasma: time frames of radial analysis of the azimuthally averaged, Xeþ density profile with a common arbitrary normalization in all frames. Each time frame
has two plots arranged in stack. The top plot is the azimuthally averaged Xeþ density function between the inner and outer radial walls of the device. The bottom plot is the
radial FFT of the function on the top plot. The x axis of the bottom plot represents the value of the radial mode number, m.
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very similar to corresponding saturation values in the xenon Plasma
simulation (compare argon and xenon subplots of Fig. 4).

In Fig. 6, the subplot for the argon plasma has electron 1D tem-
peratures growing to 25 eV from collisionless heating in the linear
growth phase and thereafter stabilizing at this value. The electron tem-
peratures attained from heating by the instability are again comparable
to the saturated electron temperatures in the xenon plasma simulation
(compare argon and xenon plasma subplots of Fig. 6).

In Fig. 13, the annular Arþ profile is plotted at four selected
stages of the instability. Of these snapshots, the first one is in the linear
growth phase, the second one is in the quasi-stationary energy phase,
and the last two are in the nonlinear energy transition and saturation
phase. Figure 14 has the azimuthal and radial FFTs of the Arþ density
profiles depicted in Fig. 13. Visually, it is evident from Figs. 13 and 14
that the dynamics of mode transitions has the same series of events as
the Xeþ thruster, only proceeding at a faster time scale.

FIG. 12. Xenon plasma: azimuthal phase space structures formed by ions at different stages of the simulation.

FIG. 13. Argon plasma: selected time-frames of the full annular device showing the evolution of Arþ density perturbed by 2D azimuthal-radial modes of EDI. The Arþ number
density, ni color bar is logscaled and normalized by its initial value ni0.
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2. Hydrogen plasma

The hydrogen plasma, by virtue of having the lightest ion compo-
nent, has the fastest phase transitions of the three experiments. From
Fig. 3, it is evident that linear growth of the EDI in the hydrogen
plasma at a rate of 5:5� 107 rad=s lasts only up to 0:04 ls. The fol-
lowing quasi-stationary phase gives way to the nonlinear transition
and saturation phase around the 0:35 ls mark. The evolution of the
electron axial mobility and electron 1D temperatures in the hydrogen
plasma subplots in Figs. 4 and 6, show comparable saturation levels as
the xenon and argon plasma simulations.

Figures 15 and 16 are the Hþ density snapshots and their respec-
tive mode analysis, wherein time-frames 0:0095ls and 0:0285ls are
in the linear growth phase, time-frame 0:057 ls is in quasi-stationary
phase, and time-frame 4:5505ls is in the phase of nonlinear transition
to saturation. The hydrogen plasma also has the same mode transi-
tions etched in its nonlinear dynamics as the two heavier ion species.

Only the EDI evolution happens at a rate that is faster by an order of
magnitude, compared to the xenon or argon ion plasma.

3. EDI scaling with ion mass

It has already been emphasized that the linear growth and non-
linear inverse cascade of the EDI modes in the three simulations evolve
through the same set of stable and unstable mode configurations at
different time-scales. Other interesting comparative aspects are—(i)
there is a ðmi=meÞ�0:6 power law scaling of the linear phase growth
rate as a function of ion mass (inset of Fig. 3), (ii) rate of electron heat-
ing by the instability follows the same power law scaling with ion
mass, but the final electron temperature attained is around 25 eV irre-
spective of ion mass (Fig. 6), and (iii) the electron axial mobility
evolves at different time-scales within the same range of values in the
three experiments (Fig. 4). Hence, from the perspective EDI mode

FIG. 14. Argon plasma: azimuthal and radial analysis of the Arþ density snapshots of Fig. 13. The x axis for the azimuthal and radial FFT are the azimuthal mode number n
and the radial mode number m, respectively.

FIG. 15. Hydrogen plasma: selected time-frames of the full annular device showing the evolution of Hþ density perturbed by 2D azimuthal-radial modes of EDI. The Hþ num-
ber density, ni color bar is logscaled and normalized by its initial value ni0.
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transitions, electron heating, and electron transport, there is a smooth
scaling of the collisionless plasma dynamics with ion mass.

4. Hydrogen plasma simulation in half-sized annular
device

The fast saturation of the instability in hydrogen plasma makes
this plasma well suited for test simulations verifying hypotheses and
numerical convergence studies.

One such test is performed to study how azimuthal domain size
influences the inverse cascade process and the saturation at long wave-
lengths. This is done by simulating the hydrogen plasma in a smaller
annular device of 5 cm diameter that is half the diameter of the origi-
nal device. Other parameters such as loaded plasma density, net com-
putational particles used, total number of cells in the simulation

domain, the virtual axial length, the cold loading and re-injection, the
magnetic field at the inner radial wall, and the aspect ratio of the annu-
lar channel are kept unchanged. As the device is shrunk to half-size,
the radial width of the channel is also halved but since the aspect ratio
is unchanged the magnetic field falls by the same value from the inner
radial wall to the outer radial wall, albeit along a sharper curve.

Figure 17 shows a comparison of the electron axial mobility and
its time average in the full sized (10 cm) device and the half-sized
(5 cm) device. The mobility comparisons show that on an average the
electron anomalous mobility in the half-sized device is ð2=3Þrd of that
in the full sized device.

Furthermore, the azimuthal wave structure of the saturated mode
at 0:751ls is compared between the two devices in Fig. 18. The azi-
muthal domain is laid out at the respective mean radii of the two devi-
ces, and the wave structure of the Hþ density function is plotted. The
azimuthal length shown in Fig. 18 is nearly the full 2p rad angular
domain of the 5 cm device and half the angular domain of the 10 cm
device. The Hþ density wave-function of the 10 cm device is truncated
to the domain length shown in Fig. 18. It is seen that this domain size

FIG. 16. Hydrogen plasma: azimuthal and radial analysis of the Hþ density snapshots of Fig. 15. The x axis for the azimuthal and radial FFT are the azimuthal mode number
n and the radial mode number m, respectively.

FIG. 17. Hydrogen plasma: comparison of the electron axial mobility evolution
between the 10 cm annular device and a smaller 5 cm annular device. Here, hlezit
is the time average of lez in the time period of 0:751 ls plotted.

FIG. 18. Hydrogen plasma: comparison of the saturated, radially averaged ion den-
sity function at 0:751ls between the 10 cm and 5 cm device simulations. The
12:3 cm range on x axis represents full azimuthal domain of the 5 cm device and
half azimuthal domain of the 10 cm device. The density function of the 10 cm device
is truncated to fit the domain.
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accommodates five peaks of the saturated mode in the half-size device,
and only four peaks of the saturated mode in the full-size device.

Figures 15 and 16 indicate that in longer azimuthal domains
modes inversely cascade to longer wavelengths, generating greater
anomalous electron transport. The finding supports the earlier
hypothesis on why observed anomalous electron mobility from annu-
lar device simulation is greater than that obtained from Cartesian box
simulations with periodic azimuthal domains.

Another outcome of this test simulation is that in the linear phase
when the mode length scale (1mm) is too small to be affected by the
system size, it serves as the numerical convergence test performed with
a twice finer mesh (Dx ¼ 0:07mm) that is shorter than the Debye
length (kD ¼ 0:074mm) at the linear phase temperature of 10 eV.
From Fig. 17, it is evident that the growth rate, first transition point,
and anomalous electron transport in the linear phase are very similar
in the two devices. In fact, the lez curves of the two devices essentially
start diverging in the nonlinear stage when the inverse cascade of
modes sets in. The matching linear phase results between the Dx
¼ 0:07mm mesh and the Dx ¼ 0:14mm indicate that the main sim-
ulations on the larger mesh are not significantly deviated by the
numerical grid heating. As explained in Sec. III, it is the cold
re-injection of electrons in the virtual axial domain that controls the
electron heating in the system.

5. Convergence tests using a higher particles-per-cell
(ppc) number

A set of convergence tests have been conducted with higher par-
ticles per cell (ppc¼ 30, 60) to check if the results are numerically sen-
sitive to the particle representation number. Again hydrogen plasma
has been chosen as it has the fastest evolution. In Fig. 19, the electro-
static energy curves for ppc¼ 13, 30, and 60 have been plotted. The
overall shapes and magnitudes of the three curves are consistent with
a slight divergence in the nonlinear transition to saturation phase. The

emergence of the divergence in the late stage raises the question
whether this divergence is a result of the progression of the instability
or other (numerical) issues. Further tests have been conducted with
argon plasma taking ppc¼ 13, 60. These are also plotted in Fig. 19 and
should be compared with the corresponding linear phase H-plasma
plots in the inset. The curves indicate that the level of convergence in
the three stages is similar for all ion species. Other diagnostics com-
pared between the ppc¼ 13 and pp¼ 60 H-plasma simulations
include the measured electron axial mobilities (Fig. 20) and the mode
structures formed through inverse cascade at t ¼ 0:371ls (Fig. 21).
Both Figs. 20 and 21 demonstrate fair convergence in their respective
diagnostic.

V. CONCLUSIONS AND DISCUSSION

2D3V PIC simulation has been used to model the azimuthal-
radial dynamics of the Electron Drift Instability in a Hall thruster of
10 cm diameter. The novel aspects of this numerical set-up are—(a)
conducting the experiment on the full 2p azimuthal domain of the
annular thruster channel including radially inhomogeneous magnetic
field and (b) simulating effects of the device curvature such as centrifu-
gal forces on rotating electrons.

The results indicate the importance of full scale simulations with
realistic azimuthal dimension. It is demonstrated that use of the com-
plete azimuthal domain of the 10 cm device allows nonlinear transi-
tions of modes to longer wavelengths, and generates more anomalous
electron transport, compared to simulations in smaller, periodic azi-
muthal domains. The centrifugal force on the rotating electrons also
influences the radial mode structure by developing a radially rising
plasma density profile in the stationary state of the instability.

Several interesting aspects of the mode dynamics also emerge
from the simulations. A linear excitation of the electron drift instability
results in a short scale azimuthal mode, n¼ 246 that grows linearly in
amplitude accompanied by the electron heating and enhanced axial
transport. The linear growth phase transitions into a nonlinear quasi-
stationary stage with longer wavelength of the azimuthal modes. This
quasi-stationary stage is followed by yet another nonlinear transition
to a saturated energy stage, in which longer wavelength corresponding

FIG. 19. Convergence test: comparison of the plasma electrostatic energy, Ep evo-
lution in H-plamsa experiments performed using 13, 30, and 60 particles-per-cell
(ppc). On the same graph Ar-plasma Ep is compared between simulations having
ppc ¼13 and 60. (Inset): the linear phase of the H-plasma Ep curves for ppc ¼ 13,
60 are zoomed in for comparison with the Ar-plasma Ep curves.

FIG. 20. Convergence test: comparison of the electron axial mobility, lez evolution
in H-plasma experiments performed with ppc¼ 13 and 60.
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to a n¼ 9 mode is observed on the annular profile, similar to rotating
spoke-like structures.21,53,58 For the Xe-plasma with long wavelength,
spoke structures propagate at an average rotation frequency of
3:368� 105 rad=s, which is two orders slower than the rigid angular
drift velocity of the electrons.

It is revealed by azimuthal phase space scatter plots of the ions
that a fraction of the ions that initially perform stationary oscillations
in the field structure of the azimuthal wave are eventually trapped and
dragged along by the wave in the nonlinear stages, leading to satura-
tion of the instability.

The radial profile remains a flat plateau between the walls in the
linear stage of the instability followed by the excitation of shorter length
scale radial modes,m¼ 4 observed in the nonlinear stage, similar to Ref.
51. The radial modes follow a similar, but comparatively more phase-
mixed, transition to longer length scales. The radial profile that emerges
in the saturation phase is a quarter wavelength function rising toward
the outer wall, a signature of the inherent centrifugal forces on rotating
electrons affecting the plasma profile and nonlinear dynamics.59

The transitions in the anomalous axial electron mobility are
strongly correlated with the wave energy (see Figs. 3 and 4). The
mobility is much larger than Bohm mobility and gets enhanced by the
inverse cascade of the azimuthal modes.

Scaling of the EDI with ion mass has been investigated by con-
ducting the numerical experiment with xenon, argon, and hydrogen
plasmas. The linear growth of EDI scales with the ion mass in the
form of the power law ðmi=meÞ�0:6. The nonlinear transitions in the
wave structure, anomalous mobility, and electron temperature occur
in similar patterns for different ion masses, albeit with longer time-
scales for heavier ions, as generally expected.
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