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The structure of the surface and standing wave resonances and their coupling in the configuration of

the overdense plasma slab with a single diffraction grating are studied, using impedance matching

techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating

parameters which define resonance conditions for absolute transparency in the ideal plasma and

reflectionless absorption in a plasma with dissipation. Published by AIP Publishing.
https://doi.org/10.1063/1.5023140

I. INTRODUCTION

Propagation of electromagnetic waves through over-

dense plasmas has been of great interest for quite some time

due to its practical importance for communications, radars,

plasma heating, and other applications. The anomalous (up

to 100%) energy transmission through an overdense plasma

region of negative permittivity (ep< 0) can be achieved via

superposition of decaying and growing evanescent waves

(tunneling).1–4 In general, the excitation and amplification of

evanescent waves can be supported by coupling to various

resonances of inhomogeneous plasma structures which may

include both standing wave resonances of propagating

waves5 and surface wave (plasmon) resonances of evanes-

cent waves.3 Surface wave (or polariton/plasmon6) eigen-

modes exist at the interface of overdense plasma (ep< 0) and

vacuum, or other plasma (dielectric) regions with positive

permittivity (e > 0).7 Such eigen-modes propagate along the

interface and are localized in the perpendicular direction

(across the interface). More general types of plasmon modes,

including periodic or individual subwavelength structures

(such as aperture/slit), can be found in 2D and 3D geome-

tries.8–10 The crucial role of surface wave resonances for

phenomena of extraordinary transmission and absorption has

been established for a number of models and supported by

experiments.2,11,12 Indeed, in some plasma applications,

excitation of surface modes has explained the total absorp-

tion of electromagnetic waves in overdense plasmas.13

Furthermore, surface mode resonances play an important

role in heating of microwave plasmas, see Ref. 14 and refer-

ences therein. Plasmon resonances also define unique proper-

ties of plasma-based metamaterials.15

An electromagnetic wave propagating in vacuum cannot

be matched (coupled) with a surface wave localized at the

interface between a vacuum region and a region of negative

permittivity. Such coupling, however, can be achieved in

configurations of double- or multi-layer structures which

include an intermediate plasma (dielectric) region with posi-

tive permittivity.16,17 This principle serves as a basis for the

so called zero-eeff structures3,18,19 with eeff ¼ eaaþ epd ¼ 0;
where a is the width of the intermediate layer with ea > 0

and d is the width of the plasma layer with ep< 0. In the ideal

case without dissipation, such structures have 100% trans-

missivity for the resonant values of the incidence angle.

In another approach, the plasmon evanescent surface

wave mode can be coupled to the propagating vacuum wave

�exp ð�ixtþ ik � rÞ via scattering on a periodic subwave-

length structure �exp ðiq � rÞ. Such scattering will generate

sideband evanescent harmonics, 6kþ q ; that can be

matched to the surface mode eigen-mode. Periodic spatial

modulations can be created via modulation of plasma param-

eters (e.g., density) with external waves or laser/electron

beams.10,20 Intrinsic, nonlinear wave generation was also

suggested as a possible mechanism.15,21–23 Theoretical mod-

els for light tunneling via periodically structured metal films

have been presented in Refs. 26–30. Alternatively, an exter-

nal periodic metal diffraction grating can be used,24,25 which

appears as a more practical solution for plasma

applications.13,31,32

In general, the full solution of the transmission and/or

reflection problem is obtained by solving a system of cou-

pled linear equations for incident, reflected, and transmitted

propagating waves, as well as for standing and evanescent

modes inside the plasma layer and the vacuum/dielectric

layer structures. Formally, it is a straightforward linear prob-

lem, but due to a large number of variables, solving it analyt-

ically is technically cumbersome, and the solution is

therefore often obtained numerically. As a result, the nature

of the involved resonance modes and their coupling is not

easily understood. Furthermore, conditions and geometric

parameters for optimizing the transmissivity and/or absorp-

tion cannot be expressed analytically. Based on the idea of

critical coupling in optical waveguides,33 a phenomenologi-

cal model has been proposed to find a quantitative descrip-

tion of resonance coupling and conditions for transmission

and absorption in overdense plasmas.2,13,32 The plasmon res-

onator with evanescent eigen-modes has special features,

which distinguishes it from standard waveguide type resona-

tors. One important difference is that the energy transport by

evanescent modes in tunneling regimes is not described by

the group velocity of the wave packets. Instead, one can use
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the energy flow velocity, which is very different from the

group velocity. Typically in tunneling regimes, the energy

flow velocity is very small34 while the group velocity is not

even defined. It is worthwhile to note that the slow energy

flow velocity for tunneling structures is the basis for “slow”

or “frozen” light concepts and devices. Another feature of

the plasmon eigen-modes is that such modes are not really

stationary modes in finite size configurations. In configura-

tions with plasma layers of finite widths, the modes are qua-

sistationary, slowly decaying in time, “leaking” energy into

the outside region (“leaking” modes).35 These are precisely

the modes that can be coupled to the propagating mode in

free space and amplify the evanescent modes, leading to

anomalous transmission and absorption.

In this paper, we present a simple framework for the

description of resonance coupling, mode amplification, and

transmission in overdense plasma with a single diffraction

grating structure. The method we use is based on the stan-

dard wave impedance concept and allows for a compact for-

mulation of wave propagation in a wide class of problems

with complex multi-layer structures which include overdense

plasma layers. It enables us to clarify the nature of resonan-

ces and their coupling, and to obtain relatively simple

expressions for optimal conditions for wave transmission

and absorption in the overdense plasma layer. It allows for

easy consecutive calculations of the transmission and reflec-

tion coefficients and can be easily generalized for multiple

layers and continuous profiles.

II. BASIC MODEL FOR THE PLASMA LAYER WITH A
DIFFRACTION GRATING

We consider the electromagnetic wave incident on the

plasma layer preceded by the diffraction grating which is

placed at a distance a from the plasma boundary as shown in

Fig. 1. The transverse magnetic TM or p-polarization is

assumed, so that the electromagnetic field has the compo-

nents E¼ (Ex, Ey, 0) and B¼(0, 0, Bz).

The magnetic field is described by the following

equation:

e
@

@x

1

e
@Bz

@x

� �
� k2

y Bz þ
x2

c2
eBz

þ x2

c2
eghg l0 þ l1 cos qyð Þ½ �d xð ÞBz ¼ 0: (1)

The regions 1, 2, and 3 have vacuum permittivity e¼ 1. The

region “p” is a plasma layer of thickness d and permittivity

ep ¼ 1� x2
pe=x

2, where xpe is the electron plasma fre-

quency. The last term in Eq. (1) describes the diffraction

grating at x¼ 0, where q is the wave vector of the grating, l1

is the modulation parameter, and l0 is the mean (average)

transparency of the grating.24 This simple model was sug-

gested in Ref. 24, and it is the simplest version of a more

general model used in Ref. 25.

Equation (1) is used in the neighborhood of the diffrac-

tion grating to obtain the following boundary condition

across the interface at x¼ 0:

dBz

dz

� �d

�d
¼ dBz

dz
ðdÞ � dBz

dz
ð�dÞ

¼ �x2

c2
eghg l0 þ l1 cos qyð Þ½ �Bzjx¼0: (2)

The magnetic field is continuous at the grating, ½Bz�d�d ¼ 0,

where

Bz½ � � Bz dð Þ � Bz �dð Þ: (3)

We will use the notation in (3) to describe a discontinuity at

any interface.

The diffraction grating leads to the generation of side-

band harmonics with shifted wave vectors ky 6 q. In general,

there are multiple harmonics coupled via Eq. (2). Here, simi-

larly to other works,24,27,29,30 we neglect the higher order

side-bands and consider the analytical solution in the form

Bz x; y; tð Þ ¼ B0 xð Þeikyy þ Bþ xð Þei kyþqð Þy�
þB� xð Þei ky�qð Þy� exp �ixtð Þ: (4)

Condition (2) generates the following relationships for

the principal, B0, and the sideband, B6, harmonics:

dB0

dx

� � d

�d
¼ �kg0B0jx¼0 �

kg1

2
Bþ þ B�ð Þjx¼0; (5)

dB6

dx

� �d

�d
¼ �kg0B6jx¼xg

� kg1

2
B0jx¼xg

; (6)

where kg0 ¼ x2eghgl0/c2 and kg1 ¼ x2eghgl1=c2.

It follows from (1) that the derivative of the magnetic

field is discontinuous at the plasma-vacuum interfaces. The

relevant boundary condition is

1

e
dBz

dx

� �
¼ 0: (7)

FIG. 1. Geometry of the problem.
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The magnetic field is continuous at all interfaces,

½Bz� ¼ 0:
The boundary condition (7) is most conveniently written

in terms of the impedances, Appendix A. The matching con-

ditions (5,6) can be written in terms of the impedances as

well by noting that

1

B0

dB0

dx

� �
¼ �kg0 �

kg1

2

Bþ þ B�

B0

� �
; (8)

1

B0

dB0

dx

� �
¼ �kg0 �

kg1

2

B0

B6
; (9)

where the right-hand sides in these equations are evaluated

at x¼ 0.

In this paper, we will consider only the case of nor-

mal incidence when ky¼ 0 in Eq. (4). Then, the ð6Þ side-

bands become symmetric, Bþ ¼ B� � B6, and one of the

matching conditions at the diffraction grating can be writ-

ten as

1

B0

dB0

dx

� �
þ kg0

 !
1

Bþ
dBþ

dx

� �
þ kg0

� �
¼

k2
g1

2
: (10)

Using the definition of the impedance and the corresponding

techniques described in Appendixes A and B, we find

1

B0

dB0

dx

� �
¼ ixe

c
Z0

2 0ð Þ � Z0
1 0ð Þ

� �
; (11)

1

Bþ
dBþ

dx

� �
¼ ixe

c
Zþ2 0ð Þ � Z0

1 0ð Þ
� �

: (12)

The matching condition at the diffraction grating then

becomes

Z0
2 0ð Þ � Z 0

1 0ð Þ � ikg0c

x

� �
Zþ2 0ð Þ � Zþ1 0ð Þ � ikg0c

x

� �

¼ �
k2

g1c2

2x2
: (13)

This equation shows the coupling of the principal component

and the side-bands at the diffraction grating. As in Ref. 24,

to simplify the presentation, we set hg¼ kg¼ 0 in Eq. (13).

Note that a finite hg does not affect the surface wave resonan-

ces but introduces additional resonances of Fabry-Perot type

which were considered in Ref. 3.

A. The structure of the electromagnetic field and
transmission coefficient

In this section, we describe the structure of the electro-

magnetic field in each region, formulate the matching condi-

tions, and outline the calculation of the transmission

coefficient. We will use the lower indices 1, 2, p, and 3 to

define the relevant quantities in the corresponding region; we

will use the upper indices (0, 6) to define the principal com-

ponent and the sidebands.

1. Vacuum region 1

In the outmost left vacuum region, we have the incident

and reflected waves in the main harmonic

B0
1 ¼ expðik0xÞ þ C0

1 expð�ik0xÞ; (14)

where k0 is the wave vector of the wave propagating in vac-

uum, k2
0 ¼ x2=c2. Here, the amplitude of the incident was

normalized to unity. Then, the running value of the imped-

ance in this region is

Z0
1 xð Þ ¼ exp ik0xð Þ � C0

1 exp ik0xð Þ
exp ik0xð Þ þ C0

1 exp ik0xð Þ
: (15)

The amplitude of the reflected wave C0
1 can be related to

the value of the impedance for the main harmonic in region

1 at the diffraction grating Z0
1ð0Þ � Z0

1ð0� dÞ; d! 0

C0
1 ¼

1� Z0
1 0ð Þ

1þ Z0
1 0ð Þ

: (16)

The characteristic impedance of vacuum for the principal

harmonic is j0
v � k0c=x ¼ 1.

The side-bands are evanescent in vacuum and are local-

ized near the considered structure. Thus, in region 1, the

side-bands are decaying as x! �1 and have the form

Bþ1 ¼ Aþ1 expðcþv xÞ; (17)

where cþ2
v ¼ q2 � k2

0 > 0; cþv > 0. The impedance of the

sidebands in this region is constant

Zþ1 xð Þ � Zþ1 ¼ �
iccþv
x
¼ �jþv ¼ const; (18)

where jþ is the characteristic impedance of vacuum for the

evanescent side-band harmonics.

B. Vacuum region 2

In the vacuum region 2, between the diffraction grating

and plasma layer, the main and the side-bands harmonics

have the following incident and the reflected components:

B0
2 ¼ A0

2 expðik0xÞ þ C0
2 expð�ik0xÞ

� �
; (19)

Bþ2 ¼ Aþ2 expð�cþv xÞ þ Cþ2 expðcþv xÞ
� �

: (20)

The corresponding expressions for the local values of the

impedances are

Z0
2 xð Þ ¼ exp ik0xð Þ � C0

2 exp ik0xð Þ
exp ik0xð Þ þ C0

2 exp ik0xð Þ
; (21)

Zþ2 xð Þ ¼ jþv
exp �cþv x

� 	
� Cþ2 exp cþv x

� 	
exp �cþv xð Þ þ Cþ2 exp cþv xð Þ

: (22)

Using (A5) and (A6), one can extend the impedances

at the left and right boundaries in this region via the

transformations
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Z0
2ð0Þ ¼

Z0
2 að Þ � i tanðk0aÞ

1� iZ0
2 að Þtanðk0aÞ ; (23)

Zþ2 ð0Þ ¼ jþv
Zþ2 ðaÞ þ jþv tanh cþv a

� 	
jþv þ Zþ2 ðaÞtanh cþv að Þ

: (24)

At the right boundary of region 2, across the vacuum-

plasma interface, the impedances are continuous. Therefore,

one can relate the impedances Z0
2ðaÞ; Zþ2 ðaÞ in the vacuum

region 2 to the impedances Zþp ðaÞ; Z0
pðaÞ in the plasma region

as follows:

Zþ2 að Þ ¼ Zþp 0ð Þ; (25)

Z0
2 að Þ ¼ Z0

p 0ð Þ: (26)

C. Plasma layer region

In the plasma layer, principal components and both side-

bands are evanescent

B0
p ¼ A0

p expð�cpxÞ þ C0
p expðcpxÞ

h i
; (27)

Bþp ¼ Aþp expð�cþp xÞ þ Cþp expðcþp xÞ
h i

; (28)

with ðc0
pÞ

2 ¼ �k2
0ep > 0; ðcþp Þ

2 ¼ q2 � k2
0ep > 0; ep < 0.

Note that that the coordinate system inside the plasma layer

can be redefined so that the left side boundary of the plasma

layer is at x¼ 0.

Then the local values of the impedances are

Zþp xð Þ ¼ jþp

exp �cþp x

 �

� Cþp exp cþp x

 �

exp �cþp x
� 	þ Cþp exp cþp x

� 	 ; (29)

Z0
p xð Þ ¼ j0

p

exp �c0
px


 �
� C0

p exp c0
px


 �
exp �c0

px
� 	

þ C0
p exp c0

px
� 	 : (30)

The impedances at the right and left boundaries of the

plasma region are related by the transformations

Zþp ð0Þ ¼ jþp
Zþp ðdÞ þ jþp tanh cþp d


 �
jþp þ Zþp ðdÞtanh cþp d

� 	 ; (31)

Z0
pð0Þ ¼ j0

p

Z0
pðdÞ þ j0

ptanh c0
p d


 �
j0

p þ Z0
pðdÞtanh c0

p d
� 	 ; (32)

where j6
p ¼ ic6

p c=xep; j0
p ¼ ic0

pc=xep are the characteristic

wave impedances in this region, and d is the width of the

plasma layer.

At the right boundary of the plasma layer, the impedan-

ces are continuously matched to the vacuum region 3

Z0
p dð Þ ¼ Z0

3; (33)

Zþp dð Þ ¼ Zþ3 : (34)

We have dropped here the arguments for Z0
3 and Zþ3

since the impedances in the region 3 are constant (see

below).

D. Vacuum region 3

In this region, we have only the transmitted wave propa-

gating to the right and the side-bands that are decaying for

x! þ1

B0
3 ¼ A0

3 expðik0xÞ; (35)

Bþ3 ¼ Aþ3 expð�cþv xÞ: (36)

Respectively, the impedances in this region are constant and

given by the relations

Z0
3 ¼

k0c

x
¼ 1; (37)

Zþ3 ¼
icþv c

x
¼ jþv : (38)

The transmission coefficient is given by the amplitude

of the transmitted wave: T¼A3 (see Appendix C).

III. SURFACE WAVE RESONANCE AND
REFLECTIONLESS TRANSMISSION

One of the most fascinating plasmonics phenomena is

absolute transparency of an overdense plasma layer.

Absolute transparency has been demonstrated in complex

multi-layer structures where it can be supported by surface

wave resonances as well as by standing wave (Fabry-Perot

type) resonances.3 Some resonances caused by standing

waves can be supported by additional modes which exist in

warm plasmas.4 It was proposed in Refs. 2 and 24 that two

diffraction gratings on both sides of a plasma layer are

required to realize absolute transparency. This conclusion

was based on the critical coupling concept.2,24 Here, we

show that full transparency can also be achieved with a sin-

gle grating.36 Using the impedance matching formulation,

we show the role of the plasmon resonance and of the cou-

pling to the standing wave resonance in region 1.

Full (100%) transmission is achieved when jTj ¼ 1,

where T is the transmission coefficient. This occurs when the

reflected wave is absent in region 1: C0
1 ¼ 0 and therefore

Z0
1ð0Þ ¼ 1. The impedances of the decaying sidebands in the

vacuum region 1 are Zþ1 ¼ Z�1 ¼ �jþv . Thus, the matching

condition at the diffraction grating (13) has the form

1 ¼ Z0
2 0ð Þ �

k2
g1c2

2x2

1

Zþ2 0ð Þ þ jþv
: (39)

Note that jþv is imaginary, and so is Zþ2 ð0Þ for an ideal

plasma; the impedance Z0
2ð0Þ is in general complex. Then,

for Eq. (39) to hold, the last term has to cancel out the imagi-

nary part of Z0
2ð0Þ. For weak coupling, and small values of

the parameter k2
g1c2=x2, the resonance occurs near the pole

of the last term in (39)

Zþ2 0ð Þ þ jþv ¼ 0: (40)
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From this equation, and using Eqs. (24), (25), and (29),

one obtains

1þ Lþv
� �

2jþv kþp þ kþ2
v Lþp þ kþ2

p Lþp

h i
¼ 0; (41)

and the resonant condition is given by

2
jþp
jþv
þ

jþp
jþv

 !2

Lþp þ Lþp ¼ 0; (42)

where Lþp ¼ tanhðcþp dÞ; Lþv � tanhðcþv aÞ: It is easy to see

that this is the exact dispersion equation for the surface wave

of a plasma layer with a finite thickness d. The roots of this

quadratic equation correspond to the symmetric and antisym-

metric bonding of the surface waves localized on the oppo-

site boundaries of the layer.

For a large thickness, we have Lþp ! 1, and (42) yields

jþv þ kþp ¼ 0; (43)

which is the dispersion equation for a surface mode at the

interface of the vacuum and a semi-infinite layer with ep < 0:
From (43), one finds the resonant value of the diffraction

grating wave vector

q2
0 ¼ k2

0

ep

ep þ 1
: (44)

In addition to the surface wave resonance described by

Eq. (43), a second condition has to be satisfied for Eq. (39)

to hold, namely,

Re Z0
2 0ð Þ

� �
¼ 1: (45)

This condition reduces to the following equation:

1þ b2
� �

L2
p þ b2L2

vL2
p � 2bLvLp

h i
¼ 0; (46)

or equivalently

1� bLvLpð Þ2 ¼ 1� L2
p; (47)

with Lv � tan ðkaÞ; Lp ¼ tanhðcpdÞ, and jp ¼ �ib, where

b ¼ 1=
ffiffiffiffiffiffiffiffi�ep
p

is a real number. For given values of plasma

permittivity ep and Lp, Eq. (47) has two roots Lv which define

the resonance condition for the distance between the plasma

layer and the diffraction grating. For a thick plasma layer,

we have Lp ! 1; Lv ’ 1=b. In this limit, the resonance con-

dition is given by

tan kað Þ ¼ ffiffiffiffiffiffiffiffi�ep
p

: (48)

This condition indicates that the resonances are close to the

standing wave resonances in the vacuum region 2: ka¼ np,

where n¼ 1,2,…. In the general case

Lv ¼
1

bLp
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b2L2
p

� 1

b2

s
: (49)

and the resonance value of the width of the vacuum region 2

is given by

a ¼ k�1
0 tan�1 Lvð Þ: (50)

Note that condition (47) does not depend on the diffraction

grating parameters.

For finite values of the parameter k2
g1c2=x2, the exact

conditions for resonant transmission are obtained from (39)

in the form

iIm Z0
2 0ð Þ

� 	
¼

k2
g1c2

2x2

1

Zþ2 0ð Þ þ jþv
: (51)

Conditions (45) and (51) have to be satisfied simultaneously

for absolute (100%) transmission with jTj ¼ 1.

As a numerical example, we consider the case of plasma

parameters which are of interest for the communication

blackout problem:37,38 x ¼ 2p� 109 rad/s, plasma density

n ¼ 4:5� 1017 m�3, and the plasma layer width d¼ 0.02 m.

In our calculations, we set xp ¼ 2p� 6� 109 rad/s, which

yields ep ¼ �35. For these parameters, one finds from (49)

and (50) the resonance value for the distance between the

diffraction grating and the plasma layer a¼ 0.068153 m.

According to Eq. (44), the resonance value of the diffraction

grating wave vector q when the surface wave resonance

occurs is q0 ¼ 21:2 71 m�1. The solution of the exact Eq.

(51) gives two values for q, as seen in Fig. 2. Those values

are slightly different from q0 due to coupling of plasmon

modes in the plasma layer of finite thickness d [see Eq.

(42)]. Figure 2 shows the reflection and transmission coeffi-

cients, each as a function of the diffraction grating wave vec-

tor for k2
g1 ¼ 4� 103 m�2. The decrease in the parameter kg1

results in the narrower resonance curves as shown in Fig. 3

for k2
g1 ¼ 4� 102 m�2:

IV. REFLECTIONLESS ABSORPTION IN A
DISSIPATIVE PLASMA LAYER

The plasmon resonances that lead to the amplification of

evanescent modes and absolute transmission through an

overdense plasma layer are quite narrow in frequency (and

the diffraction grating wave vector values). As such they are

sensitive to dissipation and can be easily destroyed by dissi-

pation in plasmas. At the same time, the same plasmon reso-

nance is responsible for another interesting phenomenon that

occurs due to interaction of an electromagnetic wave with an

overdense plasma layer with dissipation, namely, the reflec-

tionless absorption of the electromagnetic wave.

When electron collisions are included, the dielectric

plasma permittivity becomes complex

ep ¼ 1�
x2

pe

x xþ i�ð Þ : (52)

The impedance matching formalism presented in Sec. II

still remains valid and the same equations can be used to find

the reflection and transmission coefficients as summarized in

Appendixes B and C. In the dissipative case, jC0
1j

2 þ jTj2
< 1 since a fraction of the energy is absorbed inside the

plasma. One can introduce the parameter A ¼ 1� jC0
1j

2

�jTj2 to characterize the absorption. Normally, for over-

dense plasma with relatively weak dissipation, the absorption
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is low and most of the energy of the incident wave will be

reflected, jC0
1j

2 ’ 1. Near the plasmon resonance, however,

the reflection can be reduced significantly.8,13,25,32 Full

absorption was shown experimentally in Ref. 13.

The conditions for full absorption can be investigated

analytically from results of Sec. II and Appendixes B and C

as follows. Consider a sufficiently thick plasma layer so that

transmission can be neglected, T¼ 0. In this limit, the

entrance impedances of the vacuum region 2 become

Z0
2ð0Þ ¼

j0
p � iLv

1� ij0
pLv

; (53)

Zþ2 ð0Þ ¼ jþv
jþp þ jþv Lþv
jþv þ jþp Lþv

: (54)

For T¼ 0, the condition for reflectionless absorption is given

by Eq. (39). The dominant part of Z0
2ð0Þ is imaginary, and

this part is compensated by the imaginary part of the

last term in (39). It is worthwhile to note that in the dissipa-

tive case, j0
p acquires a small real part (related to the dissipa-

tion in plasma), j0
p ¼ �ibþ a, where a and b are real, and

a� b. The small perturbation of Z0
2ð0Þ due to a is crucial

as it generates the real part of Z0
2ð0Þ which is required for

the absence of reflection: Re½Z0
2ð0Þ� ’ 1; otherwise, Z0

2ð0Þ is

imaginary and the reflection is large. The condition

Re½Z0
2ð0Þ� ’ 1 determines the resonant value of the distance

from the diffraction grating to the plasma

Lv ’
1

b
6

1

b

ffiffiffi
a
p

: (55)

Note that the condition Re½Z0
2ð0Þ� ’ 1 is further modified by

the contribution from the last term in (39).

The exact condition for reflectionless absorption that

follows from (39) has the form

1 ¼
j0

p � iLv

1� ij0
pLv
� K

jþv þ jpLþv
� 	

jþv jþv þ jpð Þ 1þ Lþvð Þ
; (56)

where K ¼ k2
g1c2=2x2: The ðjþv þ jpÞ term in the denomina-

tor of this expression emphasizes the role of the plasmon reso-

nance [compare with Eq. (43)]. Equation (56) fully determines

FIG. 2. (a) Reflection, jC0
1j

2
, and (b) transmission, jTj2, coefficients, versus

diffraction grating wave vector, q, for �p ¼ �35; d ¼ 0:02 m; a ¼ 0:06815 m,

and k2
g1 ¼ 4000 m�2. FIG. 3. (a) Reflection, jC0

1j
2
, and (b) transmission, jTj2, coefficients, versus

diffraction grating wave vector, q, for �p ¼ �35; d ¼ 0:02 m; a ¼ 0:06815 m,

and k2
g1 ¼ 400 m�2.
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the exact conditions for the values of a (width of the vacuum

region) and q (diffraction grating wave vector) for reflectionless

absorption, when the energy of the incident electromagnetic

wave is fully absorbed in the plasma, T ¼ 0;C0
1 ¼ 0: Plasma

dissipation results in a slight modification of the resonant value

of the diffraction wave vector compared to the values from (44)

(see Fig. 3). An approximate value of q is found from Eq. (55).

The dependence of the reflection and absorption coefficients as

functions of the wave vector q is illustrated in Fig. 4. The

decrease in the parameter kg1 results in the narrower region of

absorption, as can be seen by comparing Figs. 4(a) and 4(b).

V. SUMMARY

The phenomenon of anomalously large transmission of

the electromagnetic waves through the media with negative

dielectric permittivity such as dense plasmas (or metal films

in the visible range) has attracted great interest in the last

decade. It is generally understood that such transmission

occurs as a result of resonant excitation of plasmon type sur-

face modes. Resonant conditions can be created either with

multi-layer zero-eeff structures or with subwavelength struc-

tures. These subwavelength structures can be created by

either a single defect such as a subwavelength aperture or

with periodic arrays of holes or slits (diffraction grating).

Resonant excitation of plasmon modes is a crucial element

of many phenomena, such as reflectionless absorption, total

backward reflection,39 negative refraction,1,2 and other phe-

nomena in plasma based metamaterials.15,40

In this paper, we have investigated resonant conditions

and coupling of resonances in a system with an overdense

plasma layer and a single diffraction grating. We have shown

that extraordinary transmission also exists in this configura-

tion, and not only in the two gratings scheme (on both sides

of the plasma layer) proposed in Ref. 24. We have presented

a simple impedance formulation that allows us to demon-

strate clearly the coupling of the plasmon (evanescent) mode

inside the plasma layer and standing wave resonances in the

vacuum regions. We have demonstrated that those resonan-

ces lead to extraordinary transmission and reflectionless

absorption. We have determined analytically the resonance

value of the width of the vacuum region for full transmission

[see Eq. (49)] and for reflectionless absorption [see Eq.

(55)]. The exact expressions for the resonant values of the

diffraction grating wave vector for full transmission are

given by (51) and for reflectionless absorption by (56).

The impedance model presented in this paper is an exact

alternative to the phenomenological critical coupling model

proposed by others.13 The impedance model can easily be

generalized to configurations with multiple layers and is con-

venient for numerical calculation of the reflection and trans-

mission coefficients for continuous inhomogeneous plasma

profiles.41–43 As such it is envisaged that the impedance

model may become an effective tool for the investigation

and design of plasma based metamaterial structures and con-

figurations,40,44 including multi-layer and 2D structures for

broadband applications.31 Plasma production and heating

may be improved in plasma discharges designed with the

explicit account of plasmon resonances.
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APPENDIX A: IMPEDANCE

To clarify the notation, we now give the definition of the

impedance and the formulas for the impedance transforma-

tions in a layer of finite length with permittivity e. The

impedance, Z, is defined by

Z � Ey

Bz
¼ � ic

xe
1

Bz

@Bz

@x
: (A1)

In general, there is an incident wave �expð�ixtþ ikxÞ
and a reflected wave �expð�ixt� ikxÞ, so that the magnetic

field of the TM wave has the form

Bz ¼ B exp �ixtð Þ exp ikxð Þ þ C expð�ikxÞ
� �

; (A2)

where x > 0 and k> 0 are set so that the incident wave

propagates to the right, and the reflected wave propagates to

the left, with C being the reflection coefficient.

Thus, the local impedance is a function of the position x,

and is given by

FIG. 4. Reflection and absorption coefficients, jC0
1j

2
and A, versus diffraction

grating wave vector, q, �p ¼ �34:77þ 2:862i; d ¼ 0:06 m; a ¼ 0:07562 m,

and � ¼ 0:08 x, for (a) k2
g1 ¼ 4� 103 m�2 and (b) k�2

g1 ¼ 400 m�2.
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ZðxÞ ¼ j
expðikxÞ � C expð�ikxÞ
expðikxÞ þ C expð�ikxÞ ; (A3)

where j is the characteristic wave impedance in the layer

j � kc=ðxeÞ.
The reflection coefficient is determined by the mismatch

between the characteristic impedance j and the value of the

entrance impedance Z(0)

C ¼ j� Zð0Þ
jþ Zð0Þ : (A4)

Equations (A3) and (A4) yield the standard transforma-

tion of the impedance for a finite interval of length l

ZðlÞ ¼ j
Zð0Þ þ jtanhðiklÞ
jþ Zð0ÞtanhðiklÞ : (A5)

The inverse transformation is then

Z 0ð Þ ¼ j
Z lð Þ � jtanh iklð Þ
j� Z lð Þtanh iklð Þ

: (A6)

These expressions can also be used for evanescent waves by

setting k¼ ic, with real-valued c 6¼ 0, so that

Bz ¼ B exp �cxð Þ þ C expðcxÞ
� �

: (A7)

Then the characteristic impedance j ¼ icc=ðxeÞ is imagi-

nary, and the transformation relations (A5) and (A6)

become

Z lð Þ ¼ j
Z 0ð Þ � jtanh clð Þ
j� Z 0ð Þtanh clð Þ

; (A8)

Z 0ð Þ ¼ j
Z lð Þ þ jtanh clð Þ
jþ Z lð Þtanh clð Þ

: (A9)

APPENDIX B: SUMMARY OF THE IMPEDANCE
MATCHING EXPRESSIONS

Here we summarize the nomenclature of the impedance

matching relations and definitions that allow for sequential

calculation of the reflection coefficient which can also be

generalized for multi-layer structures. In our notation, the

subscripts “1,” “2,” and “3” refer to the vacuum regions, and

the subscript “p” refers to the plasma layer. The superscript

“0” refers the principal harmonic, and the superscript “þ”

refers to the side-band, and the parameters j0
v (j0

p) and jþv
(jþp Þ are the characteristic impedances for the vacuum

(plasma) regions for the principal and side-band harmonics.

The impedance matching starts from the outmost right

region 3 (vacuum) and proceeds to the left

Z0
3 0ð Þ ¼ jv ¼ 1; (B1)

Zþ3 0ð Þ ¼ jþv ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=k2

0 � 1

q
; (B2)

Z0
p dð Þ ¼ Z0

3 0ð Þ; (B3)

Zþp dð Þ ¼ Zþ3 0ð Þ: (B4)

j0
p ¼ �

iffiffiffiffiffiffiffiffi�ep
p ; (B5)

jþp ¼
i

ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=k2

0 � ep

q
; (B6)

Z0
pð0Þ ¼ j0

p

Z0
pðdÞ þ j0

ptanh cpd
� 	

j0
p þ Z0

pðdÞtanh cpd
� 	 ; (B7)

Zþp ð0Þ ¼ jþp

Zþp ðdÞ þ jþp tanh cþp d

 �

jþp þ Zþp ðdÞtanh cþp d
� 	 ; (B8)

Z0
2ðaÞ ¼ Z0

pð0Þ; (B9)

Zþ2 ðaÞ ¼ Zþp ð0Þ; (B10)

Z0
2ð0Þ ¼

Z0
2 að Þ � i tanðk0aÞ

1� iZ0
2 að Þtanðk0aÞ ; (B11)

Zþ2 ð0Þ ¼ jþv
Zþ2 ðaÞ þ jþv tanh cþv a

� 	
jþv þ Zþ2 ðaÞtanh cþv að Þ

; (B12)

Zþ1 0ð Þ ¼ �jþv ; (B13)

Z 0
1 0ð Þ ¼ Z0

2 0ð Þ �
k2

g1c2

2x2

1

Zþ1 0ð Þ � Zþ2 0ð Þ : (B14)

The reflection coefficient is finally calculated from

Z 0
1 ð0Þ

C0
1 ¼

1� Z0
1 0ð Þ

1� Z0
1 0ð Þ : (B15)

For multi-layer structures, this process can be continued to

the left. This method also offers a convenient way to calcu-

late the total reflection coefficient in the case of a continu-

ous profile by breaking it down into a number of sub-layers

and repeating the cycle of calculations from the right to the

left.

APPENDIX C: CALCULATION OF THE TRANSMISSION
AND ABSORPTION COEFFICIENTS

The sequence of calculations can be performed from left

to right to obtain the transmission coefficient. This sequence

is summarized here

1þ C0
1 ¼ A0

2 1þ C0
2

� 	
; (C1)

A0
2 exp ik0að Þ þ C0

2 exp �ik0að Þ
� �

¼ A0
p 1þ C0

p


 �
; (C2)

A0
p exp �cpd

� 	þ C0
p exp cpd

� 	h i
¼ A3: (C3)

Here, according to (A4)

C0
p ¼

j0
p � Z0

p 0ð Þ
j0

p þ Z0
p 0ð Þ

; (C4)
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C0
2 ¼

1� Z0
2 0ð Þ

1þ Z0
2 0ð Þ ; (C5)

where the values of Z0
pð0Þ and Z0

2ð0Þ are calculated with (B7)

and (B11). Thus,

A0
2 ¼

1þ C0
1

1þ C0
2

; (C6)

A0
p ¼

A0
2

1þ C0
p


 � exp ik0að Þ þ C0
2 exp �ik0að Þ

� �
: (C7)

The transmission coefficient is T¼A3, and therefore is

given by

T ¼ A0
p exp �cpd

� 	þ C0
p exp cpd

� 	h i
: (C8)

For ideal plasmas, jC0
1j

2 þ jTj2 ¼ 1, and it is sufficient to cal-

culate only one coefficient. In plasmas with dissipation, both

coefficients C0
1 and T have to be determined independently.

The energy absorption can be characterized by the parameter

A, defined as A ¼ 1� jC0
1j

2 � jTj2.
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