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Negative permeability and negative refraction in composite systems with finite-size inclusions
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It is shown that the spatial dispersion in composite systems formed by inclusion of finite size spheres may lead
to negative group velocity and, subsequently, to negative refraction. Longitudinal and transverse electromagnetic
modes exhibiting negative dispersion are found in the system of finite size charged clouds. It is also shown that
similar mechanism due to the electric quadrupole coupling leads to excitation of longitudinal and transverse
eigenmodes with negative dispersion in a random set of nonmagnetic metal spheres embedded in a dielectric
host. It is shown that the negative refraction related to the spatial dispersion effects may alternatively be viewed
as a result of simultaneously negative permittivity and permeability.
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I. INTRODUCTION

Metamaterials posses unusual (and fascinating) optical
and electromagnetic (EM) properties and their studies have
recently attracted a great deal of attention and effort. There
are several related but not equivalent phenomena which
define many unique properties of metamaterials. The existing
literature on metamaterials refers to different approaches in the
description and characterization of these media, also resulting
in different names being used for such materials: negative-
refraction media, negative-index materials, left-handed media,
etc. Several recent reviews emphasize various aspects of
metamaterials, of which two key phenomena are negative
refraction and amplification of evanescent waves. A physical
picture of negative refraction can be most easily formulated in
terms of the negative group velocity (or negative dispersion)
∂ω/∂k ∼ −k, when it is opposite to the direction of the
wave vector (phase velocity) [1]. In media with negative
group velocity, the energy flow is opposite to the direction
of the wave front propagation. As a result, at the interface
between a regular (positive-index) material and a metamaterial
(negative-index material), the refracted wave ray is deflected
into the same side as the incident ray, hence the name of
negative refraction. In this approach, the negative-refraction
material is characterized only by its dispersion properties.
For high-frequency electromagnetic waves, it is possible to
fully characterize such dispersive materials with a single
dielectric tensor ε̃ = ε̃(ω,k) [2–5] while assuming that μ = 1.
An alternative description of negative refraction is based on
the notion of the negative refractive index n = −√

εμ < 0 [6],
which requires the conditions ε < 0 and μ < 0 [5,7], thus
leading to the names of negative-index and double-negative
materials.

In this paper, we investigate dispersive properties of simple
composite physical systems consisting of finite-size objects.
We show that negative refraction occurs as a result of the
dispersion caused by finite-size inclusions in the host medium.
One example of such a system is a gas of charged particles
of a finite size. These systems are often used to simulate
the behavior of plasmas. Since the number of particles in
real systems is computationally prohibitive even for modern

computers, the real charged particles are approximated by
charged clouds of a finite size (particle-in-cell calculations) [8].
In fact, this procedure is identical to the finite-size averaging
employed in derivations of the macroscopic electrodynamics
equation [9] for a dielectric medium. We show here that in
such systems negative refraction occurs as a result of the finite
dimension of the interacting clouds (or the finite averaging size
of the sampling volume [9]). This finding suggests that other
simple systems with electrically active objects of finite size
may also exhibit negative refraction. Indeed, by considering a
simple system of metal spheres immersed in a host medium,
we show that the second-order effects in a/λ (corresponding
to the quadrupole moments of the spheres) result in the
appearance of additional propagating modes with negative
dispersion. To our knowledge this is the simplest example
of a negative-refraction medium. Our analysis is primarily
based on the characterization of the medium by the dielectric
tensor ε̃ = ε̃(ω,k). We also show that physical results based
on the dispersive properties of the dielectric tensor with μ = 1
can be equivalently described within the ε-μ approach with
simultaneously negative ε and μ.

II. MAGNETIC RESPONSE OF DISPERSIVE MEDIA

Although media with negative μ do not exist in nature, a
magnetic response occurs for many nonmagnetic materials. In
particular, it has been emphasized that optical magnetism in
plasmonic metamaterials is a result of plasmonic (electrostatic)
resonance [10,11]. In fact, a magnetic response is a common
property of strongly dispersive materials, e.g., plasmas. This
fact may have been obscured in part due to a common approach
in plasma physics which does not rely on the notion of
magnetic permeability. As noted in [2], the notion of magnetic
permeability for high-frequency phenomena is not directly
related to the density of the magnetic moment of the material.
For such cases, it is possible to write Maxwell equations
with B = H (i.e., μ = 1) so that all currents (including bound
currents, normally associated with magnetization) are assigned
to the generalized polarization vector P. In this so-called
three-field (E, D,B) model, the dielectric response becomes
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a tensor dependent on the wave vector ε̃ = ε̃(ω,k). For an
isotropic medium, the most general form of this permittivity
tensor is

ε̃(ω,k) = εT (ω,k)

(
I−k ⊗ k

k2

)
+ εL (ω,k)

k ⊗ k
k2

, (1)

and the electric current is determined by j =
−iω[̃ε(ω,k)−I] · E/4π . As an example, in the absence
of an external magnetic field, the components of the dielectric
tensor for warm plasma are [3]

εT (ω,k) = 1 − ω2
p

ω2
[1 − W (ω/kvT )] , (2a)

εL (ω,k) = 1 + k2
D

k2
W (ω/kvT ) , (2b)

where W is the plasma dispersion function. Alternatively, the
dispersive medium characterized by the tensor (1) can be
described by two tensor functions ε (ω,k) and μ(ω,k) [12].
In this description, the electric current is

j = ∂P
∂t

+ c∇ × M, (3)

where the effective polarization vector P and magnetization
vector M are defined by the expressions

4πP = [ε (ω, k) − I] · E,
(4)

4πM = [I − μ−1 (ω, k)] · B.

Thus dispersion effects can be described either by the dielectric
tensor (1) or with two tensor functions ε (ω,k) and μ(ω,k).
Both approaches are equivalent and lead to the same physical
conclusions. The transition from ε (ω,k) and μ(ω,k) to ε̃(ω,k)
is unique, while the inverse transformation is not [13,14].
However, in the limit of small wave numbers k, the inverse
transformation ε̃(ω,k) to ε (ω) and μ(ω) is well defined and
can be given as follows [2]:

ε(ω) = lim
k→0

εL(ω,k),
(5)

1

μ (ω)
= 1 + lim

k→0

ω2

k2c2
[ε (ω) − εT (ω,k)] .

These relations show that the magnetic response can be viewed
merely as a manifestation of the spatial dispersion in the
system, which in itself arises not only from the magnetic
dipole (and higher-order magnetic-type) moments, but also
from those associated with the electric polarization currents.
For example, warm plasma in the example (2a) and (2b) can be
characterized (in the lowest dispersive order) by the dielectric
function ε(ω) = 1 − ω2

p/ω2 and magnetic permeability

μ(ω) = 1

1 + ω2
pv2

T /(ω2c2)
. (6)

As one can see, in the ε (ω) -μ (ω) description, the plasma
becomes magnetically active and its response is described
by μ < 1, which is a known result for the diamagnetic
nature of the plasma state. The dispersion relation for the
transverse electromagnetic waves in the ε (ω) -μ (ω) approach
is k2c2/ω2 = ε(ω)μ(ω). An identical result can be obtained
from the approach with ε̃ (ω,k) and μ = 1 in which the

dispersion relation for transverse electromagnetic waves is
k2c2/ω2 = εT (ω,k).

III. NEGATIVE PERMEABILITY AND NEGATIVE
REFRACTION IN SYSTEMS OF FINITE-SIZED

CHARGED CLOUDS

Computer simulation of real plasmas with a large number of
electrons and ions requires very high spatial resolution in order
to describe the dynamics of particle collisions. This would
make such simulations prohibitively slow. However, if one is
interested in the collective behavior, effects of the short-range
forces are not important and can be smeared out by applying a
spatial field-averaging procedure. This procedure is analogous
to the averaging procedure employed in the derivation of
the macroscopic Maxwell equations [9] and equivalent to
the introduction of finite-size particles. It is known as a
particle-in-cell (PIC) method in plasma kinetic simulation
codes. In this averaging procedure, the charge distribution of
a point particle system,

ρ(x) =
∑

i

qiδ(x − xi), (7)

is averaged with respect to the weight function S(x) [9],

ρ̄(x) =
∫

d3x ′S(x′)ρ(x − x′). (8)

In Fourier representation one can write

ρ̄(k) = S(k)ρ(k). (9)

The averaging function S (k) is a smooth localized function
in space, which decays to zero at distances larger than
the characteristic length scale a. The latter would be a
characteristic size of the finite-size object. A typical choice is
the Gaussian test function S(k) ∼ e−k2a2/2, which suppresses
spatial fluctuations of the total charge density at high k > 1/a,
yet retaining its long-wavelength features. In real space, the
spatial average of the charge density becomes

ρ̄(x) =
∑

i

qiS(x − xi). (10)

The above expression can be recast in the form of the Taylor
series expansion corresponding to the multipole expansion [9].
It is easy to see that introduction of particle clouds in the PIC
technique is equivalent to the spatial averaging procedure used
in the macroscopic electrodynamics of continuous media [9].
Electromagnetic properties of particle-in-cell systems can be
studied by using the dielectric response functions calculated
by standard methods [8]. The longitudinal and transverse
dielectric response functions for the Maxwellian distribution
of finite-size particles are [8]

εl(k,ω) = 1 + S(k)2 k2
D

k2
W

(
ω

kvT

)
,

(11)

εt (k,ω) = 1 − S(k)2
ω2

p

ω2

[
1 − W

(
ω

kvT

)]
.

For the Gaussian averaging function S(k) ∼ e−k2a2/2, the
dispersion relation for the longitudinal electrostatic waves in
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FIG. 1. (Color online) The two-dimensional spatial distribution
of the transverse magnetic field Bz(x,y) (the top picture) and
longitudinal electric field Ex(x,y) (the bottom picture) obtained
from PIC simulations. The incident laser pulse carryer frequency
is ω0 = 7.85 × 1014 s−1, and the slab’s plasma frequency ωp =
8.05 × 1014 s−1. The Debye wavelength is λD ≈ 0.47 × 10−7 m and
the particle radius a ≈ 4.486 × 10−7 m. The spatial coordinates X

and Y are normalized to the grid spacing 	 ≈ 6.3 × 10−7 m.

the limit kvT /ω � 1 and ka � 1 becomes

ω2 = ω2
p + 3k2v2

T

(
1 − 1

3
a2k2

d

)
,

where kD = 1/λD = is the Debye wave number. The group
velocity of the plasma wave becomes negative when a > 3λD .
A negative plasma wave has been observed in PIC simulations
of a laser pulse interaction with a cold plasma slab, shown
in Fig. 1 (the bottom picture). In this case, the incident laser
pulse with the carrying frequency ω0 < ωp directly excites a
negative-refractive plasma wave.

Analogously, the dispersion relation for the transverse wave
is obtained as

ω2 = ω2
pe−k2a2 + k2c2.

Taking the limit ka � 1, one arrives at the condition a > c/ωp

for the existence of the transverse electromagnetic mode with
negative group velocity. Figure 1 (the top picture) shows the
snapshot of the spatial distribution of the transverse magnetic
field for the case when the laser pulse is incident on the plasma
slab. One can clearly see two propagating branches inside the
plasma, one of which has a positive dispersion and the other
negative.

Substituting expressions (11) into Eq. (5) one readily arrives
at the electric permittivity ε(ω) = 1 − ω2

p/ω2 and magnetic
permeability μ(ω) = [1 − ω2

pa2/c2 + ω2
pv2

T /(ω2c2)]−1 of the
system of finite-sized charges in the ε-μ description. As one
can see, both quantities are negative when aωp/c > 1 and
ω < ωp (vT � c).

IV. NEGATIVE PERMEABILITY AND NEGATIVE
REFRACTION IN A SYSTEM OF FINITE-SIZE

CONDUCTING SPHERES

In the previous example, negative refraction occurs as a
result of the dispersion due to the finite size of the charged
clouds. Now we investigate similar effects for a composite
material consisting of a random set of finite-size metal spheres
embedded in a dielectric host.

Consider a nonmagnetic dielectric sphere of radius a and
dielectric constant ε1 embedded in a medium with dielectric
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FIG. 2. (Color online) (a) Transverse modes with electric quadrupole and magnetic dipole corrections. The negative-dispersion branch is
seen in the gap region; nsa

3 = 0.2, a = 3c/ωp , where ωp is the plasma frequency of the metal sphere, ω is normalized to the plasma frequency,
and k is in units of c/ωp . (b) Longitudinal modes with electric quadrupole corrections.
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constant ε2 and magnetic permeability μ = 1. An external
inhomogeneous electric field induces a set of multipole
moments on the sphere. In the lowest order in a/λ < 1, the
scattered electric field is approximated by its magnitude as
well as the first-order spatial gradients, which correspond to
the induced magnetic dipole and electric quadrupole moments.
The explicit expressions for these moments are [15]

p = 1

4π

ε1 − ε2

ε1 + 2ε2
a3E, (12)

qij = 1

4π

ε1 − ε2

2ε1 + 3ε2
a5

[
1

2
(∇jEi + ∇iEj ) − 1

3
∇· Eδij

]
,

(13)

m = ω2a5

30c2
(ε1 − ε2) B. (14)

Using Eq. (3) together with Eqs. (12), (13), and (14) one
obtains the total dielectric tensor in the form of (1) with

εL = 1 + (ε1 − ε2) nsa
3

ε1 + 2ε2
+ 2

3

(ε1 − ε2) nsa
3

2ε1 + 3ε2
k2a2, (15)

εT = 1 + (ε1 − ε2) nsa
3

ε1 + 2ε2
+ 1

2

(ε1 − ε2) nsa
3

2ε1 + 3ε2
k2a2

+ 4π (ε1 − ε2) nsa
3

30
k2a2, (16)

where ns is the concentration of the spheres. The third
and the fourth terms in the expression for the transverse
dielectric function come from the electric quadrupole and the
magnetic dipole contributions to the generalized dielectric
response tensor, respectively. As expected, both moments
are of the same order (k2a2 terms) and are responsible
for the spatial dispersion. The dispersion relations εT =
k2c2/ω2 and εL(ω,k) = 0 define propagating transverse and
longitudinal electromagnetic modes, respectively shown in
Figs. 2(a) and 2(b). In each case, there is one mode with
negative dispersion. It should be noted here that the existence
of negative waves for the system of conducting spheres
of the same size is solely due to the contribution of the
induced electric quadrupole moment. The induced magnetic
dipole moment of the sphere does not contribute to negative
dispersion in this particular case, unlike in the example of the
composite medium consisting of two sub-lattices of dielectric
spherical particles with different radii embedded in a host
material [16], where the induced magnetic dipole moment of
the bi-sphere structure can take on negative values in a certain
frequency range.

Alternatively, the negative-refraction mode can be viewed
as a result of negative ε and negative μ defined by
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FIG. 3. (Color online) Effective dielectric function ε(ω) (solid
line) and magnetic permeability μ(ω) (dashed line) for a system of
spheres in vacuum versus normalized frequency; nsa

3 = 0.2, a =
3c/ωp . The dielectric permittivity and magnetic permeability are
negative for 0.6023 < ω < 0.6325, where ω is normalized to the
plasma frequency ωp .

Eq. (5):

ε (ω) = 1 + (ε1 − ε2) nsa
3

ε1 + 2ε2
,

μ(ω) =
(

1 − 1

2

(ε1 − ε2) nsa
3

2ε1 + 3ε2

ω2a2

c2

− 4π (ε1 − ε2) nsa
3ω2a2

30c2

)−1

.

Figure 3 shows the electric permittivity ε(ω) and the magnetic
permeability μ(ω) for a system of conducting spheres of radius
a in a vacuum. Both functions are negative in the frequency
range that exactly corresponds to the region where the negative
mode obtained from the dispersion relation εT − k2c2/ω2 = 0
exists (see Fig. 2).

V. SUMMARY

We have considered several simple systems that exhibit
negative-refraction phenomena. We have applied the formal-
ism of the total dielectric tensor to characterize a dispersive
medium with opposite directions of the group and phase
velocities. The latter is a crucial signature of a negative-
refraction medium. Alternatively, such dispersive media can
be described by simultaneously negative ε and μ. A system of
metal spheres seems to be the simplest configuration exhibiting
negative dispersion (negative refraction). The role of the
quadrupole resonance in negative dispersion was also noted
in Ref. [17]. These negative-refraction modes propagate with
low group velocity (vgr ≈ 0.1), which could be of interest for
slow-light devices.
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