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1.  Introduction

Plasma systems with electron drift in crossed electric and 
magnetic fields are of interest for a number of applications 
such as space propulsion, plasma sources for material pro-
cessing and magnetic filters for ion extraction and separation. 

In these devices, the strength of the external magnetic field is 
such that the electrons are magnetized but ions are not, so that 
ρ � Le  and ρ � Li , where L is the characteristic length scale 
of the plasma region in the device. For the purposes of this 
article we will refer to such regimes as partially-magnetized 
or Hall plasmas. In these plasmas, the discharge is supported 
by the electron current due to ×E B drift, while ions, due to 
large Larmor radius, can be accelerated by externally applied 
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Abstract
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are 
common in Hall thrusters for electric propulsion and magnetron material processing devices. 
These plasmas are usually in strongly non-equilibrium state due to presence of crossed 
electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field 
and beams of accelerated ions. Free energy from these sources make such plasmas prone to 
various instabilities resulting in turbulence, anomalous transport, and appearance of coherent 
structures as found in experiments. This paper provides an overview of instabilities that 
exist in such plasmas. A nonlinear fluid model has been developed for description of the 
Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron 
gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model 
has been implemented in the BOUT++ framework. The results of nonlinear simulations are 
presented demonstrating turbulence, anomalous current and tendency toward the formation of 
coherent structures.
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electric field E and extracted from the discharge. These are 
common operation regimes in Hall plasma thrusters [1, 2], 
magnetron devices for material processing [3], magnetic fil-
ters [4] and Penning type plasma sources [5]. Similar plasma 
parameters regimes with strong ×E B flows are also of 
interest for space plasma physics [6–8].

Despite long history of successful application of Hall 
thrusters and other Hall plasma sources, some aspects of their 
operation are still poorly understood. One notable problem is 
the anomalous electron mobility, which exceeds the classical 
collisional values by several orders of magnitude [9–15]. Hall 
plasmas exhibit numerous oscillations in a wide range of fre-
quencies [16–19], and it is generally believed that turbulent 
oscillations are responsible for anomalous transport in Hall 
plasmas. Hall plasma devices also demonstrate the appear-
ance of low frequency coherent structures [20–23] which 
are likely the result of plasma nonlinear self-organization. 
Therefore, the problem of anomalous electron mobility in 
Hall plasmas is another incarnation of a more general problem 
of plasma turbulence, anomalous transport and heating. In this 
paper, we review basic mechanisms of instabilities that may 
be operative in such plasmas and resulting in plasma turbu-
lence. We formulate the nonlinear fluid model describing such 
turbulence and present results of nonlinear fluid simulations 
demonstrating turbulent behavior, anomalous transport and 
coherent structures.

The equilibrium ×E B electron drift, plasma density, 
temperature and magnetic field gradients, and ion flow are 
all sources of plasma instabilities in Hall plasmas [24]. The 
gradient-drift instability, related to the anti-drift mode [25], 
and lower-hybrid instability of Hall plasma with transverse 
current [26–28] are thought to be particularly important. The 
long wavelength ×E B instability driven by the combina-
tion of the magnetic field and density gradients was exper
imentally and theoretically identified as a possible source of 
fluctuations and anomalous mobility in Hall plasma thrusters 
[29–32] and later in Penning discharges [33]. In general, this 
instability can be considered as a collisionless version of the 
collisional Simon-Hoh instability [34, 35]. The long wave-
length gradient-drift instabilities are usually considered in 
neglect of the electron inertia. However, for higher frequen-
cies and shorter wavelengths the effects of the electron inertia 
become important which leads to coupling to the lower-hydrid 
modes. The effects of plasma and magnetic field gradients on 
the lower-hybrid instability were earlier studied in kinetic 
theory in [36–39]. Here we present an advanced nonlinear 
fluid model that incorporates electron gyroviscosity and self-
consistently describes both long-wavelength gradient-drift 
and lower-hybrid instabilities. In fact, we show that gradient-
drift instability smoothly transits into the lower-hybrid mode 
at shorter wavelengths ρ⊥ �k 1e .

The short wavelength lower-hybrid modes are also a 
special case of more general beam cyclotron instabilities 
[40–42], in which higher cyclotron harmonics are included. 
The nonlinear stage of such cyclotron instabilities, driven by 
the transverse current was analyzed in [40, 41, 43], where it 
was concluded that these small scale modes saturate at rela-
tively low amplitude due to ion trapping. It was also shown 

that a number of effects such as collisions, finite value of 
the wavevector along the magnetic field, nonlinear diffusion 
also result in smoothing out the cyclotron resonances and the 
mode transits into a slow ion-sound instability. This mode has 
been recently considered as a possible source of short-wave-
length fluctuations and anomalous mobility in Hall thrusters  
[19, 42, 44–47]. For a recent review of physics of the elec-
tron–cyclotron instability, numerical simulations results and 
related experiments see [48] and references therein.

Our fluid model in the short-wave-length limit, ρ⊥ �k 12
e
2 , 

correctly describes the transition to the ion sound mode. In 
plasmas with unmagnetized ions, pure ion sound mode exists 
for finite values of the wave-vector along the magnetic field, 

∥ ω>k vTe . In the lowest order, coupling of the ion sound mode 
to the equilibrium ×E B flow of electrons is weak. This cou-
pling, however, can be enhanced by electron-neutral collisions 
resulting in the collisional instability of the ion sound waves 
in plasma with the equilibrium ×E B flow [49]. The insta-
bility of a similar nature occurs in the collisionless regime 
due to the inverse Landau damping associated with the ×E B 
electron current. In a finite length plasma, the electron cur
rent into the sheath leads to a specific resistive effect: sheath 
resistivity [50], which may result in the wall induced (resis-
tive) instabilities [49, 51]. General case of the sheath near the 
dielectric wall was considered in [49].

The full picture of instabilities in Hall plasmas is complex 
and, for typical experimental conditions, likely involves a 
number of interacting modes which require numerical simu-
lations. Particle-in-cell kinetic simulations that offer a first 
principles description and have provided valuable results on 
×E B plasma discharges [52–55] could be the most realistic 

approach to study the experimental conditions. However PIC 
simulations also could be difficult to interpret, especially 
when practical limitations of the modern computer capa-
bilities and available resources are taken into account. On 
the other hand, fluid simulations are faster numerical tools 
that can provide deep insights into the nonlinear plasma 
dynamics. They are easier to interpret and provide much 
greater flexibility in separating various physics elements. We 
have developed a set of nonlinear fluid codes to investigate 
the turbulent fluctuations and transport in Hall plasmas rel-
evant to electric propulsion [56, 57]. These fluid simulations 
capabilities are being developed in conjunction with kinetic 
particle-in-cell simulations [58]. Here we describe the 
results of our fluid simulations of turbulence and anomalous 
transport relevant to electric propulsion, magnetron plasma 
sources, and magnetic filters.

In this paper we mostly consider 2D plasma dynamics in 
the plane perpendicular to the magnetic field and do not con-
sider any 3D effects, assuming that ∥=k 0, ∥k  is the wave-
vector along the equilibrium magnetic field. Therefore, we 
do not consider here the modified two-stream instability  
[41, 59] and related modes, which require a finite component of 
the wavevector along the magnetic field. Our emphasis in this 
paper is on higher frequency modes. Thus we do not consider 
here the low-frequency oscillations and instabilities that involve 
ionization processes such as breathing modes [60]. For the 
description of some instabilities due to the ionization see [61, 
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62] and references therein. A useful summary of experimental 
studies of low-frequency oscillations is provided in [63].

The overview of instabilities in this paper is oriented 
toward the understanding the behavior of plasmas in such sys-
tems as Hall thrusters [64–66], magnetrons [67] and magnetic 
filters [4]. In most typical configurations these devices involve 
electron ×E B current, beams of accelerated ions and plasma 
parameters gradients as sources of plasma instabilities. One 
particular case, namely Penning discharge geometry, does 
not involve the accelerated ions nor the magnetic field gra-
dient. The experiments with Penning discharges [8, 23, 68] 
have been performed to study the effects of plasma density 
gradients, shear of the ×E B flows and neutral pressure. In 
this paper, unless noted otherwise, various instabilities as pre-
sented in figures 1–4 are characterized for plasma parameters 
of the Penning discharge in [23]. Unstable eigen-modes for 
the parameters of the Hall thruster from [65] are character-
ised in [69]. We have developed a simple solver that can be 
used to evaluate real frequency and growth rate for the local 
instabilities discussed in this paper. The solver is described in 
[70] and also available online as a the citation to supplemen-
tary material to this paper. Local models are useful in pro-
viding physics insight and developing intuition on presence 
of instabilities. It is important to note though, that in plasmas 
with strongly inhomogeneous parameters, the properties of 
nonlocal modes can significantly differ from the predictions 
of the local models [69]. In general, nonlocal and nonlinear 
analysis is required to predict the occurance of fluctuations, 
its characteristics and consequences such as anomalous trans-
port. In this paper, we describe the physics of the instabilities 
relevant to partially magnetized plasmas in ×E B discharges 
and present nonlinear simulations of turbulence resulting from 
such instabilities.

The rest of the paper is organised as follows. In section 2, 
the analytical models and results of the linear eigen-value 
analysis are presented. Section 3 is devoted to the description 
of nonlinear model and results of nonlinear simulations.

2.  Basic plasma dynamics models and instabilities

In this section, the set of basic fluid equations  for plasma 
dynamics in partially magnetised Hall plasmas is formulated. 
We use a generic geometry configuration in which the equilib-
rium magnetic field is directed along the z axis, ^= BB z0 0 , the 
equilibrium electric field and density (and possibly magnetic 
field) gradients are in the x direction, = =�E n n xE x,0 0 0 0( ). 
The azimuthal (periodic) direction is taken along the y axis. In 
application to the cylindrical Hall thrusters, the magnetic field 
would be directed radially (z-axis), the electric field along the 
axis of the thruster (x-axis), and the y-direction is azimuthal. 
For the cylindrical magnetron configuration (Penning dis-
charge geometry), the magnetic field is axial (z-direction), and 
electric field and density gradients are radial (x-direction) and 
y-direction is azimuthal. Plasma is assumed to be quasineu-
tral and the perturbed electric field is electrostatic. Plasma 
is quasineutral at the length scales below the Debye length, 
λ <k 1.2

De
2  For typical parameters in [23], = × −B 5 100

3 T, 
=T 10e  eV, and =n 10e

18 m−3, we have λ = × −2.35 10De
5 

m ρ = × −6.73 10e
4 m, and /ρ λ � 10e

2
De
2 3. Thus, for /ρ λ > 1e

2
De
2 , 

quasineutral approximation remains valid for ⩾ρ⊥k 12
e
2 . The 

electrostatic approximation is valid for small scale fluctua-

tions with /ω �k c 12 2
pe
2 . In the range of = ÷n 10 10e

17 18 m−3, 
/ ( )ω ÷ × −�c 1.7 0.5 10pe

2 m, thus, the electromagnetic cor-
rections, related to the magnetosonic waves, will be important 
only for large scale perturbations with −�L 10 2 m and larger.

In this section we use the parameters of the Penning dis-
charge experiment [23], to characterise the main instabilities 
in partially-magnetized plasmas.

2.1.  Ion dynamics

In partially–magnetized plasmas, the ion Larmor radius is 
typically larger than the system size and the ion cyclotron fre-
quency is lower than the oscillation frequencies. These con-
ditions allow to neglect the effects of the magnetic field on 
ions in the simplest model. For some phenomena, the magn
etic field effect on ions is still important. In these regimes, ion 
dynamics is strongly nonlocal and generally require kinetic 
theory which is outside the scope of this paper.

Basic equations  for cold unmagnetized ions are the 
continuity and momentum equations:

( )∂
∂
+∇ ⋅ =

n

t
n v 0,i

i i� (1)

( ) φ
∂
∂
+ ⋅ ∇ = − ∇

t

e

m

v
v v .i

i i
i

� (2)

For linear perturbations with ( ) ( )φ ω∼ − + ⋅�n t k x, exp i i , 
the system of equations  (1)–(2) gives the following expres-
sion for the perturbed ion density

( )ω
=

− ⋅
��n

n

k v

k v
,

0

2
i
2

0i
2� (3)

where ( / ) /φ=∼ �v e mi i
1 2 is the oscillatory ion velocity in the 

perturbed field and v0i is the equilibrium ion velocity.

2.2.  Destabilization of the anti-drift mode by the electron  
and ion flows

Hall plasmas with unmagnetized ions do not support the stan-
dard drift waves. However, the density gradient and ion inertia 
result in the so-called anti-drift mode [25]. Formally, this mode 
occurs only for the perturbations which are constant along the 
magnetic field, =⋅ ∇b 0, where /= Bb B  is the unit vector 
along the magnetic field. In fact, in finite length systems, 
where the magnetic field lines are terminated by boundaries, 
the perturbations also become two-dimensional (in the plane 
perpendicular to the magnetic field) when the electron pres
sure quickly equilibrates along the magnetic field due to fast 
electron thermal motion, for ∥ω� k vTe, where /=v T m2Te e e 
is the electron thermal velocity and ∥k  is the component of the 
wave vector along the magnetic field. In this state, the differ-
ence between the electron density and the potential is constant 
along the magnetic field but remains a function of the trans-
verse (perpendicular to the magnetic field) coordinates. Then, 
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the slow electron motion in the perpendicular plane such as 
that due to the ×E B and diamagnetic drifts determine the 
density and potential evolution, which effectively means 

∥=k 0.
In the simplest case and neglecting electron inertia, the 

electron response is due to the electron ×E B drift

n

t
n nv v 0,E E

0
0+∂

∂
⋅ ∇ + ⋅ ∇ =�

�
�� (4)

giving

ω
ω ω

φ
ω ω ω

=
−

=−
−

∗ �� � 
( )

n

n

e

T

k v

L

1
,

y

n0 0 e 0 ci

i
2

� (5)

where ω = k v ,y E0 0  ω =∗ ∗k vy , v E BE0 0 0=− / , =−∗ /( )v cT eB Lne 0 ,  
/= ′−L n nn

1
0 0. Using the perturbed ion density from  

equation (3), and neglecting the ion flow, one gets for 
quasineutral oscillations

ω
ω
ω ω

=
−
∗k c

.s
2 2

2
0

� (6)

The stable anti-drift mode follows for ω = 0 :0  /ω ω= ∗k cs
2 2  

[25]. In fact, the anti-drift mode does not depend on the 
electron temperature and the eigen-mode frequency can be 
written as: /ω ω= −k L k .n y

2
ci  Note that for →ω∗ 0, the elec-

tron inertia and parallel dynamics which were neglected in the 
equation (4), will have to be included.

The collisionless Simon-Hoh instability [33, 71–73] occurs 
due to the destabilization of the anti-drift mode by the electron 
flow. The electron response is modified by the ×E B Doppler 
shift: →ω ω ω− 0. From (6), one can easily see the instability 
criteria for ω ω< 0 in the form: /ω ω >∗ 0.0  The latter instability 
condition can be written in general form as

( )
⎛
⎝
⎜

⎞
⎠
⎟⋅ ×

∇
⋅ × >

n

n
k b k b E 0.0

0
0� (7)

For a simple case when ^=b z, = �kk yy  and ( )=n n x0 0  this is 
written as ⋅ ∇ >nE 0.0 0

The equilibrium ion velocity introduces the Doppler shift 
in the ion response, →ω ω− ⋅k v0i. This regime, called the 
modified Simon-Hoh instability, has been studied in [73–75] 
with emphasis on the effects of large orbits of trapped ions 
in Penning discharge geometry. Note however, that for the 
Hall truster and plane magnetron situations, the ions are not 
trapped and may have finite velocity due to acceleration in 
the equilibrium electric field. The contribution of a finite ion 
velocity v0i, modifies the real part of the frequency and, for 
larger values of v ,0i  a new instability may set in. This can be 
seen from general dispersion relation

( )
ω
ω ω ω ω−

=
−

∗ k c
,s

0

2 2

0i
2� (8)

which gives

( )ω ω
ω ω ω

ω ω= + + + −
∗ ∗ ∗

k c k c k c

2 4
.s s s

0i

2 2 4 4

2

2 2

0i 0� (9)

There exist two separate mechanisms of destabilization, associ-
ated with the equilibrium drift of electrons ω0, and ions ω0i, respec-
tively. Finite electron flow is destabilizing for /ω ω >∗ 0.0  This 
condition is independent of the sign of the azimuthal wave vector 

ky and can be written as ⋅ ∇ >nE 00 0 . More precisely, the con-

dition ( / )ω>v k k L4E y n0
2 2

ci  is required for the instability. For the 
modes with the lowest instability threshold, kx  =  0, see figure 2, 
this condition becomes /ω>v L 4,E n0 ci  which easily satisfied in 
most ×E B discharge plasmas. Note that for = × −B 5 100

3 T, 
xenon plasma and L 0.04n =  m, /ω �L 4 37nci  m s−1.

The equilibrium ion flow is destabilizing for /ω ω <∗ 00i , or 
equivalently for / >k v L k 0x n y0i . This means that for the condi-
tions of the Hall thruster with = �vv x0i 0i , >v 00i , the unstable 
modes should have definite helicity: / >k L k 0x n y . A more 
accurate instability criterion has the form

ω
ω ω
<−

∗ ∗

k c

4
,s0i

2 2

2� (10)

which can also be written as

Figure 1.  Frequency and growth rate of the anti-drift mode in 
equation (9) destabilized by the ion drift as a function of ky eρ  for 
vi0  <  0, v 2 10i0

4= − ×  m s−1, 00ω = , Ln  <  0, k 7.5 10x e
4ρ = − ⋅ − , 

T m .e e e ce
2/ρ ω=

Figure 2.  Frequency and growth rate of the anti-drift mode 
destabilized by the electron flow, vi0  =  0 as a function of the 
transverse wave-vector kx eρ  for Ln  =  −0.04 m (squares) and 
Ln  =  −0.1 m (dots).
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⎛

⎝
⎜

⎞

⎠
⎟ω> +v

k

k

k

k
L

1

4
,x

y

y

x
n0i ci� (11)

assuming the condition / >k L k 0x n y .
The growth rate and real part of the anti-drift mode desta-

bilized by the electron flow has a linear scaling with the wave-
vector, ( )ω γ ∼ k,r y [76]. The ion flow driven instability has 
more complex dependence on ky, see figure 1.

It is interesting to note that for / >k v L k 0x n y0i , the instability 
may occur in two different situations; simultaneous change 
of the sign of ky and kx does not change the growth rate, but 
affects the sign of the real part of the frequency. The eigen-
frequency of of the ion driven instability is shown in figure 1 
for negative vi0, kx  <  0 and Ln  <  0, ky is taken to be positive.

The Simon-Hoh instability is usually thought of as a rela-
tively low frequency mode, ω ω< 0 [77]. It is important to note 
however that for a given value of the azimuthal wave-vector 
ky, the eigen-value of the destabilized anti-drift mode is a non-
monotonous function of the axial wave vector kx [69]. The 
modes with kx  =  0 have the lowest instability threshold. At 
fixed ky (and ω = 00i ), the growth rate is increasing with kx and 
reaches the maximum at

ω
ω=

∗

k c

2
.s

2 2

0� (12)

At this point, the real part of the frequency and growth rate are 
equal to ω0, ω ω ω= + i .0 0  For higher values of kx the growth 
rate decreases and finally the mode is stabilized. For the case 
of pure electron flow destabilization, the eigen-frequency is 
shown in figure  2 as a function of kx for two values of the 
Ln parameter. Thus, for the eigen-modes with a maximum 
growth rate [69], the frequency follows k vy E0 scaling similarly 
to the experimental data in [11]. For the ion flow destabiliza-
tion ( )ω = 0 ,0  the maximum growth rate depends on the ratio 
of ω∗ and k cy s.

2.3.  Electron dynamics including inertia and gyroviscosity

As was shown in [69], the growth rate and real part of the 
unstable anti-drift modes reaches the ω = k vy E0 0 value, which 
means that even for low azimuthal wave vector ky, the mode 
frequency may become comparable to the lower-hybrid fre-
quency. In this case, electron inertia has to be included which 
couples Simon-Hoh instability to the lower-hybrid waves. At 
shorter wavelengths, the finite electron temperature (electron 
Larmor radius) effects also become important. In general, the 

regimes with large values of the wave vector ρ⊥ �k 12
e
2  have 

to be described by kinetic theory. It is however, possible to 
describe the finite electron Larmor radius (FLR) effects via the 
electron gyroviscosity. In the limit of finite but small ρ <⊥k 12

e
2  

the gyroviscosity provides asymptotically correct description 

of the electron FLR. In the limit of large, ⩾ρ⊥k 12
e
2 , the gyro-

viscosity provides qualitatively correct behaviour which is 

equivalent to the Padé type approximants (for ρ⊥ �k 12
e
2 ) for 

the Bessel functions appearing in the exact kinetic theory [78].

The most general electron momentum balance equation, 
including the electron inertia and gyroviscosity is written in 
the form

m n
t

en
c

p

m n

v
v B

v

d

d

1

,

e e
e

e e e

e e e

φ

ν

Π= −∇ + × −∇ −∇ ⋅

−

( )
�

(13)

where the fluid (substantive) derivative is

=
∂
∂
+ ⋅ ∇

t t
v

d

d
,e� (14)

and Π is the viscosity tensor. We consider the electron col
lisions with stationary neutral atoms resulting in the friction 
force described by the last term in equation (13).

The electron dynamics is considerably simplified by 
employing the low frequency ordering ω ω� ce. In this 
ordering, for the electron viscosity suffices to consider 
only collisionless gyroviscosity tensor Π .g  Assuming that 
/ ω�td d ce, the electron velocity from equation  (13) can be 

written as

= + + + +ν⊥ Πv v v v v v ,E Ie pe g� (15)

where vE is the ×E B drift velocity, vpe is the diamagnetic drift 
velocity and vI, νv  and Πv g are the drift velocities associated 
with the inertia, collisions and gyroviscosity tensor,

φ= ×∇ = − ×∇⊥ ⊥
c

B en B
pv

b
v

b
,

1
,E

0
pe

0
e� (16)

( )
ω

= − × +
t

v b v v
1 d

d
,I E

ce
pe� (17)

( )ν
ω

Π= × + =− ×∇ ⋅ν Π
c

enB
v b v v v b, .E

ce
pe

0
gg� (18)

The gyroviscosity tensor in the last equation  is given by 
[79–81]

ˆ [ ( ) ] [ ( ) ]⎜ ⎟
⎛
⎝

⎞
⎠ω

Π = ∇ + ∇ + ∇ + ∇−
p pK v v q q

1 2

5
,T T

g
ce

1
� (19)

where the operator ˆ −K 1
 acting on a (symmetric) tensor A is

ˆ { [ ( )] [ ( )] }= × ⋅ + + × ⋅ +−
K A b A 1 bb b A 1 bb

1

4
3 3 .T1

� (20)
In the expression for Πg, = +v v vE pe and the heat flux 

/ /( )= − ×∇p T eBq b5 2 e e 0 .
The gyroviscous force provides the same order contrib

ution to the momentum balance equation as the inertia term. 
There are certain cancellations between two terms, the so 
called gyroviscous cancellation. The general form of the gyro-
viscous cancellation can be written as [80]

( ) ξΠ⋅ ∇ +∇ ⋅ = ∇ ′⊥m n v v ,e e pe e g� (21)

where ξ′ is some scalar function.
Taking into account the gyroviscous cancellation from 

equation (21), for isothermal electrons, the electron velocity is

( ) ( )= +⊥v v v ,e
0 1� (22)
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( ) φ= ×∇ − ×∇ = +⊥ ⊥
c

B

cT

en B
nv

b b
v v ,E

0

0

e

e 0
pe� (23)

( )( ) ⎜ ⎟
⎛
⎝

⎞
⎠ω
ν= −

∂
∂
+ ⋅ ∇ + +

t
v v v v

1
,E E

1

ce
pe� (24)

and the electron continuity equation

( )( )∂
∂
+ ⋅ ∇ +∇ ⋅ =

�n
t

n nv v 0.E
1

Then, with (22)–(24), general equation  for the perturbed  
electron density can be written in the form

ρ νρ

ρ
φ

ν ρ
φ

ω
φ

ω

∂
∂

− ∇ − ∇ + ⋅ ∇ + ⋅ ∇ + ⋅ ∇

+ ∇
∂
∂

+ ∇

+ ⋅ ∇ ∇ − ∇ ⋅ ⋅ ∇ ∇ =

⊥ ⊥

⊥ ⊥

⊥ ⊥

� �� � � � �

� �

( )

( )   [( ) ]

⎛

⎝
⎜

⎞

⎠
⎟

t
n n n n n n

n
t

e

T
n

e

T

n c

B

T c

eB
n

v v v

v v 0.

E E E

E E

e
2 2

e
2 2 0

0

0 e
2 2

e
0 e

2 2

e

0

0 ce

2 e

0 ce
� (25)
In the last two terms in this equation, variables vE, φ and n 
contain both equilibrium and perturbed parts. One has

( ) ( ) ( ) ( ) ″φ φ φ φ⋅ ∇ ∇ = ⋅ ∇ ∇ + ⋅ ∇ ∇ + ⋅ ∇⊥ ⊥ ⊥� �� �v v v v ,E E E E
2 0 2 2

0
� (26)
where /″φ φ= xd d0

2
0

2. Similarly,

n n n
n

v v v
v .

E E E

E

0

0

∇ ⋅ ⋅ ∇ ∇ = ∇ ⋅ ⋅ ∇ ∇ +∇ ⋅ ⋅ ∇ ∇
+∇ ⋅ ⋅ ∇ ∇

⊥ ⊥ ⊥

⊥

�
�

� �[( ) ] [( ) ] [( ) ]
[( ) ]

�
(27)

The nonlinear terms can conveniently be written in the 
form using the Poisson brackets: a b a x b y, = ∂ ∂ ∂ ∂ −{ } ( / )( / )  
∂ ∂ ∂ ∂( / )( / )b x a y . Therefore,

( ) { }φ φ φ⋅ ∇ ∇ = ∇⊥ ⊥� � � �c

B
v , ,E

2

0

2
� (28)

and

[( ) ] { }φ∇ ⋅ ⋅ ∇ ∇ = ∇ ⋅ ∇⊥ ⊥� � ��n
c

B
nv , .E

0
� (29)

The last terms in equations (26) and (27) are related to the 
shear of the equilibrium flow vE

0  and the higher order deriva-
tives of the equilibrium density. The shear of the equilibrium 
flow (the last term in equation (26)) may result in the Kelvin–
Helmholtz type instabilities. Such instabilities in application 
to Hall thruster were studied in [82, 83] (related modes were 
also considered in [83]). Note that the gyroviscosity adds new 
terms related to the higher derivatives of the equlibrium den-
sity. Similarly to the shear flow effects, the gradients of the 
equilibrium density will affect the stability of Hall plasma 
systems and, in general, require nonlocal analysis, which is 
outside of the scope of this paper.

In linear approximation and using the Boussinesque 
approximation (neglecting the terms related to the shear of the 
equilibrium flow vE

0  and higher derivatives of the equilibrium 
density), one obtains from (25)) the following expression for 
the perturbed electron density

( )
( )

ω ρ ω ω ν

ω ω ρ ω ω ν
φ

=
+ − +

− + − +
∗ ⊥

⊥

�n
n

k

k

e

T

i

i
.

0

2
e
2

0 en

0
2

e
2

0 en e
� (30)

where ω = ⋅k vE0
0  is the Doppler shift frequency due to the 

equilibrium electron flow, and /( )ρ ω= cT eBe
2

e 0 ce  is the elec-
tron Larmor radius.

2.4.  Lower-hybrid instability and transition to the ion sound 

mode for �ρ⊥k 12
e
2

The lower-hybrid mode appears as a result of the balance 
between inertia of unmagnetized ions and transverse inertia 
of magnetized electrons across the magnetic field. In neglect 
of the drift terms, electron gyroviscosity and collisions, the 
transverse electron inertia results in the perturbed electron 

density in the form: / =�n n0  ( / )ρ φ⊥k e T2
e
2

e . Quasineutrality 
and ion density from (3) give the basic lower-hybrid mode: 
( )ω ω ω ω− = ≡k vx 0i

2
LH
2

ce ci. General expression for the per-
turbed electron density in equation (30) results in the following 
general dispersion equation for quasineutral oscillations

( )
( ) ( )

ω ρ ω ω ν

ω ω ρ ω ω ν ω

+ − +

− + − +
=

−
∗ ⊥

⊥

⊥k

k

k c

k v

i

i
.s

x

2
e
2

0 en

0
2

e
2

0 en

2 2

0
2� (31)

This dispersion equation describes modifications of the basic 
lower-hybrid mode due to density gradient, equilibrium ×E B 
drift, collisions and effects of finite electron Larmor radius 
(via the gyroviscosity tensor). The density gradient, equilib-
rium ×E B electron flow and collisions are the mechanisms 
of the destabilization of the lower-hybrid mode.

Alternatively, one can consider equation (31) as a high fre-
quency extension of the Simon-Hoh instability. The density 
gradient is a critical ingredient of the Simon-Hoh instability 
(as described by equation (6)) in neglect of electron inertia. At 
the higher frequencies, the mode becomes the lower-hybrid 
mode destabilized by a density gradient. The transition of the 
inertia–less Simon-Hoh instability into the lower-hybrid insta-
bility is described by the equation

  (  )
 

ω ρ ω ω

ω ω ω

+ −

−
=

∗ ⊥ ⊥k k c
,s

2
e
2

0

0

2 2

2
� (32)

where the electron gyroviscosity is omitted. The growth rate 
and real frequency described by this equation  are shown in 
figure  3(a). The transition between Simon-Hoh and lower-

hybrid instabilities roughly occurs at ω ρ ω∗ ⊥� k2
e
2

0.
The lower-hybrid mode in plasmas with ×E B can also be 

destabilized by collisions alone and in absense of the density 
gradient. Such modes were considered in [84]. Relevant dis-
persion relation has the form

( )ρ ω ω ν

ω ω ω

− +

−
=⊥ ⊥k k ci

.s
2

e
2

0 en

0

2 2

2
� (33)

Assuming ω ω< 0 and ν ω< 0 one has [84]

⎛
⎝
⎜

⎞
⎠
⎟ω ω

ν
ω

=± +1
i

2
.LH

en

0
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The behavior of the growth rate and real part of the frequency 
from equation  (33) is shown in figure  3(b). The maximum 
growth rate occurs roughly at the point where ω ω�0 LH.

The gyroviscosity has profound effect on the mode 

behavior at large ρ⊥k
2

e
2. It is easily seen from equation (30) that 

at large ρ⊥k
2

e
2, the electron response becomes Boltzmann, and 

the general dispersion equation (31) results in the ion-sound 
mode, ω = k cs

2 2 2. The short wavelength sound mode can be 
destabilized by drift effects and collisions even in absence 
of the ×E B drift as is shown in figure 4(a). The ×E B drift 
enhances the instability as is shown in figure 4(b). This insta-
bility is similar to the appearance of the short wavelength ion 
sound mode in the kinetic theory of the electron drift cyclo-
tron instability [85–87]. In finite length systems, the ion sound 
modes can also be destabilized by ion flow effects [88].

2.5.  Gradient of the magnetic field effects

The authors have recently revisited the problem of the long 
wavelength ×E B instability in plasmas with inhomoge-
neous magnetic field and plasma density gradients which 
was originally studied in [30] and later in [89]. It was shown 
that quantitative corrections (to the previous theory) are 
required for the accurate determination of the conditions for 
the instability and its characteristic frequency [76, 90]. These 

corrections occur due to full compressibility of the ×E B drift 
in inhomogeneous magnetic field, ∇ ⋅ − ⋅ ∇� Bv v2 lnE E . It 
was also shown that the compressibility of the diamagnetic 
velocity, ( )∇ ⋅ − ⋅ ∇�n n Bv v2 ln ,pe pe  results in finite per-
turbations of the electron temperature. A three-field fluid 
model that includes density, potential and electron temper
ature perturbations was developed in [76, 90]. The general 
dispersion equation that includes the electron inertia, gyro-
viscosity and effects of the magnetic filed gradients has the 
form

( )
( ) ( )

ω ω ρ ω ω ν

ω ω ω ρ ω ω ν ω

− + − +

− − + − +
=

−
∗ ⊥

⊥

⊥k

k

k c

k v

i

i
.

D

D

s

x

2
e
2

0 en

0
2

e
2

0 en

2 2

0
2� (34)

Neglecting electron inertia, the instabilities of some realistic 
profiles in Hall thrusters were considered in [76].

3.  Nonlinear model and simulations

3.1.  Ion dynamics

For simulations, nonlinear equations are simplified by sepa-
rating the equilibrium and perturbed parts: X X x0= +( )  
∼( )X x y t, , . The nonlinear evolution equations are solved for the 
perturbed quantities ( )∼

X x y t, , . The equilibrium part ( )X x0  is 
assumed to be fixed. Here, we consider the case of the uniform 

Figure 3.  Frequency and growth rate of the lower-hybrid mode as a function of ky eρ  at k 7.5 10x e
4ρ = ⋅ − : (a) destabilized by density 

gradient, v 1.3 104= ⋅∗  m s−1, 0eν = ; (b) destabilized by collisions only, 0ω =∗ , 10e
6ν =  s−1.

Figure 4.  Effect of the gyroviscosity and conversion into the ion sound mode; note that kr yω ∼ . (a) Destabilization of the ion-sound 
mode by density gradient and collisions, v 1.3 104= ⋅∗  m s−1, 10e

6ν =  s−1, 00ω =  (b) Destabilization by density gradient, E B×  drift and 
collisions, v 1.3 104= ⋅∗  m s−1, v 5 10E0

5= ⋅  m s−1, 10e
6ν =  s−1.
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electric field φ= −∇E0 0, and a uniform gradient of plasma 
density.

The density evolution equation for ions has the form

⎜ ⎟
⎛
⎝

⎞
⎠t
n n n n nv v v v v 0.0 0 0 0

∂
∂
+ ⋅ ∇ + ⋅ ∇ + ∇ ⋅ + ∇ ⋅ + ∇ ⋅ =� � �� � �( )

� (35)
The equation of motion for cold ions is

( )⎜ ⎟
⎛
⎝

⎞
⎠ φ

∂
∂
+ ⋅ ∇ + ⋅ ∇ + ⋅ ∇ = − ∇

�
� � � �

t

e

m

v
v v v v v v .0 0

i
� (36)

We consider electrostatic perturbations, =∇×E 0, so that 
one can introduce a scalar potential for the perturbed ion flow

χ= −∇� �v .� (37)

This representation is exact in the linear electrostatic case, 
however nonlinear terms in equation (36) may not satisfy the 
relation (37). A more general form for the ion velocity would 
be χ ψ= −∇ +∇×� �v , where the vector function ψ describes 
the solenoidal part of the ion velocity. In many situations, the 
ion dynamics is determined by the ballistic acceleration in the 
static electric field φ= −∇E0 0 so that the corrections to (37) 
are small and can be considered in equation  (36) perturba-
tively. The full range of the validity of the potential represen-
tation (37) needs further studies.

In the potential approximation, the full ion equations become

    ( )
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟χ φ

χ∂
∂
+ ⋅ ∇ ∇ = ∇ +

∇
�

�
t

e

m
v

2
,0

2 2

i

2

� (38)

and

⎜ ⎟
⎛
⎝

⎞
⎠ χ χ χ

∂
∂
+ ⋅ ∇ −∇ ⋅

∇
−∇ − ∇ =

� �
� � �

t

n

n

n

n

n

n
v 0.0

0

0

0

2

0

2� (39)

3.2.  Nonlinear model in the dimensionless form

For nonlinear simulations, equations  (25), (38) and (39) are 
transformed into the dimensionless form

ρ χ θ θ χ∂ = − ∂ + ∂ + + +∇ ⋅ ∇ − ∇∗n v n n n D n,t x x n0
4

� (40)

( ) /θ θ η χ θ∂ = − ∂ + − +∇ ∇ − ∇θv n D2 ,t x0
2 2 4� (41)

u n n

n D

,

, , .

t y y0

2 4

η η ρ φ ν η φ

µ φ φ µ φ η

∂ = − ∂ + ∂ − − −

− ∇ + ∇ ⋅ ∇ − ∇η

∗ ∗

⊥ ⊥

( ) { }

{ } { }
�

(42)

Here χ θ∇ =2 , and µ φ µ η+ ∇ − ∇ =⊥n n .2 2  Dimensionless  
variables are defined as follows ω ρ= = =′ ′ �/ /t t x x n n, ,LH LH 0   

( )/ /θ ω θ φ φ χ χ ρ ω= = =′ ′ ′ ′n e T, , , .LH e LH
2

LH  The dimensionless 
ion and electron velocities are defined as /( )ω ρ=′u vE0 0 LH LH  
and /( )ρ ω=′v v0 0i LH LH . In what follows, the primes are omitted 
from the equations. The normalized Larmor radius and col
lisionality are introduced as /ρ ρ=∗ LnLH  and /ν ν ω=∗ ,LH  

/=c T m mLH e e i , /ρ ω= cLH LH LH, /µ = m m ,e i  θ ηD D D, ,n  
are hyper-viscosity terms. All variables are considered on 
the rectangular two-dimensional periodic domain (x, y); 

⩽ <x L0 x and ⩽ <y L0 y, where x and y are the axial and azi-
muthal coordinates for the Hall thruster geometry. We con-
sider uniform magnetic field, uniform electric field and fixed 
density gradient.

3.3.  Nonlinear simulations

The fluid simulations presented in this paper are performed 
in the BOUT++ framework that was adapted for simulations 
of partially magnetized plasmas of for ×E B discharges [56]. 
BOUT++ was developed [91] for fluid and plasma simula-
tions in curvilinear magnetic field geometry using finite-
difference discretization and a variety of numerical methods 
and time-integration solvers. It was designed and tested with 
reduced plasma fluid models applications and has been widely 
used for studies of edge tokamak phenomena, 3D plasma tur-
bulence and structures [92–94].

The typical parameters [65] for nonlinear simula-
tions reported in this paper are as follows: =Te  20 eV, 
n0  =1018 m−3, = −B 100

2 T, E0  =  104 V m−1, =m 131i  
amu (Xe+), ω = ⋅3.6 10LH

6 rad s−1, =cLH 8.485⋅104 m s−1, 
ρ = 2.35LH  cm, v0  =  0.35 cLH, u0  =  11.7 cLH, ν = 0.1826e  
ωLH, = = = =θ η

−D D D D 10n
6. Number of points in the 

axial direction (x) is 1320, and number of points in azimuthal 
directions is 128.

The BOUT++ initial simulations were benchmarked in 
the linear regime by using the initial condition in the form 

( / ) ( / )π π∼ x L y Lsin 2 sin 2 .x y  The comparison with the linear 
eigen-value solutions is shown in figure 5. In nonlinear simu-
lations the linear (exponential) instability phase lasts few 
τ ω= −

LH LH
1 periods. The simulations were run for τ30 LH corre

sponding to 300 time steps. As the amplitude of fluctuations 
exponentially increases, nonlinear effects come into play, and 
instabilities reach saturation at t  =  5–10 τ ,LH  figure  6. The 
nonlinear saturation has been monitored via the ‘energy-like’ 
functionals [ ( )] ( )∫≡ =E E f x y f x y x y, , d d ,f

2  where ( )φ=f n,  
and the integration is performed over the whole domain. In 
the saturated state, the energy input into the system due to the 
equilibrium density gradient and ×E B flow (which are the 
main sources of the instability) are balanced by the sink due 
to the dissipation and hyperviscosity. We have confirmed in 
simulations with different time and spatial resolution that the 
average amplitudes of fluctuating quantities: density, velocity 
potential χ and electrostatic potential φ, as well as the average 
value of the nonlinear electron current are not affected by ini-
tial conditions nor by the value of the hyper-viscosity. We do 
observe a slow secondary growth of quadratic En and φE  int
egrals, more pronounced for En rather for φE  in figure 6. The 
nature of this slow growth is being investigated now in longer 
simulations with increased resolution. One can expect that the 

kinetic energy of ions ( )∫ χ= ∇E m n x yd di i
2 , and electrons 

/ ( )∫ φ= ∇E m c B n x yd de e
2

0
2 2  should form the basic quad-

ratic conserved quantities. It is interesting that for cold elec-
trons, the nonlinear terms in potential vorticity equation (42) 

conserve the enstrophy–like integral I  =   ∫ η x yd d2 , where 
η φ= +∇n 2  is the potential vorticity for cold electrons. The 
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structure of the quadratic conserved quantities in the nonlinear 
system (40)–(42) and their relations with physical energy int
egrals will be investigated further.

Nonlinear cascade creates modes with high wave numbers. 
The small-scale modes below the smallest spatial length scale 
in the simulations have to be removed from the system to avoid 
numerical instability. The standard approach in nonlinear tur-
bulence simulations is to introduce artificial hyper-viscosity 
terms to damp such modes. We have varied the magnitude of 

the hyper-viscosity D and have found that for the broad range 
of the values of the hyper-viscosity ⩽ −D 10 4 the saturation 
level and linear growth region are not affected.

One of the important results of our simulations is the 
demonstration of the anomalous electron current due to tur-
bulent fluctuation. The anomalous current is calculated as an 
average ⟨ ⟩= = − − −��J nV L L cBx x yEx

1 1
0

1 ∫ φ∂n x yd dy . The value of 
the turbulent current is shown in figure 6(b) in units of the 
classical collisional current, /( )ν ω=J en E Bc 0 e 0 0 ce . For the 

Figure 5.  The linear benchmark of the BOUT++ initial value simulations against the linear analytical eigen-value solutions from 
equations (40)–(42), k 1y LHρ = , and k 1x LHρ = , for each plot respectively.

(a) (b)

Figure 6.  (a) Evolution of energy-like integrals during linear stage of the instability and nonlinear saturation. (b) Normalized anomalous 
current in nonlinear simulations. The standard moving average (SMA) is also shown, averaging is done over 10 LH

1ω− .

(a) (b)

Figure 7.  Perturbed plasma density at t 30 300LHω= =  time steps. (a) Colour coded levels of constant n n0˜/ . (b) The solid lines show levels 
of positive n n0˜/ , dotted lines- negative.
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parameters of our nonlinear simulations, the anomalous cur
rent �J 10x

2 Jc, corresponds to the effective Hall parameter 
Ω � 27H , /ω νΩ =H ce eff. Thus the values of the anomalous 
current Jx in the range of ÷50 100 Jc, obtained in nonlinear 

simulations, figure  6(b), correspond to Ω = ÷54 27H . 
These values roughly correspond to the values obtained in  
experiments with Penning discharges [23] and in PIC 
simulations [58].

Figure 8.  Normalized perturbed plasma potential at t 30 LHω=  show levels of positive e Te/φ , dotted lines- negative.

(a) (b)

Figure 9.  Normalized turbulent current at t 30 LHω= . (a) Colour coded levels of constant J Jc/ . (b) The solid lines show levels of positive 
J Jc/ , dotted lines- negative.

(a) (b)

Figure 10.  Generalized vorticity at t 30 LHω= . (a) Colour coded levels of constant η. (b) The solid lines show levels of positive vorticity, 
dotted lines- negative, the absolute values are as in colour bar in (a).
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As is shown in figure 6(b), the turbulent current is highly 
intermittent in time and space. Such intermittency may be 
related to the presence of coherent structures in turbulence. 
Figures 7 and 8 clearly show the relatively large structures of the 
order of few ρLH moving in the azimuthal direction. The anom-
alous current is a result of the phase shift between density and 
potential, ⟨ / ⟩φ∼ ∂ ∂� �J n y .x  In quasilinear regime this phase shift 
can be estimated from the linear growth rate: γ ⋅ ∇� ��n nvE 0. In 
the nonlinear regime the linear growth rate should be replaced 
with the nonlinear broadening frequency, ω∆ nl. In the nonlinear 
saturation state, the nonlinear broadening frequency is of the 
order of the lower-hybrid frequency, ω ω∆ �nl LH.

The resulting structure of the current in shown in figure 9. 
Note that, the current in this figure  is along the x-direction. 
It is easily observed that the maximum of the turbulent cur
rent in figure 9 is well correlated with the density and poten-
tial structures. The vorticity in figure 10 also shows a similar 
structure though less pronounced. In the saturated state, as 
shown in figures 7 and 8, the maximum amplitude of the den-
sity fluctuations / ��n n 0.20  and the fluctuating electric field is 
slightly larger than the equilibrium field, ⩾∼E E .0

The anomalous current and coherent structures observed in 
our simulations are reminiscent to azimuthally rotating struc-
tures observed in Hall thrusters and magnetrons [95, 96]. It 
has been confirmed experimentally that the signficant part of 
the anomalous current is carried by the spoke [5]. The appear-
ance of spokes in Hall plasma turbulence was noted long time 
ago [97] and they remain to be regular features of Hall thruster 
[20–22, 98] and magnetron operation [95, 96], however, the 
mechanism of spoke formation is still not clear. The spoke 
could be a result of turbulence nonlinear self-organisation 
rather than directly originate from some linear instability. It 
has been suggested that modulational instability of lower-
hybrid modes may result in large scale low frequency coherent 
modes [99]. The tendency toward formation of coherent struc-
tures in our simulations may be associated with the above 
noted conservation of the enstrophy–like integral. This phe-
nomena requires further studies.

4.  Summary

In this paper, an advanced fluid model for Hall plasmas with 
magnetized electrons and unmagnetized fluid ions has been 
developed. A general overview of the instabilities in partially-
magnetized plasmas relevant to electric propulsion and mag-
netron devices for material processing has been provided 
using this fluid model. The electron description is based on the 
low frequency (ω ω< ce) reduction of the electron dynamics 
taking into account electron inertia and gyroviscosity. The 
model extends the collisionless Simon-Hoh instability into the 
short wavelength and higher frequency regimes that include 
the lower-hybrid modes. It is shown that the lower-hybrid 
mode destabilized by the density gradient is a natural exten-
tion of the Simon-Hoh instability. The gyro viscosity effects, 
which are of the same order as the electron inertia, are impor-
tant for plasmas with finite electron temperature. The lower-
hybrid modes in plasmas ×E B drift can be destabilized by the 

density gradient as well as electron-neutral collisions which 
are especially effective at shorter wave-lengths. The effects of 
the gyroviscosity describe the transition of the lower-hybrid 

waves into the ion sound waves for ρ⊥ �k 12
e
2 .

The reduced nonlinear fluid model has been implemented 
in the high performance BOUT++ framework. Initial value 
simulations have been bench marked in the linear regime 
against the results obtained by the eigenvalue solvers. In non-
linear simulations, the saturation of turbulence and formation 
of the coherent structures have been demonstrated. It is shown 
that the instability reaches the saturation in nonlinear regime 
at a level which is independent of the initial state. Significant 
anomalous current due to turbulent fluctuations has been 
found in the nonlinear state. The anomalous (turbulent) cur
rent is strongly intermittent and the structures observed in the 
current density are well correlated with density and potential 
structures. The density and current structures are reminis-
cent of experimentally observed structures (spokes) in Hall 
thrusters and magnetrons and the values of the anomalous 
Hall parameter are consistent with experiments in Penning 
discharge and PIC simulations.

The nonlinear model and simulations presented in this 
paper provide the first principles calculations of the anoma-
lous electron current from turbulent fluctuations. Further work 
will include expansion of the model to include ionization  
[61, 62] and 3D geometry effects as well as self-consistent 
multi-scale simulations allowing for slow evolution of back-
ground plasma parameters.

Acknowledgments

This work is supported in part by NSERC Canada, US Air 
Force Office of Scientific Research FA9550-15-1-0226 and 
Russian Foundation for Basic Research (Grant No. 16-02-
00640). The authors acknowledge useful discussions with I 
Khalzov, V I Ilgisonis, E Sorokina, and M Cappelli.

References

	 [1]	 Morozov A and Savelyev V 2000 Fundamentals of stationary 
plasma thruster theory, in Reviews of Plasma Physics vol 
21, ed B Kadomtsev and V Shafranov (New York: Kluver) p 
203

	 [2]	 Cappelli M 2009 Phys. Today 62 76–7
	 [3]	 Abolmasov S N 2012 Plasma Sources Sci. Technol. 21 035006
	 [4]	 Boeuf J P, Claustre J, Chaudhury B and Fubiani G 2012 

Phys. Plasmas 19 113510
	 [5]	 Ellison C L, Raitses Y and Fisch N J 2012 Phys. Plasmas 

19 013503
	 [6]	 Amatucci W E, Ganguli G, Walker D N, Gatling G, Balkey M 

and McCulloch T 2003 Phys. Plasmas 10 1963–70
	 [7]	 Koepke M E, Amatucci W E, Carroll J J and Sheridan T E 

1994 Phys. Rev. Lett. 72 3355–8
	 [8]	 DuBois A M, Thomas E, Amatucci W E and Ganguli G 2014 

Phys. Plasmas 21 062117
	 [9]	 Koo J W and Boyd I D 2006 Phys. Plasmas 13 033501
	[10]	 Keidar M and Beilis I 2006 IEEE Trans. Plasma Sci. 34 804–14
	[11]	 Lazurenko A, Coduti G, Mazouffre S and Bonhomme G 2008 

Phys. Plasmas 15 034502

Plasma Phys. Control. Fusion 59 (2017) 014041

http://dx.doi.org/10.1063/1.3120905
http://dx.doi.org/10.1063/1.3120905
http://dx.doi.org/10.1063/1.3120905
http://dx.doi.org/10.1088/0963-0252/21/3/035006
http://dx.doi.org/10.1088/0963-0252/21/3/035006
http://dx.doi.org/10.1063/1.4768804
http://dx.doi.org/10.1063/1.4768804
http://dx.doi.org/10.1063/1.3671920
http://dx.doi.org/10.1063/1.3671920
http://dx.doi.org/10.1063/1.1562631
http://dx.doi.org/10.1063/1.1562631
http://dx.doi.org/10.1063/1.1562631
http://dx.doi.org/10.1103/PhysRevLett.72.3355
http://dx.doi.org/10.1103/PhysRevLett.72.3355
http://dx.doi.org/10.1103/PhysRevLett.72.3355
http://dx.doi.org/10.1063/1.4886145
http://dx.doi.org/10.1063/1.4886145
http://dx.doi.org/10.1063/1.2172191
http://dx.doi.org/10.1063/1.2172191
http://dx.doi.org/10.1109/TPS.2006.874852
http://dx.doi.org/10.1109/TPS.2006.874852
http://dx.doi.org/10.1109/TPS.2006.874852
http://dx.doi.org/10.1063/1.2889424
http://dx.doi.org/10.1063/1.2889424


A I Smolyakov et al

12

	[12]	 Spector R A 2007 Int. Electric Propulsion Conf. (Florence, 
Italy) IEPC-2001-70

	[13]	 Meezan N B, Hargus W A and Cappelli M A 2001 Phys. Rev. 
E 63 026410

	[14]	 Fernandez E, Scharfe M K, Thomas C A, Gascon N and 
Cappelli M A 2008 Phys. Plasmas 15 012102

	[15]	 Boniface C, Garrigues L, Hagelaar G J M, Boeuf J P, Gawron D 
and Mazouffre S 2006 Appl. Phys. Lett. 89 161503

	[16]	 Tilinin G N 1977 Sov. Phys. Tech. Phys. 22 974–8
	[17]	 Choueiri E Y 1999 Phys. Plasmas 6 2290–306
	[18]	 Lazurenko A, Albarede L and Bouchoule A 2006 

Phys. Plasmas 13 083503
	[19]	 Tsikata S, Lemoine N, Pisarev V and Gresillon D M 2009 

Phys. Plasmas 16 033506
	[20]	 Sekerak M J, Longmier B W, Gallimore A D, Brown D L, 

Hofer R R and Polk J E 2015 IEEE Trans. Plasma Sci. 
43 72–85

	[21]	 Sekerak M, Longmier B, Gallimore A D, Brown D L, 
Hofer R and Polk J E 2013 Int. Electric Propulsion Conf. 
(Washington D.C., USA) IEPC-2013-143

	[22]	 Parker J B, Raitses Y and Fisch N J 2010 Appl. Phys. Lett. 
97 091501

	[23]	 Raitses E, Kaganovich I and Smolyakov A I 2015 Int. Electric 
Propulsion Conf. (Hyogo-Kobe, Japan) IEPC-2015-307

	[24]	 Mikhailovskii A B 1992 Electromagnetic Instabilities in an 
Inhomogeneous Plasma (London: Taylor and Francis)

	[25]	 Fridman A M 1964 Sov. Phys.—Dokl. 9
	[26]	 Krall N A and Liewer P C 1971 Phys. Rev. A 4 2094
	[27]	 Stepanov K N 1965 Sov. Phys. Tech. Phys.-USSR 9 1653
	[28]	 Mikhailovskii A B and Tsypin V S 1966 Sov. Phys. JETP Lett. 

3 158–9
	[29]	 Morozov A I, Esipchuk Y V, Kapulkin A, Nevrovskii V and 

Smirnov V A 1972 Sov. Phys. Tech. Phys. 17 482–7
	[30]	 Esipchuk Y V and Tilinin G N 1976 Sov. Phys. Tech. Phys. 

21 417–23
	[31]	 Gorshkov O A, Tomilin D A and Shagaida A A 2012 Plasma 

Phys. Rep. 38 271–7
	[32]	 Tomilin D 2013 Phys. Plasmas 20 042103
	[33]	 Sakawa Y, Joshi C, Kaw P K, Chen F F and Jain V K 1993 

Phys. Fluids B 5 1681–94
	[34]	 Simon A 1963 Phys. Fluids 6 382–8
	[35]	 Hoh F C 1963 Phys. Fluids 6 1184–91
	[36]	 Huba J D and Wu C S 1976 Phys. Fluids 19 988–94
	[37]	 Krall N A and McBride J B 1976 Phys. Fluids 19 1970–1
	[38]	 Davidson R C and Gladd N T 1975 Phys. Fluids 18 1327–35
	[39]	 Fruchtman A 1989 Phys. Fluids B 1 422–9
	[40]	 Lampe M, Manheime W M, McBride J B, Orens J H, 

Shanny R and Sudan R N 1971 Phys. Rev. Lett. 26 1221
	[41]	 McBride J B, Ott E, Boris J P and Orens J H 1972 

Phys. Fluids 15 2367–83
	[42]	 Ducrocq A, Adam J C, Heron A and Laval G 2006 

Phys. Plasmas 13 102111
	[43]	 Lominadze D G 1972 Zh. Eksp. Teor. Fiz. 63 1300
	[44]	 Cavalier J, Lemoine N, Bonhomme G, Tsikata S, Honore C 

and Gresillon D 2013 Phys. Plasmas 20 082107
	[45]	 Adam J C, Heron A and Laval G 2004 Phys. Plasmas 

11 295–305
	[46]	 Lafleur T, Baalrud S D and Chabert P 2016 Phys. Plasmas 

23 053502
	[47]	 Lafleur T, Baalrud S D and Chabert P 2016 Phys. Plasmas 

23 053503
	[48]	 Boeuf J P A 2016 Physics and Modeling of Hall Effect 

Thrusters, von Karman Institute for Fluid Dynamics 
Lecture Series (Von Karman Institute, Belgium, 2016), 
submitted to J. Appl. Phys. STO-AVT-263

	[49]	 Smolyakov A I, Frias W, Kaganovich I D and Raitses Y 2013 
Phys. Rev. Lett. 111 115002

	[50]	 Kadomtsev B 1965 Plasma instability 7th Conf. on 
Phenomena in Ionized Gases vol 2 (Belgrade: Consultants 
Bureau) p 610

	[51]	 Chen F F 1979 Phys. Fluids 22 2346–58
	[52]	 Matyash K, Schneider R, Mazouffre S, Tsikata S, Raitses E 

and Diallo A 2013 Int. Electric Propulsion Conf. 
(Washington DC, USA) IEPC-2013-307

	[53]	 Taccogna F, Longo S, Capitelli M and Schneider R 2009 
Appl. Phys. Lett. 94 251502

	[54]	 Coche P and Garrigues L 2014 Phys. Plasmas 21 023503
	[55]	 Boeuf J P and Chaudhury B 2013 Phys. Rev. Lett.  

111 155005
	[56]	 Frias W, Smolyakov A I, Kaganovich I D, Raitses Y and 

Umansky M 2012 Simulation of gradient drift instabilities 
in Hall thruster plasmas with the BOUT++ code 54th 
Annual Meeting of the APS Division of Plasma Physics 
(Providence, Rhode Island) vol 57 BAPS.2012.DPP.
YP8.68

	[57]	 Pombo F W, Smolyakov A I, Romadanov I, Raitses E, 
Kaganovich I and Umansky M 2015 Int. Electric 
Propulsion Conf. (Hyogo-Kobe) IEPC-2015-370

	[58]	 Carlsson J, Kaganovich I, Khrabrov A, Raitses E and 
Sydorenko D 2015 Int. Electric Propulsion Conf.  
(Hyogo-Kobe, Japan) IEPC-2015-373

	[59]	 Gladd N T 1976 Plasma Phys. Control. Fusion 18 27–40
	[60]	 Barral S and Ahedo E 2008 On the origin of low frequency 

oscillations in hall thrusters Plasma 2007 (AIP Conf. Proc. 
vol 993) ed H J Hartfuss (Melville, NY: American Institute 
of Physics) pp 439–42

	[61]	 Escobar D and Ahedo E 2014 Phys. Plasmas 21 043505
	[62]	 Escobar D and Ahedo E 2015 Phys. Plasmas 22 102114
	[63]	 Wei L Q, Han L, Yu D R and Guo N 2015 Chin. Phys. B 

24 055201
	[64]	 Litvak A A, Raitses Y and Fisch N J 2004 Phys. Plasmas 

11 1701–5
	[65]	 Smirnov A, Raitses Y and Fisch N J 2004 J. Appl. Phys. 

95 2283
	[66]	 Jorns B A and Hofer R R 2014 Phys. Plasmas 21 053512
	[67]	 Ito T, Young C V and Cappelli M A 2015 Appl. Phys. Lett. 

106 254104
	[68]	 Jaeger S, Pierre T and Rebont C 2009 Phys. Plasmas 

16 022304
	[69]	 Romadanov I, Smolyakov A I, Raitses E, Kaganovich I and 

Ryzhkov S 2016 Structure of unstable nonlocal gradient-
drift modes in Hall ExB discharges, submitted to Phys. 
Plasmas

	[70]	 Romadanov I, Smolyakov A I, Frias W, Chapurin O and 
Koshkarov O 2016 arXiv:1680435

	[71]	 Tao Y Q, Conn R W, Schmitz L and Tynan G 1993 
Phys. Fluids B 5 344–9

	[72]	 Tao Y Q, Conn R W, Schmitz L and Tynan G 1994 
Phys. Plasmas 1 3193–8

	[73]	 Sakawa Y, Joshi C, Kaw P K, Jain V K, Johnston T W, 
Chen F F and Dawson J M 1992 Phys. Rev. Lett. 69 85–8

	[74]	 Chen F F and Hsieh M 1993 Proc. Int’l Workshop on Magnetic 
Turbulence and Transport (Cargese, France) pp 56–69 
E B×  instability in regions of strong electric shear UCLA, 
PPG-1465

	[75]	 Chen F F 1992 Proc. Int’l Workshop on Magnetic Turbulence 
and Transport (Cargese, France) pp 56–69 A collisionless 
E × B instability with large ion orbits, UCLA PPG-1434

	[76]	 Frias W, Smolyakov A, Kaganovich I and Raitses Y 2013 
Phys. Plasmas 20 052108

	[77]	 Frias W, Smolyakov A, Kaganovich I D and Raitses Y 2014 
Phys. Plasmas 21 062113

	[78]	 Pogutse I O, Smolyakov A I and Hirose A 1998 J. Plasma 
Phys. 60 133–49

	[79]	 Mikhailovskii A B and Tsypin V S 1984 Beitrage Plasmaphys. 
24 335–54

	[80]	 Smolyakov A I 1998 Can. J. Phys. 76 321–31
	[81]	 Hsu C T, Hazeltine R D and Morrison P J 1986 Phys. Fluids 

29 1480–7
	[82]	 Litvak A A and Fisch N J 2004 Phys. Plasmas 11 1379–83

Plasma Phys. Control. Fusion 59 (2017) 014041

http://dx.doi.org/10.1103/PhysRevE.63.026410
http://dx.doi.org/10.1103/PhysRevE.63.026410
http://dx.doi.org/10.1063/1.2823033
http://dx.doi.org/10.1063/1.2823033
http://dx.doi.org/10.1063/1.2360182
http://dx.doi.org/10.1063/1.2360182
http://dx.doi.org/10.1063/1.873481
http://dx.doi.org/10.1063/1.873481
http://dx.doi.org/10.1063/1.873481
http://dx.doi.org/10.1063/1.2231723
http://dx.doi.org/10.1063/1.2231723
http://dx.doi.org/10.1063/1.3093261
http://dx.doi.org/10.1063/1.3093261
http://dx.doi.org/10.1109/TPS.2014.2355223
http://dx.doi.org/10.1109/TPS.2014.2355223
http://dx.doi.org/10.1109/TPS.2014.2355223
http://dx.doi.org/10.1063/1.3486164
http://dx.doi.org/10.1063/1.3486164
http://dx.doi.org/10.1103/PhysRevA.4.2094
http://dx.doi.org/10.1103/PhysRevA.4.2094
http://dx.doi.org/10.1134/S1063780X12020055
http://dx.doi.org/10.1134/S1063780X12020055
http://dx.doi.org/10.1134/S1063780X12020055
http://dx.doi.org/10.1063/1.4799549
http://dx.doi.org/10.1063/1.4799549
http://dx.doi.org/10.1063/1.860803
http://dx.doi.org/10.1063/1.860803
http://dx.doi.org/10.1063/1.860803
http://dx.doi.org/10.1063/1.1706743
http://dx.doi.org/10.1063/1.1706743
http://dx.doi.org/10.1063/1.1706743
http://dx.doi.org/10.1063/1.1706878
http://dx.doi.org/10.1063/1.1706878
http://dx.doi.org/10.1063/1.1706878
http://dx.doi.org/10.1063/1.861594
http://dx.doi.org/10.1063/1.861594
http://dx.doi.org/10.1063/1.861594
http://dx.doi.org/10.1063/1.861415
http://dx.doi.org/10.1063/1.861415
http://dx.doi.org/10.1063/1.861415
http://dx.doi.org/10.1063/1.861021
http://dx.doi.org/10.1063/1.861021
http://dx.doi.org/10.1063/1.861021
http://dx.doi.org/10.1063/1.859156
http://dx.doi.org/10.1063/1.859156
http://dx.doi.org/10.1063/1.859156
http://dx.doi.org/10.1103/PhysRevLett.26.1221
http://dx.doi.org/10.1103/PhysRevLett.26.1221
http://dx.doi.org/10.1063/1.1693881
http://dx.doi.org/10.1063/1.1693881
http://dx.doi.org/10.1063/1.1693881
http://dx.doi.org/10.1063/1.2359718
http://dx.doi.org/10.1063/1.2359718
http://dx.doi.org/10.1063/1.4817743
http://dx.doi.org/10.1063/1.4817743
http://dx.doi.org/10.1063/1.1632904
http://dx.doi.org/10.1063/1.1632904
http://dx.doi.org/10.1063/1.1632904
http://dx.doi.org/10.1063/1.4948495
http://dx.doi.org/10.1063/1.4948495
http://dx.doi.org/10.1063/1.4948496
http://dx.doi.org/10.1063/1.4948496
http://dx.doi.org/10.1103/PhysRevLett.111.115002
http://dx.doi.org/10.1103/PhysRevLett.111.115002
http://dx.doi.org/10.1063/1.862546
http://dx.doi.org/10.1063/1.862546
http://dx.doi.org/10.1063/1.862546
http://dx.doi.org/10.1063/1.3152270
http://dx.doi.org/10.1063/1.3152270
http://dx.doi.org/10.1063/1.4864625
http://dx.doi.org/10.1063/1.4864625
http://dx.doi.org/10.1103/PhysRevLett.111.155005
http://dx.doi.org/10.1103/PhysRevLett.111.155005
http://dx.doi.org/10.1063/1.4870963
http://dx.doi.org/10.1063/1.4870963
http://dx.doi.org/10.1063/1.4934352
http://dx.doi.org/10.1063/1.4934352
http://dx.doi.org/10.1088/1674-1056/24/5/055201
http://dx.doi.org/10.1088/1674-1056/24/5/055201
http://dx.doi.org/10.1063/1.1634564
http://dx.doi.org/10.1063/1.1634564
http://dx.doi.org/10.1063/1.1634564
http://dx.doi.org/10.1063/1.1642734
http://dx.doi.org/10.1063/1.1642734
http://dx.doi.org/10.1063/1.4879819
http://dx.doi.org/10.1063/1.4879819
http://dx.doi.org/10.1063/1.4922898
http://dx.doi.org/10.1063/1.4922898
http://dx.doi.org/10.1063/1.3076931
http://dx.doi.org/10.1063/1.3076931
http://arxiv.org/abs/1680435
http://dx.doi.org/10.1063/1.860519
http://dx.doi.org/10.1063/1.860519
http://dx.doi.org/10.1063/1.860519
http://dx.doi.org/10.1063/1.870473
http://dx.doi.org/10.1063/1.870473
http://dx.doi.org/10.1063/1.870473
http://dx.doi.org/10.1103/PhysRevLett.69.85
http://dx.doi.org/10.1103/PhysRevLett.69.85
http://dx.doi.org/10.1103/PhysRevLett.69.85
http://dx.doi.org/10.1063/1.4804281
http://dx.doi.org/10.1063/1.4804281
http://dx.doi.org/10.1063/1.4885093
http://dx.doi.org/10.1063/1.4885093
http://dx.doi.org/10.1017/S0022377898006552
http://dx.doi.org/10.1017/S0022377898006552
http://dx.doi.org/10.1017/S0022377898006552
http://dx.doi.org/10.1002/ctpp.19840240404
http://dx.doi.org/10.1002/ctpp.19840240404
http://dx.doi.org/10.1002/ctpp.19840240404
http://dx.doi.org/10.1063/1.865665
http://dx.doi.org/10.1063/1.865665
http://dx.doi.org/10.1063/1.865665
http://dx.doi.org/10.1063/1.1647565
http://dx.doi.org/10.1063/1.1647565
http://dx.doi.org/10.1063/1.1647565


A I Smolyakov et al

13

	[83]	 Kapulkin A and Guelman M 2005 29th Int. Electric 
Propulsion Conf. (Princeton, New Jersey) p 88

	[84]	 Litvak A A and Fisch N J 2001 Phys. Plasmas 8 648–51
	[85]	 Huba J D and Ossakow S L 1979 Phys. Fluids 22 1349–54
	[86]	 Lampe M, McBride J B, Orens J H and Sudan R N 1971 

Phys. Lett. A 35 131
	[87]	 Lashmore C and Martin T J 1973 Nucl. Fusion 13 193–203
	[88]	 Koshkarov O, Smolyakov A I, Kaganovich I D and 

Ilgisonis V I 2015 Phys. Plasmas 22 052113
	[89]	 Kapulkin A and Guelman M M 2008 IEEE Trans. Plasma Sci. 

36 2082–7
	[90]	 Frias W, Smolyakov A I, Kaganovich I D and Raitses Y 2012 

Phys. Plasmas 19 072112
	[91]	 Dudson B D, Umansky M V, Xu X Q, Snyder P B and 

Wilson H R 2009 Comput. Phys. Commun. 180 1467–80

	[92]	 Angus J R, Umansky M and Krasheninnikov S I 2012 
Contrib. Plasma Phys. 52 348–52

	[93]	 Popovich P, Umansky M V, Carter T A and Friedman B 2010 
Phys. Plasmas 17 122312

	[94]	 Umansky M V, Popovich P, Carter T A, Friedman B and 
Nevins W M 2011 Phys. Plasmas 18 055709

	[95]	 Anders A, Ni P and Rauch A 2012 J. Appl. Phys.  
111 053304

	[96]	 Brenning N, Lundin D, Minea T, Costin C and Vitelaru C 2013 
J. Phys. D: Appl. Phys. 46 084005

	[97]	 Janes G S and Lowder R S 1966 Phys. Fluids 9 1115
	[98]	 Chesta E, Meezan N B and Cappelli M A 2001 J. Appl. Phys. 

89 3099–107
	[99]	 Lakhin V, Ilgisonis V I, Smolyakov A I and Sorokina E A 

2016 Phys. Plasmas 23 102304

Plasma Phys. Control. Fusion 59 (2017) 014041

http://dx.doi.org/10.1063/1.1336531
http://dx.doi.org/10.1063/1.1336531
http://dx.doi.org/10.1063/1.1336531
http://dx.doi.org/10.1063/1.862746
http://dx.doi.org/10.1063/1.862746
http://dx.doi.org/10.1063/1.862746
http://dx.doi.org/10.1016/0375-9601(71)90584-6
http://dx.doi.org/10.1016/0375-9601(71)90584-6
http://dx.doi.org/10.1088/0029-5515/13/2/007
http://dx.doi.org/10.1088/0029-5515/13/2/007
http://dx.doi.org/10.1088/0029-5515/13/2/007
http://dx.doi.org/10.1063/1.4921333
http://dx.doi.org/10.1063/1.4921333
http://dx.doi.org/10.1109/TPS.2008.2003359
http://dx.doi.org/10.1109/TPS.2008.2003359
http://dx.doi.org/10.1109/TPS.2008.2003359
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1063/1.4736997
http://dx.doi.org/10.1016/j.cpc.2009.03.008
http://dx.doi.org/10.1016/j.cpc.2009.03.008
http://dx.doi.org/10.1016/j.cpc.2009.03.008
http://dx.doi.org/10.1002/ctpp.201210015
http://dx.doi.org/10.1002/ctpp.201210015
http://dx.doi.org/10.1002/ctpp.201210015
http://dx.doi.org/10.1063/1.3527987
http://dx.doi.org/10.1063/1.3527987
http://dx.doi.org/10.1063/1.3567033
http://dx.doi.org/10.1063/1.3567033
http://dx.doi.org/10.1063/1.3692978
http://dx.doi.org/10.1063/1.3692978
http://dx.doi.org/10.1088/0022-3727/46/8/084005
http://dx.doi.org/10.1088/0022-3727/46/8/084005
http://dx.doi.org/10.1063/1.1761810
http://dx.doi.org/10.1063/1.1761810
http://dx.doi.org/10.1063/1.1346656
http://dx.doi.org/10.1063/1.1346656
http://dx.doi.org/10.1063/1.1346656
http://dx.doi.org/10.1063/1.4964724
http://dx.doi.org/10.1063/1.4964724

