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1.  Introduction

Dynamics of magnetic islands is one of the fundamental prob-
lems of general magnetohydrodynamic theory with numerous 
applications in tokamak and space physics. Over the years 
analytical theory that has been developed to study magnetic 
islands in various situations, provided physics insight into the 
problem and served as a guidance for numerical simulations. 
Such analytical theory is primarily based on the asymptotic 
matching procedure, which relies on the scale separation 
between the inner (nonlinear) and outer (linear) regions. Within 
this setting, the magnetic island growth was studied in pio-
neering work by Rutherford [1]. Subsequently, the saturation 
of magnetic islands was investigated with different variations 
of the asymptotic matching techniques [2–11]. This approach 
results in the Rutherford type equation with additional terms 
due to the gradients of the equilibrium current profile. This 
equation  can be complemented with extra terms describing 
the localized heating, current drive and external magnetic 
perturbations. Such modified Rutherford equation  forms 

the basis of the current approach for the Resonant Magnetic 
Perturbations (RMP) control [12, 13] and suppression of 
Neoclassical Tearing Modes (NTM) [14–18]. Precise details 
of the magnetic flux structure are important in practical real-
ization of NTM the control schemes [19, 20]. The goal of this 
paper is to present the the asymptotic procedure describing 
the deformation of the magnetic flux function of finite width 
magnetic islands in the case of the equilibrium current profile 
with a finite current gradient at the rational surface. As a result 
we are able to obtain the closed form integral expressions for 
all relevant terms.

The case of the symmetric current profiles was considered 
earlier in [6, 8], see also [21]. In this paper, we consider the 
magnetic islands in the equilibrium with a finite current gra-
dient at the rational surface. The finite current gradient effects 
appear in the Rutherford equation  in the second order, i.e. as 
w/a2 terms [2, 5], where w is an island width and a = J0/J′0 is the 
current gradient length. Additional terms appear in combination 
with the asymmetry induced by the external boundary condi-
tions described by the parameter Σ ′, i.e. as wΣ ′/a terms. The 
structure of our nonlinear equation for the island width is similar 
to that of the previous work [7, 9–11] The closed form integral 
expressions for numerical coefficients obtained in our paper give 
the numerical value which is close to that in the previous work  
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[7, 9–11]. The results of the analytical theory are compared with 
numerical simulations in companion paper, Part II.

2.  Basic equations

We consider a magnetic equilibrium in the geometry of the 
magnetic island based on standard magnetohydrodynamic 
equations in 2-D geometry with a constant guiding magnetic 
field along the z-direction [22]. Neglecting the inertial effects, 
the current closure equation gives

� ∇ =J 0, (1)

where ∇∥ is the parallel gradient operator along the total trans-
verse magnetic field, ∇∥ = B·∇/∣B∣, where the magnetic field 
is characterized by the z component of the magnetic vector 
potential = ∇ × AB z( ^)z . It is convenient to use ψ = − Az, so 
that ψ= × ∇x y tB z( , , ) ^  and the Ampere' law for the z com-
ponent of the current takes the form

� ψ= ∇ ⊥J ,2 (2)

where ∇ = ∂ ∂ + ∂ ∂⊥ x y/ /2 2 2 2 2. The transverse magnetic field 
consists of the equilibrium and perturbed parts: B (x, y) B0 (y) + ∼

x y tB ( , , ). The equilibrium (sheared) magnetic field B0 = B0 (x) ̂y 
ψ= ∂ ∂x x( ) /0 , has a singularity at x = 0, B0(0) = 0. Note that the 

perturbation is independent of z direction.
It is convenient to define the total magnetic flux as a sum of 

the equilibrium ψ = ψ0(x) and the perturbation ψ ψ=∼ ∼ x y t( , , ):

� ψ ξ ψ ψ= − ∼x( , ) .0 (3)

The parallel gradient operator can be expressed in the form 
ψ∇ = ∇ = ∇ × ∇−B B B z· / | | | | ^·1 . The current closure equa-

tion  (1) then becomes ψ∇ × ∇ =Jẑ· 0 giving the current in 
the form of the magnetic flux function

� ψ=J J ( ) . (4)

The current is also constrained by Ohm’s law in the form

� ϕ η− ∇ + =E J,0 (5)

where E0 is the equilibrium electric field that satisfies the equation

� η=E J ,0 0 (6)

and ϕ is the perturbed electrostatic potential.
In our paper, we consider two cases: in the first model 

(model A) we assume that plasma resistivity is uniform in 
radial direction, η = const and E0 = E0(x), ψ= ∇⊥J x( )0

2
0 . In 

alternative model [10, 11] (model B) one assumes that the 
electric field is constant but plasma resistivity is non-uniform, 
E0 = const, η = η(x). We treat this case in the appendix E.

We consider the perturbation periodic in y. It is convenient to 
use the dimensionless variable ξ = ky, where k is the wave vector in 
y (poloidal) direction. It is useful to transform the gradient operator 
along the total magnetic field to new variables: (x, ξ = ky) → (ψ, ξ):

� ψ ψ ψ
ξ

∇ = ∂
∂

∂
∂

− ∂
∂

∂
∂

= ∂
∂

∂
∂ ψ

− −
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟B

x y y x
kB

x
,1 1

(7)

where the derivative (∂/∂ξ)ψ is taken at constant ψ . In (ψ, ξ) 
variables, equation (5) can be written

�
ψ ϕ

ξ
η− ∂

∂
∂
∂

+ =
ψ

−
⎛
⎝
⎜

⎞
⎠
⎟B

x
E J .1

0 (8)

Uniqueness of the solution for ϕ in periodic variable in ξ and 
equations (4) and (6) give the the solubility condition in the form

�
ψ η ψ ψ

η ψ ψ

〈 ∂ ∂ 〉 = 〈 ∂ ∂ 〉

= 〈 ∂ ∂ 〉

− −

−

E x x J x

J x

( ) ( / ) ( ) ( / )

( ) ( / ) ,

0
1 1

1
(9)

where the angle brackets simply mean the integral over peri-
odic variable 〈(...)〉 = ∮(...)dξ, which is done at constant ψ.

One then finds the expression for the total current in the 
form

� ψ
ψ

ψ
= 〈 ∂ ∂ 〉

〈 ∂ ∂ 〉

−

−J
J x x

x
( )

( ) ( / )

( / )
.0

1

1 (10)

For the perturbed current one has ψ ψ= − = − ∇∼ ∼
⊥J J J( ) 0
2  so 

that the final equation is

� ψ
ψ

ψ
− ∇ = 〈 ∂ ∂ 〉

〈 ∂ ∂ 〉
−∼

⊥

−

−
J x x

x
J x

( ) ( / )

( / )
( ) .2 0

1

1 0 (11)

This is the implicit nonlinear integral-differential equation that 
describes the equilibria with magnetic island.

3.  Nonlinear equation in the inner region

We assume generic current profile which has a finite current 
gradient at the rational surface, J0′ ≠   0. The second deriva-
tive of the current is also included. We assume that the island 
width is small compared to the characteristic length scale of 
the equilibrium current, w ≪ a, so that the current in the non-
linear region can be approximated as

� = + + ′′′J x J J x J
x

( ) (0)
2

,0 0 0

2

(12)

or, respectively,

� ψ ψ ψ ψ= ′′ + +x x x

2 6 24
,0 0

2

0
III

3

0
IV

4

(13)

where J0(x) = ψ0′′ was used.
The basic nonlinear equation (11) then takes the form

�

ψ ψ
ψ
ψ

ψ ψ
ψ

− ∇ = ⟨ ∂ ∂ ⟩
⟨ ∂ ∂ ⟩

−

+ ⟨ ∂ ∂ ⟩
⟨ ∂ ∂ ⟩

−

∼
⊥

−

−

−

−

⎡
⎣
⎢

⎤
⎦
⎥

⎡
⎣
⎢

⎤
⎦
⎥

x x

x
x

x x

x
x

( / )

( / )

2
( / )

( / )
.

2
0
III

1

1

0
IV 2 1

1
2

(14)

It is convenient to represent the solution as the sum of the 
‘constant ψ approximation’ term: ψ1 cos ξ and an additional 
function H(x, ξ), so that

� ψ ψ ξ ξ= +∼ H x[ cos ( , ) ] ,1 (15)

where ξ = ky. Our basic nonlinear equation  (14), written in 
term of the function H(x, ξ), becomes

Plasma Phys. Control. Fusion 56 (2014) 125004



A I Smolyakov et al

3

�

ξ ξ ξ

ξ ψ
ψ

ξ ξ ψ
ψ

∂
∂

= − −

− ∂
∂

− ⟨ ∂ ∂ ⟩
⟨ ∂ ∂ ⟩

−

+ ⟨ + ∂ ∂ ⟩
⟨ ∂ ∂ ⟩

− −

−

−

−
−

−

⎛
⎝
⎜

⎞
⎠
⎟

x
H x k b b H x

H x

y w a

x x

x
x

b
H x x

x

( , ) ( ) cos ( , )

( , ) 4 ( )

( )

( cos ( , ) ) ( )

( )
,

2

2
2 2 2

2

2 2

1

1

2
1

1

(16)

where a = J0/J0′ = ψ0′′/ψ0′′′, ψ ψ= − ′′ = − ′′b J J/ /2
0 0 0 0

IV and 
the magnetic island half-width w is defined by the relation 
w2 = 4ψ1/ψ0′′.

4.  Perturbative solution in the nonlinear region

Nonlinear equation (16) involves averaging over the magnetic 
flux surfaces that makes this equation nonlocal and implicit, 
since the averaging is done over the magnetic surfaces, which 
are determined by the unknown function ψ = ψ (x, ξ)

�ψ ψ ψ ψ ψ ξ ξ= ′′ + ′′′ + − +x x
x

H x
1

2

1

6 24
( cos ( , )) .0

2
0

3
0
IV

4

1

(17)

The dimensionless magnetic flux function u = ψ/ψ1 is defined as

� ξ ξ ξ= + = + − −⎜ ⎟
⎛
⎝

⎞
⎠u u x u x

x

w

x

a
H( , ) ( , ) 2 1

3
cos ,0 1

2

2 (18)

where u0(x, ξ) = 2x2/w2 −  cos ξ and u1(x, ξ) = 2x3/3w2a − H(x, ξ). 
Note that in our ordering the term ψ x0

IV 4 in (13) and (18) can 
be neglected, but it will be retained in equation (16).

Nonlinear equation (16) can be solved by the expansion using 
the small parameter H(x, ξ) ≪  1. The function x = x(ψ, ξ), which 
determines the magnetic flux surfaces, is sought in the series 
form x = x0(u, ξ) + x1(u, ξ) + ..., where x0(u, ξ) is the lowest 
order (constant ψ) solution

� ψ
ψ ψ ξ ξ=

′′
+ = +( )x

w
u

2
cos

2
( cos ) ,0

2

0
1

2

(19)

and x1(u, ξ) is the next order term

� ξ ξ= − +x u
x

a

w H x

x
( , )

1

6
( , )

4
.1

0
2 2

0

0
(20)

Averaging of the magnetic surfaces in (16) requires the 
volume element between magnetic surfaces characterized by 
the value of the derivative ∂ψ/∂x. Deformation of the magnetic 
surfaces due to deviation from ψ = const modifies this volume 
element as follows

�
ψ ψ∂

∂
= ′′ +

x
x M(1 ) ,0 0 (21)

where to the first order

� ξ ξ= − ∂
∂

M u
x

a

w

x

H x

x
( , )

1

3 4
( , )

.0
2

0

0

0
(22)

Only the first order expression for M will be required in our 
ordering.

Taking into account equations (21) and (16) becomes

�

ξ ξ ξ ξ

ξ

∂
∂

= − − − ∂
∂

− 〈 + + 〉
〈 + 〉

− +
〈 〉

〈 〉

− −

−

− −
−

−

−

⎡

⎣
⎢

⎤

⎦
⎥

x
H x k b b H x

H x

y

w a

M x x

x M
x b

x

x

( , ) ( ) cos ( , )
( , )

4 (1 ) (1 / )

(1 )

cos
.

2

2
2 2 2

2

2

2

1
1 0

0
1 1

2 0
1

0
1

(23)

Expanding in small parameters x1/x0, H, and M, the right hand 
side of (23) can be represented in the form

�

ξ ξ

ξ ξ ξ

∂
∂

= + −

− − ∂
∂

−

−

x
H x F x k b

b H x
H x

y

( , ) ( , ) ( )

cos ( , )
( , )

,

2

2
2 2

2
2

2

(24)

where

� ξ = + + + +F x
x

w a
F u F u F u F u( , )

4
( ) ( ) ( ) ( ) ,G M b2 0 1 1 1 (25)

and respective components of F(x, ξ) are given by the 
expressions:

� σ= − 〈 〉
〈 〉

−
−

F u
w a

x
x

u( )
4

sgn ( )
1

( 1) ,0 2
0

1 (26)

� = −
−

F u
w a x

G( )
4 1

,G1 2
0

1 (27)

� = −
〈 〉 〈 〉

〈 〉

−

−
F u

w a

x M

x
( )

4 1
,M1 2

0
1

0
1 2 (28)

�
ξ

=
〈 〉

〈 〉
−

−

−
F u b

x

x
( )

cos
.b1

2 0
1

0
1 (29)

Here G is defined by the expression

� = − + ′
G

x

a

w H

x

1

2 4
,0

2
0

0
(30)

and M is given by equation (22).
It is instructive to establish that the nonlinear equation (24) 

in the linear limit x/w ≫ 1 reduces to the linear equation in the 
outer region. The equation for the outer linear region is dis-
cussed in appendix B. The full expressions for the nonlinear 
current functions F0(u), F1G(u), F1M(u), and F1b(u) in equa-
tion (24) and their linear asymptotics are described in appendix 
C, where it is also shown that the linear limit of equation (24) 
coincides with the linear equation  in the outer region. This 
guarantees that the nonlinear solution of equation  (23) will 
match with the linear solution in the outer region.

General solution of (24) can be written in the form

� ∫ ∫ξ ξ= ′ ′′ ′′
′

H x x F x x( , ) d ( , ) d .
x x

(31)

By changing the order of integration we have

� ∫ ∫ξ ξ ξ= ′ ′ − ′ ′ ′
ξ ξ

H x x F x x x F x x( , ) ( , ) d ( , ) d .
c

x

c

x

( ) ( )2 1
(32)
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In principle, there are two arbitrary integration constants in this 
solution: c1(ξ) and c2(ξ). The coefficient c1(ξ) defines the value of 
H(x, ξ) at x = 0. This correspond to an arbitrary constant in the mag-
netic flux function. Thus one can set c1(ξ) = 0 without resricting the 
general solution. The c2(ξ) coefficient remains finite and has to be 
determined by matching with the outer (linear) region.

It is useful to explicitly establish ordering of various terms 
in equation (24). From equation (26), one finds that the leading 
order nonlinear current is

� ⎜ ⎟
⎛
⎝

⎞
⎠F O

wa
~

1
.0 (33)

Then, the lowest order solution of equation (24), H0(x, ξ) is

� ⎜ ⎟
⎛
⎝

⎞
⎠H O

w

a
~ ,0 (34)

and equation (22) gives

� ⎜ ⎟
⎛
⎝

⎞
⎠M O

w

a
~ .0 (35)

The nonlinear current functions F1M(u), F1G(u), and F1b(u) are 
of the next order:

� ⎜ ⎟
⎛
⎝

⎞
⎠F u F H F H M O

a
( ) ~ ~ ~ ~

1
,G M1 1 0 0 0 0 2 (36)

� ⎜ ⎟
⎛
⎝

⎞
⎠F O

b
~

1
.b1 2 (37)

We assume that a ∼ b and thus F1G(u) ∼ F1M ∼ F1b. Therefore, 
from (24) it follows that the next order solution of (24): 
H1 ∼ O(w2/a2) ∼ O(w2/b2).

The matching with the linear solution in the outer 
region is performed by expanding the nonlinear solution in 
the series of the cos ξ harmonics: H (x ξ) = h0 (x) + h(1) (x) 

ξ ξ+ + …hcos cos 22 . The equation  for the nonlinear island 
width follows from the matching of the first harmonic h (x) 
with the linear solution in the outer region. In what follows, 
we drop the superscript, h1}(x) → h(x). It is convenient to work 
with the first derivative of the matching function determined 
by the equation

� ∫π
ξ ξ ξ= ∂

∂

πh x

x

H x

x
x

d ( )

d

2
cos

( , )
( , ) ,

0
(38)

where H(x, ξ) is found from the equation (24)

� ∫ ∫ξ ξ∂
∂

= =
ξH x

x
F x x F u

u

u x
( , )

( ) d ( , )
d

d / d
.

x u x

0 0

( , )
(39)

The integration in (39) is performed by the transformation to the 
u = u(x, ξ) variable, where the Jacobian of the transformation is 
determined by equation  (21): ξ= +u x w ud / d (2 2 / ) cos  
(1 + M) . Then, the derivative of the matching function h(x) is 
defined by the following expression:

�
= + + +

+ +

h x

x

h x

x

h x

x

h

x

h

x
h

x

h

x

d ( )

d

d ( )

d

d ( )

d

d

d

d

d
d

d

d

d
.

F G M

FM b

0 1 1 1

1 1

0

(40)

The derivative of the lowest order function h0(x)  ∼  w/a is 
given by

� ∫ ∫
π

ξ ξ
ξ

=
+

π

ξ

ξ

−

h

x

w
F u

u

u

d

d 2
cos d ( )  

d

cos
.

u x
0

0 cos

( , )

0
0

(41)

We also need a full expression for h0(x), which will be dis-
cussed below. The h F1 0, h1G, h1M, h1FM, and h1b are the first order 
functions, h1 ∼ w2/a2. The h1G, h1M, and h1b are directly gener-
ated by the first order functions F1G (u), F1M (u) and F1b (u),  
respectively,

� ∫ ∫
π

ξ ξ
ξ

=
+

π

ξ

ξ

−

h

x

w
F u

u

u

d

d 2
cos d ( )  

d

cos
,G

u x

G
1

0 cos

( , )

1
0

(42)

� ∫ ∫
π

ξ ξ
ξ

=
+

π

ξ

ξ

−

h

x

w
F u

u

u

d

d 2
cos d ( )  

d

cos
,M

u x

M
1

0 cos

( , )

1
0

(43)

� ∫ ∫
π

ξ ξ
ξ

=
+

π

ξ

ξ

− }
h

x

w
F u

u

u

d

d 2
cos d ( )  

d

cos
.b

u x

b
1

0 cos

( , )

1
0

(44)

The variable transformation in (39) produces two additional 
terms of the first order: h1FM and h1F0. The h1FM is generated 
from the lowest order function F0(u) due to the additional term 
M in the variable transformation in (39)

�

∫ ∫
π

ξ ξ ξ

ξ

= −

+

π

ξ

ξ

−

h

x

w
F u M u

u

u

d

d 2
cos d ( ) ( , )

d

cos
,

FM
u x

1

0 cos

( , )

0

0

(45)

and h F1 0 appears from F0(u) as a result of the first order correc-
tion in the upper limit of the integration in (39)

�

∫ ∫

∫
π

ξ ξ
ξ

π
ξ ξ

ξ
ξ

=
+

≃
+

π

ξ

ξ ξ

π

ξ

+

=

h

x

w
F u

u

u

w F u

u
u x

d

d
 

2
cos d ( )  

d

cos

 
2

cos d
( )

cos
( , ) .

F

u x

u x u x

u u x

1

0 ( , )

( , ) ( , )

0

0

0

( , )

1

0

0

0 1

0

(46)

The expressions for the matching functions dh1FM/dx 
and h xd / dF1 0  can alternatively be derived from the integral 

∫ F u x( ) d
x

0
0  via the expansion of the u(x, ξ) function in the 

argument of F0(u) . Details of this derivation are given in 
appendix F.

5.  Nonlinear solution in the leading order

5.1.  Full expression for H0(x, ξ) function

In our iterative procedure, calculations of the first order expres-
sions F1G, F1M as well as h1FM in equations (42), (43) and (45) 
require the knowledge of the leading order solution H0(x, ξ) 
that enters the expressions for G and M in equations (26)–(28). 
From (24), equation for H0(x, ξ) takes the form

� ξ
σ∂

∂
= = − 〈 〉 −

〈 〉−x
H x F u

x

w a w a
x

u

x
( , ) ( )

4 4
sgn ( )

1 ( 1)
.

2

2 0 0 2 2
0

1
(47)
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Here σ(u  −  1) is Heaviside function, σ(u  −  1)  =  1 for u  >  1, 
σ(u − 1) = 0, u < 1. The flux functions 〈 〉−x0

1 , <1>  and β(u) are 
defined in appendix A. Equation (47) can be integrated directly by 
using transformation to the u variable (A.5) in the leading order:

� ∫ ∫
ξ

=
+ξ

ξ

−

−
x

w u

u
d

2 2

d

cos
,

x x w

0 cos

2 / cos2 2

(48)

so that one obtains from (47)

�

∫

ξ

π σ
β ξ

ξ

∂
∂

=

− −
+

+
ξ

ξ

−

−

H x

x

x

w a

a
x

u u

u u

s

a

( , ) 2

sgn ( )
( 1) d

( ) cos
cos .

x w

0
2

2

cos

2 / cos2 2 (49)

Integrating it one more time one has

� ∫

∫

ξ π

ξ
σ

β ξ
ξ

= −

× ′
′ +

′′ − ′′
′′ ′′ +

+

ξ

ξ

ξ

−

−

−

′

H x
x

w a

w

a
x

u

u

u u

u u
s

x

a

( , )
2

3 2 2
sgn ( )

d

cos

( 1) d

( ) cos
cos .

x w

u

0

3

2 cos

2 / cos

cos

2 2

(50)

Here, s is yet arbitrary integration constant that will be defined 
later by matching with external solution, which also dictates 
the choice of the cos ξ function in this term. The order of inte-
gration in (50) can be reversed

� ∫ ∫ ∫ ∫′ ′′ = ′′ ′
ξ ξ ξ− −

′

− ′′
u u u ud d d d ,

u u u

u

u

cos cos cos
(51)

and one integration in (50) can be completed in the closed 
form resulting in the expression

�
∫

∫

ξ π σ
β ξ

π σ
β

ξ

= − ′− ′
′ +

+ ′− ′
′

+

ξ

ξ

ξ

ξ

−

−

′

−

−

H x
x

w a

x

a
x

u u

u u

w

a
x

u u

u
s

x

a

( , )
2

3
sgn ( )

( 1) d

( ) cos

2
sgn ( )

( 1) d

( )
cos .

x w

x w

0

3

2 cos

2 / cos

cos

2 / cos

2 2

2 2

(52)

Alternatively, this solution directly follows from (32) in the form 
H0(x, ξ) = x ∫ F(x) dx − ∫ xdx and using (A.4) for x = x (u, ξ) . The 
lower limit of the integrals in (52) can be set at u = 1 because 
the function < > < >−x1 / 0

1  is zero inside the magnetic separatrix.
The function M, which is the Jacobian of the transforma-

tion (x, ξ) →  (x0, ξ), describes the deformation of the mag-
netic flux surfaces. From (22) and (52) it follows that in zeroth 
order, the functions M and G are defined by the expressions

� ∫

ξ π

σ
β

= − ∂
∂

=

× ′ − ′
′ξ−

M
x

a

w

x

H x

x

w

x a

x
u u

u

1

3 4

( , )

4 2

sgn ( )
( 1)d

( )
,

u

0
2

0

0

0

3

0
2

cos

(53)

�

∫

π
ξ

β ξ
ξ

ξ

= − + ′ = −
+

× ′
′ ′+

+
+

G
x

a

w H

x

w

a u

x
u

u u

ws

a u

1

2 4

2

4

1

cos

sgn ( )
d

( ) cos

2

4

cos

cos
.

u

0
2

0

0

1

(54)

Here, the lower integration limit has been changed to u = 1. 
Note that M(x = 0) = 0 in agreement with equation (22); recall 
that we set H = 0 for x = 0.

5.2.  Matching of the first harmonic in the leading order

The nonlinear function H0(x, ξ) found in the previous section, 
contains the integration constant that has to be determined by 
matching with external region. The first harmonic of the inner 
(nonlinear) solution is found from H(x, ξ) in the form

� ∫π
ξ ξ=

π
h x H x( )

2
cos ( , ) .

0
(55)

In general, the function H(x, ξ) has mixed parity. 
Respectively, function h(x) can be represented as a sum of 
the even (symmetric), hs, and odd (anti-symmetric) haparts, 
h(x) = ha(x) + hs(x). The leading order solution H0 defines the 
anti-symmetric part of h(x):

� ∫π
ξ ξ ξ=

π
h x H x( )

2
cos d ( , ) ,a

0
0 (56)

which gives

�

∫ ∫

∫ ∫

ξ ξ σ
β ξ

ξ ξ σ
β

= − ′ − ′
′ ′ +

+ ′ − ′
′

+

π ξ

π ξ

−

−

h x
x

a

u u

u u

w

a

u u

u

s
x

a

( )
2

d cos
( 1) d

( ) cos

2
d cos

( 1) d

( )

.

a
x w

x w

0 1

2 / cos

0 1

2 / cos

2 2

2 2

(57)

This expression can be simplified by changing the order of 
integration as follows:

� ∫ ∫ ∫ ∫ξ ξ=
π ξ

ξ

π− +

′

u ud d d d .
x w x w

0 1

2 / cos

1

2 / 1

m

2 2 2 2

(58)

Here

� ξ = −′
x

w
ucos 2 ,m

2

2
(59)

so that

� ξ = − − < < +′
⎛
⎝
⎜

⎞
⎠
⎟x

w
u

x

w
u

x

w
arccos 2  for 2 1 2 1,m

2

2

2

2

2

2
(60)

and

� ξ = < −′ u
x

w
0 for  2 1.m

2

2
(61)

Then, one obtains for (57)

�

∫ ∫

∫ ∫

σ
β

ξ ξ
ξ

σ
β

ξ ξ

= − ′− ′
′ +

+ ′− ′
′

+

ξ

π

ξ

π

+

′

−

+

′

′

h
x

a

u u

u u

w

a

u u

u
s

x

a

2 ( 1) d

( )
d

cos

cos

2 ( 1) d

( )
d cos .

a
x w

x w

x w

1

2 / 1

2 / 1

2 / 1

m

m

2 2

2 2

2 2

(62)

For large x ≫ w, outside of the magnetic island, this expres-
sion has the following asymptotic calculated in (D.13):

� = + − +⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠h

x

a

x

w

x

a
g s

x

a
ln

ln 2

2
2 .0 0 (63)

This expression is to be matched to the odd part of the outer 
solution, which is given by the expression (B.9):
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�
Σ→ + ′⎡

⎣⎢
⎤
⎦⎥h x

x

a

x

a
x( ) ln

2
,a (64)

where it has been assumed ψout = ψ1. Matching (63) and (64) 
determines the s coefficient

�
Σ= ′ + +

⎛
⎝
⎜

⎞
⎠
⎟s

a
g

w

a2
2 ln

2
.0 (65)

This is the main result of the matching of the anti-symmetric 
part of the solution. The island saturation equation is obtained 
from the next order, symmetric part of H1(x, ξ), which is found 
from equations (42)–(46).

The Σ′ parameter in the outer solution can be redefined by 
changing the form of the logarithmic term [7, 9–11], e.g. one 
can write the outer solution as

� ψ Σ ψ Σ+ ′ = + ′
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

x

a

x

a
x

x

a

x

L
xln

2
ln

2
,R

out out (66)

where

� Σ Σ′ = ′ + ⎜ ⎟
⎛
⎝

⎞
⎠a

L

a

2
ln ,R (67)

and L is some other normalization length. Obviously, matching 
of the inner solution (63) with (66) gives the same expression for 
sR = s and the solution in nonlinear regions remains the same.

6. The matching of the first order solution and final 
equation for magnetic island

Nonlinear dispersion equation  which determines the island 
width at saturation is found from the matching of the outer 
and inner solutions in the first order. We work with the deriva-
tive of the eigen-function dh(x)/dx. The asymptotics of the full 
solution in the outer region from (B.5) has the form

�
ψ Σ Δ= ′ + + − ± ′
x a

x

a a

x

a

d

d 2

1
ln

1 3

2 2
,

2 (68)

for x > 0 and x < 0, respectively. Note that this solution was 
normalized to unity at the origin, ψ (0)  =  1. The first three 
terms in this expression correspond to the the anti-symmetric 
part which was matched with the lowest order solution ha(x) 
(Section V.B). The fourth and fifth terms in (68) are to be 
matched to the inner first order solution. The fourth term is in 
fact matched identically to the inner solution; it does not pro-
vide any new information and is only useful to confirm the cor-
rect form of the nonlinear solution. It is the the matching of the 
fifth term that gives the equation for the magnetic island width.

The derivatives of the nonlinear solution dh1/dx are calcu-
lated from equations  (38) and (40). Full expressions for the 
corresponding functions dh1G/dx, dh1M/dx, dh1FM/dx, h xd / dF1 0 ,  
and dh1b/dx are given by equations (42)–(44) and details of the 
calculations are given in appendix E. Here we give the asymp-
totic forms for the corresponding functions:

� = − + ′+
≫

⎜ ⎟
⎛
⎝

⎞
⎠

h

x

x

a
h O

x
lim

d

d

1
,

x w

G
G

/ 1

1
2 1 (69)

� → + ′ +
≫

⎜ ⎟
⎛
⎝

⎞
⎠

h

x

x

a
h O

x
lim

d

d

2

3

1
,

x w

M
M

/ 1

1
2 1 (70)

� → − + ′ +
≫

⎜ ⎟
⎛
⎝

⎞
⎠

h

x

x

a
h O

x
lim

d

d

4

3

1
,

x w

FM
FM

/ 1

1
2 1 (71)

� → +
≫

′ ⎜ ⎟
⎛
⎝

⎞
⎠

h

x
h O

x
lim

d

d

1
.

x w

b
b

/ 1

1
1 (72)

� → + + +
≫

⎜ ⎟
⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟

⎛
⎝

⎞
⎠

h

x

x

a

x

w
s O

x
lim

d

d

1

6

1

2
ln 2

1
.

x w

F

/ 1

1
2

2

2
0 (73)

Here, the h′1G, h′1M, h′1FM, and h′1b parameters are related to the 
numerical coefficients c1, δ1M, δ1G, δ1FM that are defined in the 
appendix E:

� π
δ′ = − +h

w

a
sc

w

a2 2
,G G1 2 1 2 1 (74)

� δ′ = −h
w

a2
,M M1 2 1 (75)

� δ′ =h
w

a2
.FM FM1 2 1 (76)

� π
′ =h

w

b
c

2
.b1 2 1 (77)

Collecting all terms, one has for the symmetric (even in x) 
matching function h1:

� = − + ′h

x

x

a
h

d

d

3

2
,1

2 1 (78)

where h′1 = h′1a + h′1b and h′1a = h′1G + h′1M + h1FM. Note that dh1F0/
dx part does not contribute to the nonlinear matching condi-
tion, but the first term in (73) is important to ensure the correct 
matching of the linear term ∼ x/a2 between nonlinear and linear 
solutions. From equations (B.5) and (68), one can see that the 
second terms in (73) is also well matched to the linear region. 
The third term in (73) is not considered here in detail, this is 
matched in the higher order. Note that our theory is formally 
based on small parameters, Δ′a < 1, Σ′a < 1, so that s < 1.

The first term in the expression (78) is matched exactly 
to the fourth term in the outer solution (68), which confirms 
that the nonlinear solution can be matched to the outer region. 
Comparison of (78) and (68) gives the nonlinear matching 
condition h′1 = Δ′/2, leading to the equation for the magnetic 
island width

� Δ
π

π′ = − +
⎡
⎣⎢

⎤
⎦⎥

c w

a

g

c
s

a

b

2
.1

2
1

1

2

2 (79)

where numerical coefficients g1 = δ1G − δ1M + δ1FM ≃ 1.84 
and c1 = 1.828 giving π ≃g c/ 3.161 1 . The closed form integral 
expressions for coefficients δ1G, δ1M, δ1FM and c1 are given by 
equations (E.4), (E.9), (E.14) and (E.5), respectively.

Additional term corresponding to the non-uniform resis-
tivity (profile B) was calculated in the appendix G giving the 
equation
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� Δ
π

π λ′ = − + +
⎡
⎣⎢

⎤
⎦⎥

c w

a

g

c
s

a

b

g

c

2 2
.B1

2
1

1

2

2
1

1
(80)

Similar to [10], we have introduced the λ parameter: λ = 1 for 
profile B and λ = 0 for profile A.

Using numerical values and s from equation (65) one obtains

� Δ Σ λ′ = − − ′ + +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

w

a

w

a

a a

b
0.82 3.62 ln

2
0.35 .

2

2

2 (81)

This equation has the same structure as [7, 10, 11] with one 
slighlty different numerical coefficient. The paper [10] gives 
the coefficient 4.42 − ln(2) = 3.73 instead of our 3.62.

7.  Summary

Accurate nonlinear equation for magnetic island in Rutherford 
regime is important for many practical problems dealing with 
magnetic island excitation and control as well as for guiding 
and interpretations of numerical experiments on magnetic 
islands. Such equation has been derived earlier in a number 
of papers [2–11]. We revisited the problem of saturation of the 
magnetic island in configuration with a finite current gradient at 
the rational surface. Though our approach is within the general 
realm of the asymptotic theory, the actual approach is quite dif-
ferent from [3, 4, 6–11]. [7, 10, 11] do not give the expressions 
for numerical coefficients nor any details on how they were cal-
culated. We have obtained the explicit form for the perturbed 
magnetic flux function describing the magnetic island that 
opens the way for the extension of the theory into the higher 
orders along the lines suggested in [21] as well as application to 
the problems of NTM control [19, 20]. Our analysis confirms 
the general structure of the nonlinear dispersion equation  as 
obtained earlier in [7, 9–11]. Numerical values of our coef-
ficient given by our analytical expressions is very close to that 
given in [10]. Further details of the comparison with [7, 10, 11]  
are given in appendix H. The analytical theory predicts the 
island width that is in fairly good agreement with results of 
numerical simulations that are discussed in Part II [23].
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Appendix A.  Summary of auxiliary integrals and 
definitions

For convenience, we summarize here various definitions and 
expressions for axiliary functions and integrals

�
ψ
ψ

=u ,
1

(A.1)

� ψ ψ ψ′′ = =x x ud d d ,0 0 0 1 (A.2)

� =x x
w

x ud
4

sgn ( ) d ,0 0

2

(A.3)

� ξ= +x
w

x u
2

sgn ( ) cos ,0 (A.4)

� ξ
=

+
x

w
x

u

u
d

2 2
sgn ( )

d

cos
,0 (A.5)

� ∫ ξ
ξ

β〈 〉 =
+

=
ξ

−x
w u w

u
2 d

cos

2
( ) ,

u

0
1

0

( )m

(A.6)

� ∫ξ ξ ξ
ξ

α〈 〉 =
+

=
ξ

−x
w u w

ucos
2 cos d

cos

2
( ) ,

u

0
1

0

( )m

(A.7)

�
π σ

β
〈 〉

〈 〉
= −

−x

w u

u

1

2

( 1)

( )
,

0
1 (A.8)

�
ξ α

β
〈 〉

〈 〉
=

−

−

x

x

u

u

cos ( )

( )
,0

1

0
1 (A.9)

� ∫α ξ ξ
ξ

=
+

ξ
u

u
( ) cos

d

cos
,

u

0

( )m

(A.10)

� ∫β ξ
ξ

=
+

ξ
u

u
( )

d

cos
,

u

0

( )m

(A.11)

� ∫β ξ
ξ

=
+

ξ
u

u
( )

d

( cos )
,

u

3
0

( )

3/2

m

(A.12)

� ∫β ξ ξ= +
ξ

− u u( ) cos d ,
u

1
0

( )m

(A.13)

� ∫α ξ ξ ξ= +
ξ

− u u( ) cos cos d ,
u

1
0

( )m

(A.14)

� ∫α ξ
ξ

ξ=
+

ξ
u

u
( )

cos

( cos )
d ,3

0 3/2

m

(A.15)

� ∫ε ξ
ξ ξ

′ =
′+ +

π
u u

u u
( , )

d

cos cos
.

0
(A.16)

and

� ξ π= >u, for  1,m (A.17)

� ξ = <− u ucos ( ) , for  1.m
1 (A.18)

Function ξm′ is defined by the expressions

�ξ = − − < < +′
⎛
⎝
⎜

⎞
⎠
⎟x

w
u

x

w
u

x

w
arccos 2  for 2 1 2 1,m

2

2

2

2

2

2 (A.19)
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and

� ξ = < −′ u
x

w
0 for  2 1.m

2

2
(A.20)

Appendix B.  Linear solution in the outer region

Here we consider the general structure of the outer solution 
taking into account a finite current gradient at the rational sur-
face. The linear equation in the outer region can be obtained 
by linearizing the MHD equilibrium equation (1), resulting in

� ψ ψ
ψ
ψ

ψ′′ − −
∂ ∂
∂ ∂

=∼ ∼ ∼k
x x

x x
( )

( ) /

( ) /
0,2

3
0

3

0
(B.1)

where k is the poloidal wave-vector and ψ = ψ0(x) is the equi-
librium flux function. Using the equilibrium in equation (13) 
one gets

� ψ ψ
ψ

ψ ψ
ψ′′ − −

′′′
′ + ′′′

=∼ ∼ ∼k
x x

( )
(0)

(0) (0) / 2
0.2 0

0
2

0
(B.2)

The term with ψ x0
IV 4 has been neglected here. Expanding for 

small x we obtain the linear equation in the outer region

� ψ ψ′′ − − + =∼ ∼⎜ ⎟
⎛
⎝

⎞
⎠ax a

k
1 1

2
0,

2
2 (B.3)

where a−1 = J′0/J0.
The series solution of (B.3) has the form

�

ψ = + − + +

+ + + +

+ + + +±

⎜ ⎟

⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x x
a

k
O x

x

a

x

a

x

a
k x O x

C x
x

a
k x O x

( ) 1
1

2
( )

ln 1
2

1

6
( )

1
2

1

6
( ) .

2
2

2
3

2 2 3

2 2 3

(B.4)

Here, the solution was normalized such that ψ(x = 0) = 1. Note 
the normalization in the logarithmic term can be changed by 
redefining the C± coefficients. More exactly, this corresponds 
to redefining the anti-symmetric (odd) part of the solution 
characterized by Σ′ parameter. As has been noted in [7, 10, 
11], the Σ′ parameter depends on the choice of the length L 
in equation (66); which in principle can be arbitrary. Here, we 
will be using the fixed length a in the logarithm term, where a 
is the current gradient length scale in the outer region.

From equation  (B.4), one can calculate the following 
expressions for the derivatives of the flux function

�

ψ = + +

+ + + −

± ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x

x
C

x

a
k x

a

x

a

x

a a

x

a

d ( )

d
1

1

2
1

ln 1
1 3

2
,

2 2

2

(B.5)

�
ψ = + + −± ⎜ ⎟

⎛
⎝

⎞
⎠

x

x
C

a
xk

ax a

d ( )

d

1 1 1

2
.

2

2
2

2 (B.6)

Coefficients C± are determined by global boundary condi-
tions, for x > 0 and x < 0, respectively. They are related to the 

Δ′and Σ′ parameters, C± = (Σ′ ± Δ′)/2 . The Δ′ is a standard 
tearing mode stability parameter

� Δ ψ ψ′ =
→

−
→+ −x x

d

d

d

d
.

x x0 0
(B.7)

The definition of Σ′ depends on the normalization in the 
logarithm argument: when the form ln(x/a) is used, the Σ′ 
matching parameter is given by

� Σ ψ ψ ε′ = + − −
ε

ε
ε→ −

⎛
⎝
⎜

⎞
⎠
⎟

x x a a a
lim

d

d

d

d

2
ln

2
.

0
(B.8)

Thus, in the leading order, the outer solution for x → 0 can 
be written

� ψ Σ Δ= + ′ + ± ′± x x
x

a

x

a
x( ) 1

2
ln

2
, (B.9)

for x > 0 and x < 0, respectively. The Δ′ describes the sym-
metric (even) part of the asymptotic, while the Σ′ is the anti-
symmetric (odd) part. The logarithmic term x ln(x/a)/a is also 
anti-symmetric. The explicit form of the next order expression 
for the flux derivative is given by equation (63).

Appendix C.  Nonlinear current and asymptotic in 
the inner region

The nonlinear equation in the inner region has the form

� ξ ξ ξ∂
∂

= + − −
x

H x F x k b( , ) ( , ) ( ) cos ,
2

2
2 2 (C.1)

Where

� ξ = + + +F x F u F u F u F u( , ) ( ) ( ) ( ) ( ),G M b0 1 1 1 (C.2)

and F0(u), F1G(u), F1M(u) and F1b(u) are nonlinear current 
functions defined in equations (26)–(29). The explicit expres-
sions for these functions are written by using the lowest order 
expressions for functions M and G and the definitions of the 
flux functions in appendix A.

From (26) one finds

� ξ π
β

σ= − −
⎛

⎝
⎜

⎞

⎠
⎟F x

w a
x x

w

u
u( , )

4
sgn ( )

2 ( )
( 1) ,0 2 (C.3)

where u = u(x, ξ).
Using the expression (30) for G function in (), the flux 

average of G is written as

� ∫π ε
β

α= − ′ ′
′

+G
w

a

u u u

u

w

a
s u

2

4

( , ) d

( )

2

4
( )

u

1
(C.4)

Respectively, the function F1G takes the form

� ∫α
β

π
β

ε
β

= − ′ ′
′

⎡
⎣⎢

⎤
⎦⎥

F
a

s
u

u u

u u u

u

1 ( )

( ) ( )

( , ) d

( )
.G

u

1 2 1
(C.5)

From equation (53), the weighted average of the function M is

� ∫π β
β

〈 〉 =−x M
a

u
u

u2
( )

d

( )
,

u

0
1

3
1

(C.6)
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so that the equation (28) gives for F1M(u)

� ∫π β
β β

= − ′
′

F u
a

u

u

u

u
( )

( )

( )

d

( )
.M

u

1

2

2
3
2 1

(C.7)

Expression for F1b(u) is obtained by using the flux functions 
defined in appendix A.

�
ξ α

β
=

〈 〉
〈 〉

=−
−

−
F u b

x

x

u

b u
( )

cos ( )

( )
.b1

2 0
1

0
1 2 (C.8)

It is instructive to confirm that nonlinear equation  (C.1) 
reduces to the linear equation (64) in the outer region. This is 
done by considering asymptotic limits of the functions F0(u), 
F1G(u), F1M(u) and F1b(u) in the limit x ≫ w.

Expanding the function β(u) for large u, one obtains

� ξ

ξ ξ

= −

= − −

+ −

≫

⎛
⎝
⎜

⎞
⎠
⎟

F u
wa

u

x

w a

x

a x w

w

ax x w
H x

lim ( )
2 2

4 1

6

1

4 /
cos

1

24
cos

1

4 /
( , )

u 1
0

2 2 2

2

2 2

(C.9)

We have used here the auxiliary expansion for u  in the limit 
x ≫ w,

�

ξ

ξ ξ

= + −

+ −

≫

⎛
⎝
⎜

⎞
⎠
⎟

u
x

w

x

a x w

w

ax x w
H x

lim 2 1
1

6

1

4 /
cos

1

24
cos

1

4 /
( , )

u 1 2 2

2

2 2

(C.10)

The large u expansions for 〈G〉 and 〈 〉−x M0
1  have the form

�
π〈 〉 = −

≫
G

w

a
ulim

2 2
,

u 1
(C.11)

�
π〈 〉 =

≫
−x M

a
lim

3
.

u 1
0

1 (C.12)

Similarly, nonlinear functions F1G (u) and F1M (u) are

� ξ= = − +
≫

⎜ ⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠F u

u

a a

x

w
O

x
lim ( )

1
2 cos

1
,

u
G

1
1 2 2

2

2 2 (C.13)

� ξ= − = − − +
≫

⎜ ⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠F u

u

a a

x

w
O

x
lim ( )

2

3

2

3
2 cos

1
.

u
M

1
1 2 2

2

2 2

(C.14)
The function F1b(u) is strictly localized in the nonlinear region 
and has no linear part:

� =
≫

⎜ ⎟
⎛
⎝

⎞
⎠F u O

x
lim ( )

1
.

u
b

1
1 2 (C.15)

Collecting all terms in (C.9), (C.13) and (C.14) we find that 
the nonlinear equation (C.1) in the linear limit x ≫ w reduces 
to the form

� ξ ξ ξ ξ∂
∂

= − + − −
x

H x
ax a

k b( , )
cos cos

2
( ) cos ,

2

2 2
2 2 (C.16)

which is identical to the linear equation  (B.3) in the outer 
region.

Appendix D. The asymptotics of the zeroth order 
solution in nonlinear region

The zeroth order solution, the function ξH x( , )nl
0 , is given by 

the equation  (52). This is a form used to calculate the next 
order functions in equations (42)–(46). The asymptotic form 
of ξH x( , )nl

0  is not required for our purposes, but we will give 
it here to provide more information about its structure.

The following expansions for x ≫ w will be useful:

� ∫ β π
′
′

= +
ξ

ξ

−

−
⎜ ⎟

⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟u

u

u
O

u

d

( )

2

3
1

1
;

x w

cos

2 / cos 3/2

2

2 2

(D.1)

and

�

∫

∫
β ξ

π
ξ

π
ξ

π

′
′ +

= ′ + ′ ′ −
′

= − +

ξ

ξ

ξ

ξ

−

−

′

−

−

′
⎜ ⎟
⎛
⎝

⎞
⎠

u

u u

u O u u

u u

u
u G

d

( ) cos

[1 (1 / 2) ] d
1

cos

2

cos

2
( ln ( ) ) ,

x w

x w

cos

2 / cos

cos

2 / cos

0

2 2

2 2

(D.2)

where G0 is a constant analogous to g0, see equation (D.12). 
Then the function ξH x( , )nl

0  in (52) takes the form

�
ξ ξ ξ

ξ ξ

= − − +

+ − +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

H x
x

w a

x

a

x

w

x

a
u

w

a

x

w
s

x

a

( )
2

3
2 cos

2
ln ( ) cos

2

3 2
2 cos cos .
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0

3

2

2

2

2

2

3/2

(D.3)

Collecting all terms and expanding for x ≫ w one obtains

� ξ ξ ξ= + +
⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟H x s

x

a

x

a

x

w
G( , ) cos

2
ln 2 cos .nl

0

2

2 0 (D.4)

For matching purposes we require the first harmonics of 
the lowest order

� ∫π
ξ ξ ξ=

π
h x H x( )

2
cos d ( , ) .a

0
0 (D.5)

Using (50), one has

�

∫ ∫

∫ ∫
β

ξ ξ
ξ

β
ξ ξ

= − ′
′ +

+ ′
′

+

ξ

π

ξ

π

+

′

−

+

′

′

h x
x

a

u

u u

w

a

u

u
s

x

a

( )
2 d

( )
d

cos

cos

2 d

( )
d cos .

a
x w

x w

x w

1

2 / 1

2 / 1

2 / 1

m

m

2 2

2 2

2 2
(D.6)

In what follows we describe the derivation of the asymptotics 
of ha(x) which is required to determine the s coefficient in the 
inner solution. The first term in equation (D.6) can be written 
as a sum of two integrals
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(D.7)

Then, equation (D.6) becomes

�

∫

∫ ∫

∫ ∫

α
β

β
ξ ξ

ξ

β
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(D.8)

Asymptotic of β(u) for large x (and large u) is β π=u u( ) / .  
This gives

�β π ξ
π

ξ≃ − ≃ −− −
⎛
⎝
⎜
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⎠
⎟
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⎞
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2
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4
.1 1

2

2

1/2 2

2 (D.9)

For large u, and taking into account (D.9), the second term in 
(D.8) is transformed as follows
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(D.10)

As a result, this term cancels with the third term (D.8).
With α(u)  =  −π/(4u3/2) and (D.9), one has for large 

u ≃ 2x2/w2

�
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β

= −
u

1

4
, (D.11)

and
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(D.12)

where g0 = − 0.06 is constant calculated numerically.
Finally, the asymptotics of ha(x), the antisymmetric part of 

the first harmonic of the nonlinear solution, becomes
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(D.13)

Appendix E.  First order matching functions and 
asymptotic

Here, we give some details of calculations of nonlinear 
matching functions in equations  (43)–(46). Changing the 
order of integration as in (58), equation (42) gives for dh1G/dx
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(E.1)

Using the explicit expression (C.5) for F1G, the first term on 
RHS of (E.1) becomes
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For large x ≫ w, this integral has an asymptotic limit
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where

� ∫ ∫δ α
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The second term in (E.1) in the same limit is evaluated using 
(C.13). It gives
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Collecting terms in (E.1)-(E.6) one obtains the expression (69).
The expression for dh1M/dx is evaluated in a similar  

way:
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The first term here becomes
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From (C.14) it follows that
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Collecting (E.8) and (E.10), one obtains the expression (70).
The first order matching function h1FM is a result of the 

transformation of variables (21) in equation (39):
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Using the definitions (26) and (53) for F0(u) and M(u, ξ), 
and reversing the order of integration according to (58), the 
expression (E.11) takes the form
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The first term on the right hand side for large x ≫ w is pre-
sented in the form
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where the numerical coefficient δ1FM is defined by the fol-
lowing integral
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The second term in (E.12) for large x ≫ w is evaluated to
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Finally, from (E.12), (E.13) and (E.15) one obtains the expres-
sion (71).

The matching function h xd / dF1 0  given by equation (46) is 
evaluated in the limit x ≫ w by the expansion of the upper 
limit of the inner integral, u0(x, ξ) ≫  u1(x, ξ), so that
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(E.16)

From definitions in (18) and (50), one finds in the limit 
x ≫ w the expression for u1(x, ξ)
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In the required ordering

� = −F u
wa

u( )
2 2

.0 (E.18)

Using (E.17) and (E.18) in (E.16) one finds the expression (73). 
We have used in (E.16) the following equations valid for u ≫ 1
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Appendix F.  Alternative calculation of dh1F0/dx and 
dh1FM in equation (40)

The first order terms h xd / dF1 0  and dh1FM that are produced 
from the integral of F0(u) in equation (39) can also be obtained 
by the alternative method. The argument of the function F0(u) 
involves the higher order corrections which mix the parity of 
the function u = u0(x, ξ) +u1(x, ξ), and hence the parity of F0(u) .  
To separate the parities, it is convenient to expand F0 with 
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respect to u1 ≪  u0 and calculate the intergral ∫ ξF u x( , ) d
x

0
0  

via the transformation to the symmetric variable u = u0(x, ξ) 
as was commented in [11]. Expanding F0(u0(x, ξ) +u1(x, ξ), ξ) 
and integrating by parts one obtains
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(F.1)

The first term here is equation (41); the second term cor-
responds to the dh1F0/dx term, equation (46); and the last term 
corresponds to the dh1FM/dx term, equation (45), which was 
derived in Section IV via different variable transformation.

Appendix G.  Non-uniform resistivity model

In model B, the full current is determined from the equa-
tion E0 = η(x) J(x) giving
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Using the expansions
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and
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one obtains [7, 11] for J(ψ)
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where a  =  J0′/J0 and b−2  =  −  J0′′/J0. The required nonlinear 
equation then is
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Thus, the difference between the profile A and profile B cases 
is reduced to the appearance in (G.4) of an additional term 
proportional to a−2, the term in square brackets. Thus, the 
equation (24) for profile B takes the form:
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where F1a = F1G + F1M and the additional term FB is given by
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Corresponding matching parameter is
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Thus, for profile B, the contribution of h1B′ is added to the matching 
condition in (38), producing an additional term in equation (81).

Appendix H.  Additional comments on comparison 
with other works

For the benefit of readers, here we provide additional details 
to facilitate the comparison of our work with previous results.

As noted above our final equation is similar to the one in [7, 
10, 11]. Note that these authors used w for the full width of the 
island, while in our paper, w is a half-width, so thus we have 
the factor 0.82 instead of 0.41 in [7, 10, 11].

The logarithmic term, in equation  (81), ln(w/a), was 
obtained earlier in [3], see also [12–14]. We have obtained this 
term with numerical coefficient identical to [7, 10, 11], where 
it was written with arbitrary normalization factor, ln(w/r0) . 
The choice of the normalization factor affect the value of the 
Σ ′ parameter. It was emphasized in [7, 10, 11] that the com-
bination ln(w/a) +aΣ′/2 remains independent of the choice of 
r0. In our work we use fixed normalization ln(w/a), where the 
a parameter is related to the current gradient, a = J0/J′0. The 
term due to the asymmetry in the outer solution Σ′a/2 was 
present in the original work [2] with a different coefficient; in 
the current form, as in equation (81), it was obtained in [5].

The b2/a2 term in equation (81), related to the second deriv-
ative of the equilibrium current was included in the theory 
of [2]; in its present form, this term was derived in [6, 8]. 
Our numerical coefficient for the a−2 term in equation  (81) 
is defined by closed form integral expression defined in 
appendix E. The numerical value of the coefficient is slightly 
different from those in [7, 10, 11]. Unfortunately, it is not 
possible to compare the details of the derivations between 
our work and [7, 10, 11]. The [7, 11] do not give any details 
of the derivations nor provide the full structure of the solu-
tion. The method of [10] is different from [7, 11]. References  
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[7, 10, 11] do not describe what is involved in calculations of 
numerical coefficients entering the final equation, e.g. equa-
tion (51) or equation (58) in [10], nor provide details of how 
the numerical values were obtained. We have obtained exactly 
the same numerical coefficient for the term responsible for 
the difference between profiles A and B as in [10], where it is 
written separately; only profile B is considered in [7, 11]. The 
numerical coefficients given in [7, 11 and 10] for profile B are 
slightly different: 4.85 in [7, 11] and 4.76 in [10].

We have demonstrated that our nonlinear equation (C.1) in 
the limit w ≫ a reduces to the linear equation (B.3) in the outer 
region (for details see appendix C), that confirms that the full 
solution of the nonlinear equation will reduce to the linear solu-
tion in the outer region. The matching of the derivatives of the 
flux functions, (68) and (78), involve the constant and diverging 
(linear in x) terms. In our approach, the diverging (linear in x) 
terms are generated from dh1G/dx, dh1M/dx, dh1FM/dx and dh1F0/
dx terms in equations (42)–(46). Sum of these terms gives −3x/
(2a2) which exactly matches to the corresponding term in the 
outer solution, compare equations  (68) and (78). The impor-
tance of matching of such divergent terms has been commented 
upon in [7, 10, 11], however, it appears, that the treatment of 
these terms is different between [7, 11 and 10]. Only general 
discussion but no expressions is given in [7, 11]. Reference [10] 
has only asymptotic limit of the diverging terms and we unable 
to precisely compare our expressions with those in [10].
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