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Abstract— A study of electromagnetic wave propagation in a dense plasma layer when the
plasma frequency is higher than the wave frequency is presented. Under such conditions, the
wave amplitude is usually exponentially attenuated due to collisionless skin effect. It is shown
that absolute, 100%, transparency can be achieved through resonant excitation of evanescent
modes by a diffraction grating placed into vacuum preceding the plasma layer.

1. INTRODUCTION

The behavior of surface modes is the subject of much current research. Surface modes are (expo-
nentially) localized eigen-modes which exist at the interfaces of two regions with opposite signs of
the dielectric constants. A closely related field is the study of propagation of the electromagnetic
radiation in metamaterials, which are materials with negative dielectric permittivity ε and nega-
tive permeability µ. The increased interest in surface modes has been driven by the tremendous
potential to guide and manipulate electromagnetic radiation at the subwavelength scales below the
diffraction limit in composite devices involving metallic nanostructures. The electromagnetic waves
in these devices take the form of surface waves (Surface Plasmons) supported by free electrons in
the metal and localized at the metal-dielectric interfaces [1–5].

Inside a dense region, electromagnetic wave energy is carried by evanescent modes. The general
solution inside a medium of negative permittivity is a sum of two exponential functions, one that
decays and the other one that grows with the distance. The corresponding component of the time
averaged Poynting vector may become finite when the growing and decaying evanescent modes are
superimposed with a finite phase shift. The condition of the absolute transparency is equivalent to
the resonant condition for the excitation of the surface plasma mode. At resonance, the Poynting
flux inside the slab becomes equal to that of the incident radiation, and the opaque plasma slab
becomes absolutely transparent [6].

One can find in the literature studies of various media that allow signal transmission via am-
plification of evanescent waves through surface modes. General conditions for resonant signal
transmission via a two-layer structure were studied in [7, 8], and a three-layer structure was consid-
ered in [9, 10]. In [8] a two-layer structure consisting of a layer of rarified plasma with 0 < ε1 < 1
of width a1 and a layer of dense plasma with ε2 < 0 of width a2 was considered, and it was shown
that total signal transmission is achieved if the effective dielectric constant of the total structure
is zero, i.e., ε̄ ≡ ε1a1 + ε2a2 = 0. The three layer structure considered in [10] consisted of a dense
plasma layer nested between two layers of rarified plasma. It was shown in [10] that in contrast to
a two-layer structure, resonant signal transmission for such three-layer model can be achieved by
choosing the width of each boundary layer comparable in size with the width of the dense plasma.
Furthermore, the bandwidth of the transmitted wave is much larger than in the two-layer struc-
ture. In [11, 12], resonant transmission of an electromagnetic wave through a dense plasma layer
was achieved by placing a diffraction grating into the vacuum layer on each side of the plasma.

In the present paper, we study resonant signal transmission through surface modes and possible
applications to the problem of communication interruption with an aircraft surrounded by a dense
plasma layer (the black-out problem) [13–15]. In that application, the model with two diffraction
gratings is not useful, because one cannot place a diffraction grating on the exterior side of the
plasma layer. The question is weather resonant transmission can be achieved by using only one
diffraction grating (along the side of the aircraft) which precedes the dense plasma layer. This paper
is an attempt to answer this question. Using a model for the diffraction grating similar to the one
in [11, 12] for plasma parameters relevant to hypersonic flights [13], we show that by choosing
appropriate parameters for the diffraction grating, resonant transmission of electromagnetic waves
through a dense plasma layer is possible even if only one diffraction grating is being used.
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2. GENERAL EQUATIONS AND BOUNDARY CONDITIONS FOR THE DIFFRACTION
GRATING

We consider the propagation of electromagnetic radiation through a multi-layer structure as de-
picted in Fig. 1. A dense plasma layer is nested between two semi-infinite vacuum (air) layers. An
electromagnetic wave is incident from a semi-infinite vacuum (air) region on the left. The trans-
mitted wave propagates into a semi-infinite vacuum (air) region on the right. In general, there
are incident and reflected waves on the left, but there is no reflected wave on the right. When a
dense plasma layer is present within the structure, the reflection coefficient is large, and most of
the radiation is reflected due to the skin effect screening. The question is whether by placing a
diffraction grating into the vacuum region to the left of the dense plasma (at z = 0) it is possible
to create conditions when the reflection is low and most of the radiation is transmitted through the
structure.

We consider a p-polarized normal incident wave: H =(Hx, 0, 0), and E =(0, Ey, Ez). The wave
equation for a non-homogenous (in y and in z) medium is then
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The dependence in the y direction is always periodic Hx ∼ exp(ikyy), with ky real. We assume
that the permittivity ε is defined by a step-function such that ε = 1 in the vacuum layer and
ε = εp < 0 in the dense plasma layer. At the plasma-vacuum interfaces one finds from (1) the
boundary conditions

[Hx]+− = 0 and
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−
= 0 (2)

where, “+” and “−” indicate the corresponding limits from the right and left at the plasma-vacuum
interface.

To model the diffraction grating interface, we use an equation similar to the one in [11, 12]:
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where q is a wave vector of the grating, α is a modulation parameter, hg is the grating thickness,
and εg is the grating dielectric constant. Note that due to the delta function, Equation (3) is used
only in the neighborhood of the grating and produces the following boundary conditions:
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Hx|z=0 (4)

where kg = εghgω
2/c2, and “+” and “−” indicate the corresponding limits from the right and left

at the diffraction grating.
The role of the diffraction grating is to generate the sideband harmonics so that the total solution

(neglecting higher harmonics) is of the form

Hx = H0e
ikyy + H+ei(ky+q)y + H−ei(ky−q)y (5)

where H0 is the amplitude of the principal harmonics (the same as the incident wave), and H+ and
H− are the amplitude of the sidebands. We will consider here only a normal incidence wave, thus,
H+ = H−, and it is sufficient to consider only H0 and H+. Note that H0 and H+ are corresponding
solutions of (1) and, in each layer, they can be represented as

H0 = A (exp(γz) + Γ exp(−γz)) and H+ = A+
(
exp(γ+z) + Γ+ exp(−γ+z)

)
(6)

for appropriate γ and γ+ and corresponding A, A+, Γ, Γ+. In the vacuum regions, the incidence
wave is propagating and γ = ik0, k0 = ω/c, while the sideband are evanescent with γ+ = −γ+

v ,
where γ+

v =
√

q2 − k2
0, q > k0. In the dense plasma layer, the incidence wave is evanescent with

γ = −γp, with γp =
√−εpω/c, and so are the sidebands with γ+ = −γ+

p , with γ+
p =

√
q2 − εpω2/c2.
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3. WAVE IMPEDANCE AND TRANSPARENCY

To study our model, we will use the impedance matching technique described in [10]. The local
wave impedance is defined by

Z = −Ey

Hx
= − i

ωε0ε

1
H

∂Hx

∂z
(7)

In the semi-infinite vacuum region z < 0, the incidence wave is propagating and its impedance,
according to (6) and (7) is

Z3(z) = Z0
(exp(ik0z)− Γ3 exp(−ik0z))
(exp(ik0z) + Γ3 exp(−ik0z))

(8)

where Z0 = k0/(ωε0) is the vacuum characteristic impedance. The sideband is evanescent with
Γ+

3 = 0 and its impedance is
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(9)

In the vacuum region, 0 < z < a, the corresponding impedances for the incidence wave and the
sideband are
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where Z+
0 = iγ+

v / (ωε0) is the characteristic impedance of the vacuum region for the sidebands. In
the plasma region, a < z < d = a + l, the corresponding impedances are
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where Zch = iγp/(ωε0εp) and Z+
ch = iγ+

p /(ωε0εp). In the last semi-infinite vacuum region,
z > d = a + l, the impedances of the transmitted propagating wave and of the corresponding
sideband are

Z1(z) = Z0 and Z+
1 (z) = Z+

0 (12)

The quantity of primary interest is the reflection coefficient which is determined by the expression

Γ3 =
Z0 − Z3(0)
Z0 + Z3(0)

(13)

If Γ = 0 then there is a 100% wave transmission. Thus, the transparency condition is

Z3(0) = Z0 (14)

4. MATCHING CONDITIONS AND RESONANCE

At the plasma-vacuum boundaries, the impedance is continuous. Hence,

Zp(d) = Z1(d) = Z0 Z+
p (d) = Z+
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The matching condition at the diffraction grating follows from (4) and yields:
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According to (14), resonance is achieved when

Z3(0) = Z0 = Re(Z2(0)) (17)
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Equation (17) holds if
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where Lp = tanh (γpl), Lv = tan(k0a). From Equation (19), we find Lv, which yields the width of
the vacuum layer a needed for resonant transmission to take place:

a =
1
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tan−1(Lv) (20)

Note that, using the equations from the previous section, we find
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and we obtain the dispersion relation
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Our computations have shown that for an appropriate choice of parameters kg and α, reso-
nant transmission of electromagnetic waves is possible. In fact, if kg and α are chosen so that
q ∈ (21.27, 21.284) ∪ (21.39,∞), the right-hand side of (23) is positive, and resonant transmission
will always take place. This is illustrated in Fig. 2 which shows the dependence of the reflection
coefficient on the diffraction wave vector q for α2k2

g = 4000, l = 0.02m and εp = −35. Resonant
transmission takes place at about q = 21.6.

diffraction grating
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Figure 1: Plasma layer and a diffraction grating.
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Figure 2: Reflection coecient versus diffraction wave
vector.

5. CONCLUSION

Anomalously high transmission of electromagnetic radiation through a dense plasmas layer has
been observed in experiments and numerical simulations. In those observations, electromagnetic
wave transmission resulted from resonant amplification of evanescent waves by surface modes at
the plasma boundary. In particular, in [11, 12], resonant transmission through dense plasma was
achieved by placing the plasma layer between two diffraction gratings. In some applications, how-
ever, it is not possible to create such symmetric configuration. For example, to investigate the
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communication black-out problem during hypersonic flight, one could put the diffraction grating
along the side of the aircraft, but not at the exterior side of the plasma layer. It is therefore
important to understand whether resonant transmission can be achieved by placing the diffraction
grating only on one side of the plasma layer. This is the configuration we have considered in the
present paper. Using an equation for the diffraction grating similar to the one in [11, 12], we were
able to demonstrate that for an appropriate choice of parameters, resonant transmission of elec-
tromagnetic waves through a dense plasma layer is possible even if only one diffraction grating is
used. In our investigation, we neglected the effects of dissipation caused by electron-atom collisions
and/or by electron thermal motion [16, 17]. Those effects could be especially detrimental for the
narrow resonances situation. On the other hand, electron thermal motion effects could lead to the
appearance of new resonant modes and additional transparency regimes [8]. All those questions go
beyond the scope of this paper and are left for future studies.
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