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Abstract—A study of electromagnetic wave propagation in dense
plasmas when the wave frequency is below the cut-off frequency is
presented. A three-layer symmetric structure consisting of dense
plasma nested between two boundary layers is studied analytically
and numerically. The permittivity of the dense plasma is negative,
while the permittivity of each boundary layer is greater than 1. It
is shown that total transmission of an electromagnetic wave can be
achieved if an adequate incidence angle, dielectric permittivity of the
boundary layers and corresponding boundary layer widths are chosen.
It is found that plasma transparency is due to resonance between the
evanescent waves in the dense plasma region and the standing waves in
the boundary layers. Resonance conditions are derived analytically and
the relationship between the corresponding parameters of the problem
are studied numerically.

1. INTRODUCTION

Electromagnetic wave propagation in dense plasmas is a fundamental
problem relevant for many applications of space [1–3] and laboratory
plasmas [4–6]. A particular problem occurs when the electromagnetic
wave has the frequency below the electron plasma frequency, so
that the wave is reflected from the plasma. This phenomenon is
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used in various applications, including plasma density diagnostic.
It presents, however, a major problem for radio communications
through dense plasmas which is created around a vehicle at re-entry,
or during hypersonic flight [7–10]. Characterization of reflected and
absorbed electromagnetic radiation is also of great interest for radar
applications [11–13]. Various numerical methods have been employed
to calculate the reflection, absorption, and transmission in different
situations [12, 14, 15]. In the present paper, in order to gain a better
understanding of the theory, we investigate the propagation of the
electromagnetic waves in a one-dimensional configuration which, in
part, can be treated analytically. We emphasize a new regime of
translumination of dense plasma [16] via resonance of evanescent and
propagating modes.

Our goal is to investigate the signal transmission through a three-
layer structure, assuming a sharp interface between the layers. By
itself, the dense plasma layer is opaque to electromagnetic waves with
frequencies below the plasma frequency (ω < ωpe). It was shown in [17]
that transparency can be achieved by including on each side of the
dense plasma with negative permittivity (ε < 0), a boundary layer of
rarefied plasma with permittivity 0 < ε < 1. In that case, transparency
is due to resonance of evanescent waves in the dense plasma layer and
the boundary layers. In the present paper, we consider a layer of
dense plasma nested between two boundary layers of a material with
a dielectric permittivity ε > 1. Such a configuration may occur, for
example, in microwave plasma reactors [18]. We show that in this case,
the whole structure becomes transparent to the incident wave if the
plasma density, the dielectric permittivity of the boundary layers and
the width of the boundary layers are chosen appropriately. Employing
the impedance method [17], we derive the resonance condition for
absolute transmission, which shows that the achieved transparency to
electromagnetic waves is a result of a specific resonance involving the
evanescent waves in the middle plasma region and the propagating
waves in the boundary layers. Although we have considered only
symmetric structures, the phenomena we have found exist also for
asymmetric configurations.

Recently, manipulation and amplification of evanescent waves
became an important tool for the development of various plasmonics
devices [19]. Evanescent waves can be amplified in a medium with
negative permittivity thus providing energy transport through opaque
materials [20–23]. Typically, amplification is achieved by creating
conditions for resonant excitation of surface modes [17, 21, 22, 24–
26]. The nonlinear interactions may also lead to anomalous plasma
transparency [27]. In the configuration we present here, we have found
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another situation when the surface modes are absent, but there is
a specific resonance between the propagating waves and evanescent
modes. Our results could be considered somewhat similar to an
inverted Fabry-Perot resonator [28, 29]. However, in a Fabry-Perot
resonator, a standing wave is formed by propagating electromagnetic
waves which are reflected by the end mirrors, which is not the case
in the configuration we consider. We note also that reflectionless
transmission for special plasma density profiles may also occur in non-
stationary regimes [30, 31].

The paper is organized as follows. In Section 2, we formulate the
problem and present the basic equation. In Section 3, we derive the
resonant conditions for a three-layer structure. In Section 4, we discuss
the results.

2. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Consider the one-dimensional symmetric three-layer problem depicted
in Fig. 1 where a dense plasma layer of negative permittivity is nested
between two boundary layers of equal width with permittivity greater
than 1. To the right and left, the structure is bounded by a semi-
infinite vacuum (air) region. Assume that parameters of the medium
vary in the z direction, and that the interface between any two layers
is located at z = aj , j = 1, 2, 3, 4. An incident electromagnetic wave
with the frequency ω is propagating to the right. Most of the wave
is reflected or absorbed by the plasma. The question is under what
conditions can the wave be transmitted through all three layers.

We here consider only a plasma profile represented by a step-
function, such that each layer is homogeneous, i.e., the plasma density
in each layer is constant, but may vary from layer to layer. We assume
that there is no plasma flow along the z-axis. Moreover, we assume
that the frequency of the incident wave is sufficiently weak so that the
ions remain immobile in the rf field, and thus, the current of the system
is given by the electron conduction current. Furthermore, we assume
that the transmitted electromagnetic wave is of the form

E=(0, Ey(z), Ez(z)) exp(iky−iωt) and H=(Hx(z), 0, 0) exp(iky−iωt)
(1)

where k = sin(θ)ω/c with c being the speed of light. Note that the
wave propagates at some angle θ with respect to the z-axis.

For simplicity, we consider a cold, collisionless, non-magnetized
plasma with permeability µ = 1. According to the Maxwell equations,
the electromagnetic wave propagation in the whole three-layer system
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Figure 1. Schematic representation of electromagnetic wave
propagation through a three-layer medium.

is governed by the following wave equation

ε
d

dz

(
1
ε

dHx

dz

)
− γ2(ε, θ)Hx = 0 (2)

with

γ2(ε, θ) = k2(θ)− ε
ω2

c2
(3)

where

ε(z) = 1− ω2
pe(z)
ω2

(4)

is the dielectric permittivity of the system and

ωpe(z) =
(

e2n(z)
ε0m

)1/2

(5)

is the electron plasma frequency. Here e is the electron charge, m is
the electron mass, n is the plasma density and ε0 is the permittivity
of the free space. Note that ε is a step function. In in each layer j,
it is constant, and we will denote it by εj . Assume that ε2 < 0, while
ε1 = ε3 > 1.

Equation (2) can be solved analytically in each region, yielding a
magnetic field of the form

Hx(z) = H0(exp(αz) + Γ exp(−αz)) (6)
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where α2 = γ2(εj , θ), H0 is the amplitude of the incidence wave,
and Γ is the reflection coefficient. In order to compute the reflection
coefficient of the incidence electromagnetic wave, we use the impedance
approach [17]. The local wave impedance is defined as the continuous
function

Z = −Ey

Hx
(7)

where, from the Maxwell equations,

Ey =
i

ωε0ε

dHx

dz
(8)

Hence,

Z = Zch
1− Γ exp(−2αz)
1 + Γ exp(−2αz)

(9)

where
Zch = − iα

ωε0ε
(10)

is the characteristic impedance. Note that the characteristic impedance
is exactly the impedance of the incidence wave. In particular, in the
vacuum regions, z < 0 and z > a4, we find α = iω cos(θ)/c and

Zch = Z0 =
cos(θ)
cε0

(11)

In what follows, we will denote by Z the impedance normalized to the
vacuum impedance (i.e., Z → Z/Z0).

Consider first the characteristic impedance in each region,
normalized to the vacuum impedance. In the boundary layers (i.e.,
a1 ≤ z ≤ a2 and a3 ≤ z ≤ a4), we find that α = ikz where

kz =
ω

c

√
ε1 − sin2(θ) (12)

with ε1 > sin2(θ), and the electromagnetic wave (6) is propagating.
The normalized characteristic impedance of each boundary layer is
then

Z1 = Z3 =
Zch

Z0
=

kz

ωε0ε1Z0
=

√
ε1 − sin2(θ)
ε1 cos(θ)

(13)

In the dense plasma region, a2 ≤ z ≤ a3, for ω < ωpe, it follows
that α = −γ where

γ =
ω

c

√
sin2(θ)− ε2 (14)
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is real. In this case, the incident wave becomes evanescent in the
plasma layer and decays rapidly. Thus, the characteristic impedance
of the dense plasma layer is

Z2 =
Zch

Z0
=

iγ

ωε0ε2Z0
=

i
√

sin2(θ)− ε2

ε2 cos(θ)
(15)

Assume that in the vacuum region where z > a4, Γ = 0. Then,
Z = 1 is constant in the whole region, and in particular, Z(a4) = 1.

We can now compute the normalized local impedance at each
interface. Consider one of the layers aj ≤ z ≤ aj+1, j = 1, 2, 3 and
let lj = aj+1 − aj . Then, Zin = Z(aj) is the input impedance and
ZL = Z(aj+1) is the load impedance. From Equation (9), we find

Zin = Zj
ZL + Zj tanh(−αlj)
Zj + ZL tanh(−αlj)

(16)

In particular, with l1 = l3,

Z(a3) = Z1
1 + Z1L1

Z1 + L1
(17)

Z(a2) = Z2
Z(a3) + Z2L2

Z2 + Z(a3)L2
(18)

Z(0) = Z1
Z(a2) + Z1L1

Z1 + Z(a2)L1
(19)

where
L1 = tanh(−ikzl1) = −i tan(kzl1) (20)

and
L2 = tanh(γl2) (21)

For the semi-infinite vacuum region z < 0, we find from (9) the
relationship between the reflection coefficient Γ and the normalize
impedance at z = 0:

Γ =
1− Z(0)
1 + Z(0)

(22)

Thus, full transparency of the medium is then achieved if Γ = 0. In this
case, the impedance at z = 0 is precisely the vacuum impedance, i.e.,
Z(0) = 1. Using this and Equations (17)–(19), we find the following
condition for absolute transparency:

L2L
2
1

(
Z4

1 − Z2
2

)
+ 2L1Z1Z2

(
Z2

1 − 1
)

+ L2Z
2
1

(
Z2

2 − 1
)

= 0 (23)

which is a quadratic equation in L1. Once L1 is found, the
corresponding resonant boundary layer width l1 can be obtained from
Equation (20).
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In summary, using the technique described above, we can compute
the reflection coefficient and study the relationship between the
absolute transparency of a three-layer structure and the corresponding
plasma parameters. In the following section, we will illustrate those
ideas, using some specific examples.

3. TRANSPARENCY OF SYMMETRIC THREE-LAYER
STRUCTURES

In this section, we analyze the conditions for resonant transparency
of a three-layer structure. Suppose that the incidence frequency is
ω/(2π) = 1GHz, and that the width of the dense plasma layer with
negative permittivity is l2 = 0.02m. As mentioned above, the resonant
boundary layer width can be obtained from Equation (20), after first
solving the quadratic Equation (23) for L1. According to (20), L1

must be imaginary. Moreover, the function L1 is periodic in l1 and
the period is p = π/kz. Therefore, one obtains an infinite number of
positive values for l1 for a given L1. Indeed,

l1 = l0 +
π

kz
n (24)

for n = 0, 1, 2, 3 . . . where

l0 =
1
kz

arctan(iL1) (25)

We will refer to l0 as the fundamental boundary layer width. Note
that l0 > 0 if Im(L1) < 0, and it follows from (23) that Z1 < 1.

Solving Equation (23), we find that L1 is imaginary, only if the
discriminant D is not positive, i.e.,

D =
Z2

1Z2
2

(
Z2

1 − 1
)2

L2
2

(
Z4

1 − Z2
2

)2 +
Z2

1

(
1− Z2

2

)
(
Z4

1 − Z2
2

) ≤ 0 (26)

or equivalently,
(
Z2

1 − 1
)2 − L2

2

(
Z4

1 − Z2
2

) (
1− 1

Z2
2

)
≥ 0 (27)

Thus, for a given incidence angle, resonant transparency can be
achieved only if one chooses the boundary layer permittivity in such a
way that condition (27) is satisfied. Note that since 0 < L2 < 1 and
0 < (Z2

1 − 1)2 < 1 condition (27) can be satisfied only if |Im(Z2)| is
sufficiently large. According to (15), |Im(Z2)| is decreasing as ε2 < 0 is
decreasing. Thus, for sufficiently dense plasma ωpe À ω, condition (27)
can never be satisfied, and absolute transparency cannot be achieved,
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no matter how the boundary layer permittivity is chosen. This can
also be seen by representing (27) in the following form

(
ε1 − sin2(θ)
ε2
1 cos2(θ)

− 1
)2

−L2
2

((
ε1 − sin2(θ)

)2

ε4
1 cos4(θ)

+
sin2(θ)− ε2

ε2
2 cos2(θ)

)(
1 +

ε2
2 cos2(θ)

sin2(θ)− ε2

)
≥ 0 (28)

Indeed, for sufficiently large |ε2|, inequality (28) cannot be satisfied
and absolute transparency cannot be achieved. It is obvious from (28)
that the conditions for achieving absolute transparency depend on the
choice of the incident angle and the plasma density. This illustrated
in the Tables 1–4 where one can see the changes for different incident
angles in the fundamental boundary width l0 (in meters), the minimal
boundary layer permittivity εmin

1 and the period p for the resonant
boundary layer width as the plasma density increases.

Consider first the incidence angle θ = 0. Let ωpe/ω = 2.5.
Then, ε2 = −5.25 and condition (28) is satisfied for ε1 ≥ 6.926. In
particular, choosing ε1 = 6.926 yields a unique solution L1 of (23) of
multiplicity 2 (i.e., D = 0 in (26)) and a corresponding fundamental
boundary layer width l0 = 0.0133 m. For ε1 > 6.926, we find two
imaginary solutions of (23) (i.e., D < 0) and two corresponding
fundamental boundary layer widths. Fig. 2 shows the dependance

Table 1.

θ = 0
ωpe/ω εmin

1 l0 p
2.5 6.926 0.0133 0.0569
3 10.93 0.0104 0.0453
4 28.16 0.0058 0.0282
5 91.12 0.0024 0.0157
6 − − −

Table 2.

θ = π/6
ωpe/ω εmin

1 l0 p
2.5 10.32 0.0097 0.0472
4 47.7 0.0036 0.0218
5 − − −

Table 3.

θ = π/4
ωpe/ω εmin

1 l0 p
2.5 23.5 0.0048 0.0312
3 − − −

Table 4.

θ = π/3
ωpe/ω εmin

1 l0 p
2.5 − − −
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Figure 2. Fundamental boundary layer width versus boundary layer
permittivity.
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Figure 3. Periodicity of the reflection coefficient magnitude with
respect to the boundary layer width.

of the fundamental boundary layer width on the boundary layer
permittivity for the above choice of plasma parameters. Note that
the fundamental boundary layer width is comparable in size to the
dense plasma layer and is decreasing as ε1 is increasing. Fig. 3 shows
the reflection coefficient as a function of the boundary layer width for
ε1 = 6.926. As expected, absolute transmission occurs periodically
with the period p = π/kz = 0.0569. Fig. 4 shows the reflection
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coefficient as a function of the boundary layer width for ε1 = 8. One
can clearly see absolute transparency at the two fundamental boundary
layer width which repeats periodically. Fig. 5 shows the magnetic wave
field during resonance when 100% of the incident wave is transmitted.
The boundary layers prevent the rapid decay of the wave amplitude in
the plasma region.
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For θ = 0, and ωpe/ω = 3, we find ε2 = −8. In that case,
condition (23) is satisfied if ε1 ≥ 10.93, and the corresponding
fundamental boundary layer width is l0 ≤ 0.0104 m. Choosing ε =
10.93, absolute transmission occurs at l0 = 0.0104 m and is repeated
periodically with respect to the boundary layer width with the period
p = 0.0453. Note that as the plasma density is increased for θ = 0,
ε1 becomes larger, while the fundamental boundary width and the
period become smaller. In fact, for ωpe/ω = 4, we find ε1 ≥ 28.16,
l0 ≤ 0.0058m, and p ≤ 0.0282m. For θ = 0 and ωpe/ω = 5, we
find ε1 ≥ 91.12, l1 ≤ 0.0024 m, and p ≤ 0.0157. For ωpe/ω = 6,
condition (23) cannot be satisfied and absolute transparency cannot
occur. Qualitatively, Figs. 2–5 do not change as the plasma density is
increased.

Changes in the incidence angle will affect the values of parameters
needed for (23) to be satisfied (see Tables 1–4). Although qualitatively
Figs. 2–4 remain the same, and the characteristic behavior with respect
to an increase in the plasma density does not change, the actual value
of the boundary layer permittivity and the fundamental boundary layer
width which insure transparency changes. For example, if θ = π/6 and
ωpe/ω = 2.5 then (23) is satisfied if ε1 ≥ 10.32, which corresponds to
the fundamental boundary layer width l0 ≤ 0.0097m and a period
p = 0.0472. For θ = π/6 and wpe/ω = 4, we find ε1 ≥ 47.7,
l0 = 0.0036m, and p = 0.0218m. For ωpe/ω = 5 no absolute
transmission can occur. For θ = π/4 and ωpe/ω = 2.5, we find
ε1 = 23.5, l0 = 0.0048m, and p = 0.0312. There is no resonant
transmission for ωpe/ω = 3. For θ = π/3, there is no resonant
transmission for ωpe/ω = 2.5. Thus, if the incidence angle is increased
the boundary layer permittivity has to be increased. However, for a
sufficiently large incidence angle, transparency cannot be achieved for
any choice of ε1.

In summary, whether transparency of a three-layer structure can
be achieved depends on the plasma density and on the incidence
angle. For an appropriate choice of those parameters, one can find
corresponding values of the boundary layer permittivity when absolute
transmission can be achieved. In all cases, the fundamental boundary
layer width is quite small. The absolute transmission is periodic with
respect to the boundary layer width. Thus, when the plasma density
and incidence angle are chosen appropriately, there are infinitely many
choices for the boundary layer widths such that transparency can be
achieved.
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4. DISCUSSION

Alternating layers of materials with negative and positive permit-
tivities are typical structures of many plasmonic designs [19, 24, 25].
Three-layer structures also naturally occurs in bounded plasmas [32].
Plasma boundary layers formed at hypersonic speeds have a more com-
plicated profile with a typical feature of a three-layer structure (sheath-
plasma-sheath) [33]. Therefore, studies of three-layer structures are
relevant to a variety of space and laboratory plasmas applications.

In the present paper, we presented a study of resonant
transmission of electromagnetic waves through a three-layer structure,
consisting of dense plasma and two boundary layers, such that the
permittivity of the dense plasma is negative, while the permittivity
of the boundary layers is greater than 1. For the plasma width, we
chose l2 = 0.02m as a typical example of the plasma layer around a
hypersonic vehicle [33].

Transmission of electromagnetic waves through a three-layer
medium was studied in [17] in the case when the electromagnetic wave
in each of the three layers was evanescent and decayed rapidly. In
that regime, the amplification of evanescent waves was triggered by
surface wave resonance. In the present paper, as in [17], the plasma
permittivity ε2 in the middle region is also negative and the wave
in that region is evanescent. In contrast to [17], the waves in the
boundary layers are propagating. Thus, no surface mode excitation
can occur in the present situation. We have shown that there exists a
specific resonance condition, given by Equation (23), at which absolute
transparency occurs due to resonance of evanescent modes in the
central region and propagating modes in the end regions. Resulting
amplification of evanescent modes lead to resonant transmission of the
electromagnetic wave through a dense plasma layer.

Studying the relationship between the resonant incidence angle,
the boundary layer permittivity and the plasma frequency, we have
found that transparency of a three-layer structure can be achieved
only for an appropriate choice of those parameters. In particular,
for a normal incidence angle, θ = 0, transparency can be achieved
for a plasma frequency up to 5 · 109 GHz, for θ = π/6, transparency
is possible for a plasma frequency up to 5 · 109 GHz, for θ = π/4,
transparency is possible for a plasma frequency up to 2.5 · 109 GHz,
while for θ = π/3 there is no resonant transmission for the plasma
frequency 2.5 · 109 GHz. In all case, when resonant transmission is
possible, the permittivity of the boundary layer is quite large. The
smallest boundary layer permittivity is ε1 ≈ 7 for a normal incidence
wave and plasma frequency 2.5 · 109 GHz. As the plasma frequency is
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increasing, the boundary layer permittivity increases drastically.
When the plasma density, the incidence angle and the boundary

layer permittivity are chosen appropriately, resonant transmission
occurs for infinitely many choice of boundary layer width. The smallest
of them is comparable in size with the plasma layer and can be made
quite small by increasing the permittivity of the boundary layer. The
reflection coefficient is a periodic function of the boundary layer width.

In our study, we have neglected the effects of dissipation. It
is worth noting that in the presence of dissipation, the resonance
investigated in our work will lead to an increased energy absorption.
This is important for a number of laboratory plasma devices [18, 34]
and radar applications [35, 36]. These studies are left for future work.

In summary, for a three-layer structure, one can observe total
transmission of an electromagnetic wave by inducing a standing wave
resonance. For a given plasma density, this can be achieved by
choosing an adequate incidence angle, boundary layer permittivity and
a corresponding boundary layer width. We expect that the phenomena
of resonant transmission in this configuration can be utilized in a
number of plasmonic and communications applications.
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