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Resonant Transmission of Electromagnetic Waves in
Multilayer Dense-Plasma Structures

Natalia Sternberg and Andrei I. Smolyakov

Abstract—An analysis of electromagnetic-wave propagation in
dense plasmas when the wave frequency is below the cutoff fre-
quency is presented. Under such conditions, the wave amplitude
is usually exponentially attenuated due to collisionless skin effect.
It is shown that combining multiple plasma layers of various den-
sities induces a surface-wave resonance, which greatly enhances
electromagnetic-wave transmission. Absolute transmission can be
achieved even for plasma thickness of many skin depths. Resonant
conditions are investigated analytically and numerically.

Index Terms—Electromagnetic-wave transmission, evanescent
wave, skin effect, surface-wave resonance.

I. INTRODUCTION

IN RECENT years, properties of surface waves have at-
tracted great interest. It has been suggested for some time

that surface-wave resonance is responsible for the dramatic
enhancement (1014–1015 fold) of the radiation from molecules
absorbed by a metal surface [1], [2]. It has recently been real-
ized, both in theoretical and experimental studies, that evanes-
cent waves amplified by resonance with a surface wave can be
used to transmit a visible range of electromagnetic radiation
through metal films [2]. This general ability to guide and ma-
nipulate evanescent waves in a media with negative permittivity
and negative permeability (metamaterials) became a subject of
an extremely vibrant research field with numerous applications
in near-field optics, nanophotonics, all optical computer com-
ponents, etc. [3]–[5].

In this paper, we study resonant propagation of electro-
magnetic radiation through a specific configuration of
dense plasmas. Our goal is to investigate the process of
electromagnetic-wave propagation through a layer of dense
plasma (with dielectric constant ε < 0) adjacent to layer(s) of
less dense plasma (ε > 0). A configuration of layers with di-
electric constants of opposite signs can be created artificially in
composite structures with alternating layers of metal films and
semiconductors in which the electron density can be controlled
externally by an electric field. In addition, an external magnetic
field can be used to control the plasma dielectric permittivity. A
somewhat similar configuration of several layers of dense and
rarefied plasmas can arise in laboratory and space plasmas.
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It is well known that in any bounded plasma, a thin sheath
forms between the quasi-neutral plasma and the material wall.
In the quasi-neutral plasma, the ion and electron densities are
practically equal, while in the sheath, the electron density is
very small [6], [7]. A sheath layer of low electron density
also forms at the plasma–vacuum interface if the plasma is
immersed into vacuum. As a result, a dense-plasma layer is
sandwiched between two layers of low-density plasma. Such
three-layer configurations occur near the edge of plasma con-
finement devices as well as around space vehicles. A typical
sheath–plasma–sheath structure was shown to form around an
aircraft during hypersonic flight [8]. It is therefore of interest
to investigate the resonant electromagnetic-wave propagation
through such structures and possible applications to the prob-
lem of communication interruption with an aircraft surrounded
by dense plasma (the black-out problem) [9]–[13].

General conditions for resonant signal transmission via a
two-layer structure were studied in [14] and [15], and a general
three-layer structure was considered in [16]. In this paper,
we investigate, in detail, the transmission through two- and
three-layer structures for a typical plasma that occurs during
a hypersonic flight. We use the impedance method, which is
compact, can be conveniently applied to multiple plasma layers,
and can therefore be used effectively for numerical simulation
of smooth profiles. Our results show that the deficiencies of
the two-layer model can be mitigated by choosing a symmetric
three-layer structure, where the dense plasma is bounded by a
layer of rarefied plasma on each side. Indeed, in contrast to a
two-layer structure, resonant signal transmission for our three-
layer model can be achieved by choosing the width of each
boundary layer comparable in size with the width of the dense
plasma. Furthermore, the bandwidth of the transmitted wave is
much larger than that in the two-layer structure.

This paper is organized as follows. In Section II, we formu-
late the problem and present the basic equation. In Section III,
we discuss the relationship between the wave impedance
and the reflection coefficient in a single-layer structure. In
Section IV, we discuss the impedance model for multilayer
structures and apply it to a two-layer medium. In Section V,
we study a symmetric three-layer structure. In Section VI, we
discuss the result.

II. FORMULATION OF THE PROBLEM AND

BASIC EQUATIONS

We consider the propagation of electromagnetic radiation
through a multilayer structure as shown in Fig. 1. An electro-
magnetic wave is incident from a semi-infinite vacuum (air)
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Fig. 1. Schematic representation of electromagnetic-wave propagation
through a multilayer medium.

region on the left. The transmitted wave propagates into a semi-
infinite vacuum (air) region on the right. In general, there are
incident and reflected waves on the left, but there is no reflected
wave on the right. When a dense-plasma layer is present within
the structure, the reflection coefficient is large, and most of
the radiation is reflected due to the skin-effect screening. The
question is whether it is possible to create conditions when the
reflection is low and most of the radiation is transmitted through
the structure.

For simplicity, we consider a 1-D model so that the plasma
density varies only in the z-direction. In general, the incident
wave has a finite component of the wave vector parallel to the
interface (y-direction). We consider a p-polarized wave so that
the electromagnetic field is represented by

E = (0, Ey(z), Ez(z)) exp(iky − iωt)

H = (Hx(z), 0, 0) exp(iky − iωt) (1)

where k = sin(θ)ω/c, with c being the speed of light and θ
being the angle of incidence. We assume a cold collisionless
nonmagnetized plasma with immobile ions in an RF field, such
that μ = 1. The plasma dielectric constant is then

ε(z) = 1 −
ω2

pe(z)
ω2

(2)

where

ωpe(z) =
(

e2n(z)
ε0m

)1/2

. (3)

From the Maxwell equations, one finds the following wave
equation for an inhomogeneous plasma

ε
d

dz

(
1
ε

dHx

dz

)
− γ2(ε, θ)Hx = 0 (4)

where

γ2(ε, θ) ≡ k2(θ) − ε
ω2

c2
. (5)

In the vacuum region (ε = 1), γ is imaginary and the wave
is propagating. In the dense-plasma region with ω2 < ω2

pe, γ
is real, the wave becomes evanescent, and the amplitude of the
transmitted wave is exponentially small. It is, however, possible
to amplify the amplitude of the transmitted wave through
resonance with the surface-wave eigenmode (see Section III).

For the multilayer structure under consideration, we assume
that inside each layer, the plasma density is constant, and thus, γ
is constant. Equation (4) can therefore be solved analytically in
each layer, where the fundamental solutions are represented by
exponential functions. The solutions in neighboring layers are
then matched at the interfaces. The matching condition is ob-
tained by integrating (4) over a small interval [aj − δ, aj + δ],
δ > 0, across the interface z = aj . In the limit δ → 0, this
yields continuity of (dHx/dz)/ε across the interface. Similarly,
one finds from the Maxwell equations that the components Hx

and Ey are also continuous.
For a multilayer structure, the transmission problem for

(4) can be formulated by the method of transfer functions,
where each interface and each uniform region is represented
by a 2 × 2 matrix. This method leads to a cumbersome and
computationally intensive final result, which is represented in
the form of a product of all of these matrices and their inverses.
Instead, we will use an alternative method based on the wave
impedance.

III. IMPEDANCE AND REFLECTION OF A

SINGLE-LAYER STRUCTURE

The relationship between the impedance and the reflection
coefficient for a propagating wave in a single layer is well
known. We now discuss that relationship for evanescent waves
to clarify the exposition and the notation in the following
sections.

Consider an electromagnetic wave in a single layer of a
uniform density. Consider the representation (1) for the elec-
tromagnetic wave field. For a wave propagating to the right
(incident wave), γ = ikz , kz > 0, and

Hx(z) =H0 exp(ikzz)

Ey(z) =Ey0 exp(ikzz)

Ez(z) =Ez0 exp(ikzz). (6)

For a wave propagating to the left (reflective wave), ikz is
replaced by −ikz in (6). For an evanescent wave decaying in
the positive z-direction (we call it an incident wave)

Hx(z) =H0 exp(−γz)

Ey(z) =Ey0 exp(−γz)

Ez(z) =Ez0 exp(−γz) (7)

for γ > 0, while for an evanescent wave growing in the positive
z-direction (we call it a reflected wave), −γ is replaced by
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γ in (7). Here, H0, Ey0, and Ez0 are the amplitudes of the
corresponding wave fields.

The local wave impedance is defined as

Z = −Ey

Hx
= − i

ωε0εHx

dHx

dz
. (8)

For an incident propagating wave, the impedance is therefore
given by

Z =
kz

ωε0ε
. (9)

In particular, in a vacuum layer (ε = 1), the impedance of a
propagating electromagnetic wave is

Z0 =
kv

ωε0
(10)

where kv = cos(θ)ω/c. The impedance of an incident evanes-
cent wave can also be defined by (8), which yields

Z =
iγ

ωε0ε
. (11)

Note that for both the propagating and evanescent cases,
the impedance of the corresponding reflective waves has the
opposite sign. Furthermore, in a uniform medium, ε is constant,
and the impedance of a single wave is constant throughout
the layer.

Suppose that the uniform layer under consideration is of
width l and dielectric permittivity ε. Solving (4) inside the layer,
we find that the magnetic wave field can be represented in
the form

Hx(z) = H0 (exp(−γz) + Γ exp(γz)) (12)

for 0 < z < l, where Γ is the reflection coefficient. The electric
field distribution within the layer is then

Ey =
iγ

ωε0ε
H0 (− exp(−γz) + Γ exp(γz)) (13)

and we define the local impedance by

Z(z) = −Ey(z)
Hx(z)

. (14)

For the electromagnetic wave field given by (12) and (13), the
local impedance becomes

Z(z) = Zch
exp(−γz) − Γ exp(γz)
exp(−γz) + Γ exp(γz)

(15)

where

Zch =
iγ

ωε0ε
(16)

is the characteristic impedance of the medium, which is exactly
the impedance of the incident wave [see (11)]. Note that unlike
in the case of a single wave, the local impedance given by (15)
is not constant throughout the layer.

Let Zin = Z(0) be the input impedance, and let ZL = Z(l)
be the load impedance. Then, according to (15)

Zin = Zch
1 − Γ
1 + Γ

(17)

ZL = Zch
exp(−γl) − Γ exp(γl)
exp(−γl) + Γ exp(γl)

. (18)

Equations (17) and (18) yield the following relationship be-
tween the input impedance and the load impedance:

Zin = Zch
ZL + Zch tanh(γl)
Zch + ZL tanh(γl)

. (19)

Thus, (19) gives the relationship between the impedance Z(0)
at the left boundary of the plasma layer and the impedance Z(l)
at the right boundary of the plasma layer.

Note that the earlier discussion holds for evanescent waves
(γ > 0) as well as for propagating waves (γ = −ikz, kz > 0).

For the semi-infinite vacuum region with z < 0, it holds that
Zch = Z0, and we find that

Γ =
Z0 − ZL

ZL + Z0
(20)

where ZL = Z(0).
Note that (19) defines the input impedance of the plasma

layer in terms of the impedance of the load and the characteris-
tic impedance of the layer. Equation (20) defines the reflection
coefficient for the wave incident from a semi-infinite vacuum
region with the characteristic impedance Z0 onto the impedance
load ZL.

Since the impedance is a continuous function, one can match
the corresponding values at each interface and obtain the im-
pedance of the whole structure by applying (19) sequentially.
This will be discussed in the following section.

IV. IMPEDANCE AND REFLECTION IN A

MULTILAYER STRUCTURE

The ideas of the previous section can be easily generalized
to obtain the formal solution of the transmission problem for a
multilayer structure and a general expression for the transmis-
sion coefficient.

Suppose that there are N plasma layers altogether shown in
Fig. 1. Suppose that lj is the width of the jth layer. Suppose
that the position of each interface is at z = aj with a1 = 0. To
the left and to the right of the plasma layers, for z < 0 and z >
aN+1, there are semi-infinite vacuum (air) regions. Consider an
arbitrary single uniform plasma layer in Fig. 1, for example,
the jth layer. Then, aj < z < aj+1, the width of the layer is
lj = aj+1 − aj , and the dielectric permittivity of the layer is
εj , which is constant. The magnetic field inside the layer can be
represented in the form

Hx = Hj (exp(−γjz) + Γj exp(γjz)) (21)

where γj = γ(εj , θ) > 0 is given by (5), Hj is the amplitude of
the incident wave, and Γj is the reflection coefficient. Here and
below, the index j refers to the jth layer.
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We consider the value of the impedance at z = aj as the input
impedance and denote it by Zj

in. The value of the impedance
at z = aj+1 is the load impedance, and we denote it by Zj

L.
Then, following the procedures in the previous section, we find
that the input impedance can be expressed in terms of the load
impedance as follows:

Zj
in = Zj

Zj
L + Zj tanh(γj lj)

Zj + Zj
L tanh(γj lj)

(22)

where

Zj =
iγj

ωε0εj
(23)

is the characteristic impedance of the jth layer. Since the
impedance is a continuous function, we can set

Zj+1
in = Z(aj+1) = Zj

L (24)

and (22) yields the following recursion formula for the compu-
tation of the local impedance at each interface Z(aj):

Z(aj) = Zj
Z(aj+1) + ZjLj

Zj + Z(aj+1)Lj
(25)

for all j = 1, . . . , N , where

Lj = tanh(γj lj). (26)

Note that Lj is a function of θ, εj , and lj . For γj > 0 and lj > 0,
it follows that 0 < Lj < 1.

In the vacuum region to the right of the multilayer struc-
ture, there is only the transmitted electromagnetic wave, and
therefore, Z(aN+1) = Z0, where Z0 is the vacuum impedance.
Thus, in order to compute the impedance at each interface
z = a1 = 0, . . . , z = aN+1, we can use the recursion formula
(25) starting at Z(aN+1) = Z0.

For the semi-infinite vacuum region z < 0 (see Fig. 1), the
load impedance is ZL = Z(a1) = Z(0), and according to (20),
the reflection coefficient is

Γ =
Z0 − Z(0)
Z(0) + Z0

. (27)

Thus, the calculation of the reflection coefficient for a prop-
agating wave when it reaches a multilayer plasma structure
can be reduced to the calculation of the impedance at the
plasma–vacuum interface. Full transparency of the medium can
be achieved when Γ = 0. In this case, the impedance at z = 0
has to be exactly the vacuum impedance.

To simplify the computations, we normalize the impedance
to the vacuum impedance

Z̃ =
Z

Z0
. (28)

Observe that Z̃ satisfies the recursion formula (25) with the
initial condition Z̃(aN+1) = 1, and the transparency condition
becomes

Z̃(0) = 1. (29)

Fig. 2. Schematic representation of electromagnetic-wave propagation
through a two-layer medium.

In what follows, we will use Z instead of Z̃, but we will always
mean the normalize impedance.

In order to illustrate the resonant excitation of surface modes
and resonant transmission, consider a two-layer structure in
Fig. 2. Then, N = 2, a1 = 0, and Z(a3) = 1. Applying (25)
twice, we find that

Z(a2) =Z2
1 + Z2L2

Z2 + L2
(30)

Z(0) =Z1
Z(a2) + Z1L1

Z1 + Z(a2)L1
. (31)

Substituting (30) into (31) and using the transparency condi-
tions (29), we find that the two-layer structure is transparent if

−Z2
2L1L2 + Z2

1L1L2 + Z1Z
2
2L2

+ Z2
1Z2L1 − Z1L1 − Z2L1 = 0. (32)

Suppose that the second layer is a sufficiently dense plasma,
so that the electromagnetic wave through that layer is evanes-
cent, i.e., Z2 is imaginary and L2 is real. Then, (32) has
a solution if the wave through the first layer (the boundary
layer) is also evanescent, i.e., Z1 is imaginary and L1 is real.
Equation (32) is therefore equivalent to the following system of
equations:

Z2
1 = Z2

2 (33)

Z1Z
2
2L2 + Z2

1Z2L1 − Z1L2 − Z2L1 = 0 (34)

which yield the solution

Z1 = −Z2 L1 = L2 (35)
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Fig. 3. Resonant boundary layer permittivity versus resonant incidence angle
for a two-layer structure.

or equivalently

γ1

ε1
= − γ2

ε2
(36)

l1 =
γ2

γ1
l2. (37)

Furthermore, by using (5) and (36), we find that the absolute
transparency occurs if

θ = arcsin
(√

ε1ε2
ε2 + ε1

)
. (38)

Equation (36) is exactly the dispersion relation of the sur-
face wave between the two layers, which is in resonance
with the incident wave. This is the first condition needed
for absolute transparency [14], [15]. Note from (36) that for
absolute transparency, ε1 and ε2 must have opposite signs. The
second condition for absolute transparency is given by (37). It
shows the relationship between the widths of the layers and
their permittivity, which is the matching condition required
for absolute transparency. In particular, for a sufficiently dense
plasma, γ2/γ1 > 1 holds, and hence, l1 > l2.

Observe from (38) that θ = 0 cannot be a resonant angle.
Furthermore, for a given permittivity ε2, there is a one-to-one
correspondence between the resonant incidence angle and the
permittivity of the corresponding resonant boundary layer ε1.
If, in addition, the plasma width l2 is given, then there is also a
one-to-one correspondence between the resonant incident angle
and the resonant width of the boundary layer. This is shown in
Figs. 3 and 4 for ε = −35 and l2 = 0.02 m. Note that a larger
resonant incidence angle requires a larger resonant boundary
layer permittivity and a smaller resonant boundary layer width.
Still, the boundary layer width is quite large, compared to the
width of the plasma layer. For example, the resonant incidence
angle θ = 1.2910 requires ε1 = 0.9 and l1 = 0.78 m. Fig. 5
shows the dependence of the magnitude of the reflection coeffi-

Fig. 4. Resonant boundary layer width versus the incidence angle in a two-
layer structure.

Fig. 5. Magnitude of the reflection coefficient versus the incidence angle for
a two-layer medium; the resonant angle is θ = 1.2910.

cient Γ on the incidence angle and illustrates that the incidence
angle θ = 1.2910, indeed, produces resonant conditions, i.e.,
Γ = 0.

Note that ε2 = −35 corresponds to the plasma frequency
ωpe/(2π) = 6 GHz typical around the aircraft during hyper-
sonic flight and the incident frequency ω/(2π) = 1 GHz which
is within the GPS range [8]. Throughout this paper, we will
use this value of ε2 together with the value l2 = 0.02 m for the
plasma width.

In summary, the impedance method provides a simple way
for obtaining analytical results for resonant electromagnetic-
wave transmission in a two-layer structure. In the following
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Fig. 6. Schematic representation of electromagnetic-wave propagation
through a three-layer medium.

section, we will use the impedance method to study a three-
layer structure.

V. TRANSPARENCY OF A SYMMETRIC

THREE-LAYER STRUCTURE

Consider a three-layer structure shown in Fig. 6. The dense-
plasma layer is nested between two other layers. For simplicity,
assume that the two outside layers have the same width and
permittivity, i.e., l1 = l3, ε1 = ε3, and hence, L1 = L3 and
Z1 = Z3. By using (25) for the normalized impedance, we
find that

Z(a3) =Z1
1 + Z1L1

Z1 + L1
(39)

Z(a2) =Z2
Z(a3) + Z2L2

Z2 + Z(a3)L2
(40)

Z(0) =Z1
Z(a2) + Z1L1

Z1 + Z(a2)L1
(41)

and from the transparency condition (29), we find the following
condition for absolute transparency:

L2L
2
1

(
Z4

1−Z2
2

)
+ 2L1Z1Z2

(
Z2

1−1
)
+ L2Z

2
1

(
Z2

2−1
)
= 0.

(42)

We can find a solution of (42) by setting

Z2
1 = Z2

2 . (43)

Then

L2
1 +

2
L2

Z1

Z2
L1 + 1 = 0 (44)

Fig. 7. Magnitude of the reflection coefficient versus incidence angle in a
three-layer structure; the resonant incidence angle is θ = 1.2910.

and therefore

L1 = − 1
L2

Z1

Z2
±

√
1
L2

2

− 1. (45)

For a sufficiently dense-plasma layer, Z2 is imaginary. Assume
that Z1 is also imaginary, i.e., the electromagnetic wave in each
layer is evanescent. Then, since 0 < L1 < 1, it follows that

Z1 = −Z2 (46)

and since 0 < L2 < 1, we find that

L1 =
1
L2

−
√

1
L2

2

− 1. (47)

Similarly to the two-layer structure, (43) is the dispersion
relation of the surface wave generated by the sharp interface
between the layers. As in the two-layer problem, (43) yields
the relationship (36), which, in turns, yields (38) for the com-
putation of the resonant incidence angle. Furthermore, as in
the two-layer problem, for the surface-wave-induced resonance,
(36) yields 0 < ε1 < sin2(θ) < 1. Moreover, for a given L2,
since L1 = tanh(γ1l1), we can find the width of the boundary
layers

l1 =
1
γ1

tanh−1(L1). (48)

In particular, choosing the same parameters as in the previous
section, namely, ε1 = 0.9, ε2 = −35, and l2 = 0.02 m, we find
that the resonant angle is θ = 1.2910 and the corresponding
boundary layer width is l1 = 0.39 m. This is illustrated in
Figs. 7 and 8 which show the dependence of the magnitude
of the reflection coefficient Γ on the incidence angle and the
boundary layer width for a three-layer structure. Note that as for
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Fig. 8. Magnitude of the reflection coefficient versus boundary layer width in
a three-layer structure; the boundary layer width is l2 = 0.39 m.

a two-layer structure, the resonant incidence angle in a three-
layer structure is also θ = 1.2910, but the resonant boundary
layer width is half of that in a two-layer structure. Note also
that the bandwidth in a three-layer structure is much wider than
in a two-layer structure.

A two-layer structure permits only one solution of the
transparency condition (32) for ε2 < 0, namely, Z1 = −Z2. A
three-layer structure, however, permits more solutions of the
corresponding transparency condition (42). In order to find
those solutions, first note that if both Z1 and Z2 are imagi-
nary, the quadratic equation (44) has a real solution only if
Z1Z2 > 0. Therefore, 0 < ε1 < sin2(θ), and we obtain the
following bounds for the resonant incidence angle:

arcsin(
√

ε1) < θ <
π

2
. (49)

We consider the resonant angle θ as a parameter of the
problem while fixing ε1 = 0.9, ε2 = −35, and l2 = 0.02 m. For
each θ, we can solve the quadratic equation (44) for L1 and
then find the corresponding resonant boundary layer width l1
according to (48). Observe that since l1 is real, we are interested
only in solutions L1 of (42) such that 0 < L1 < 1. Our com-
putations show with high accuracy that for 1.2761554 < θ ≤
1.27885 and 1.533614 < θ < π/2, there are two real solutions
of (42) which are both positive and less than one. Moreover, for
1.27885 < θ ≤ 1.3087, there are two real solutions of (42): one
greater than one and the other one less than one. Furthermore,
there are two positive solutions of multiplicity 2 less than 1:
one for θ = 1.2761554 and the other one for θ = 1.533614.
The resonant boundary layer widths corresponding to all those
solutions are shown in Figs. 9 and 10. In Fig. 9, one can see
the unique resonant boundary layer width for θ = 1.2761554.
Furthermore, there are two resonant boundary layer widths for
each 1.2761554 < θ ≤ 1.27885, and again a unique resonant
boundary layer width for each 1.27885 < θ ≤ 1.3087. It is

Fig. 9. Boundary layer width versus the incidence angle in a three-layer
structure; the incidence angle is in the interval [1.2761554, 1.3087].

Fig. 10. Boundary layer width versus the incidence angle in a three-layer
structure; the incidence angle is in the interval [15.33614, 1.57].

interesting to observe that in Fig. 9, the resonant boundary
layer width is minimal for θ = 1.2910, which is exactly the
special case of surface-wave resonance considered earlier. In
Fig. 10, there is a unique resonant boundary layer width for θ =
1.533614, while for each θ > 1.533614, there are two resonant
boundary layer widths. Observe that the boundary widths in
Fig. 9 are much larger than the plasma width l2, while in Fig. 10,
particularly on the lower branch, the boundary layer widths and
the plasma width are comparable in size.

Recall that Fig. 8 shows the behavior of the magnitude of the
reflection coefficient Γ as a function of the resonant boundary
layer width for θ = 1.2910. This behavior is representative for
all incidence angles within the interval (1.27885, 1.3087]. For



1258 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 37, NO. 7, JULY 2009

Fig. 11. Magnitude of the reflection coefficient versus width of the boundary
layer in a three-layer structure for the resonant incidence angle θ = 1.278; the
two corresponding resonant widths are 0.44 and 0.81 m.

Fig. 12. Magnitude of the reflection coefficient versus width of the boundary
layer in a three-layer structure for the resonant incidence angle θ = 1.55; the
two corresponding resonant widths are 0.07 and 0.096 m.

each of those angles, there is a unique resonant boundary layer
width, and that width is quite large compared to l2. Figs. 11
and 12 show examples of the behavior of the magnitude of
the reflection coefficient as a function of the resonant bound-
ary layer width for θ in the corresponding interval discussed
earlier. In Fig. 11, we chose θ = 1.278 as a representative
of the interval (1.2761554, 1.27885]. As expected, there are
two resonant boundary layer widths for that angle, and those
widths are much larger than the plasma width l2. Fig. 12 shows
the behavior of the reflection coefficient as a function of the
resonant boundary layer width for θ = 1.55, which represents

Fig. 13. Magnitude of the reflection coefficient versus the incidence angle
in a three-layer structure for the boundary layer width l2 = 0.5 m; the two
corresponding resonant angles are θ = 1.277 and θ = 1.306.

the interval (1.533614, π/2). There are two resonant boundary
layer widths for this case, both comparable in size to the plasma
width l2, particularly the smaller one. Comparing Figs. 11
and 12, one can see that there are two resonant boundary layer
widths in both cases, but in Fig. 12, they are much smaller
and much closer together. Absolute signal transmission occurs
at the resonant boundary layer width. However, if a boundary
layer width is chosen between those resonant values, one would
expect a signal reflection of at most 27% for θ = 1.278 and 51%
for θ = 1.55.

Consider once more Fig. 9. The minimum of this curve is at
about l1 = 0.39, which corresponds to a unique resonant inci-
dence angle θ = 1.2910 as shown in Fig. 8. For any resonant
boundary layer width l1 > 1.079, there is a unique resonant
incidence angle. However, if we fix l1 ∈ (0.39, 1.079), then
we will find two corresponding resonance incidence angles.
Similarly, from Fig. 10, for any fixed resonant boundary layer
width, there will be only one corresponding resonant incidence
angle. In order for the boundary layer and the plasma to be com-
parable in size, we can choose l1 ∈ [0.0661, 0.08373]. Observe
in Fig. 10 that θ = 1.5078 for l1 = 0.0661 and θ = 1.533614
for l1 =0.08373. Those ideas are shown in Fig. 13 for l1 =0.5 m
and in Fig. 14 for l1 = 0.07 m. In Fig. 13, the corresponding
resonant incidence angles are θ = 1.276 and θ = 1.306. For
those angles, absolute transparency will be achieved. Choosing
an incidence angle between those two resonant angles, one can
expect some transmission. In this case, the maximum reflec-
tion is about 66%. However, as we mentioned earlier, in this
case, l1 � l2. On the other hand, in Fig. 14, l1 is comparable
with l2, the unique corresponding resonant incidence angle is
θ = 1.55, and the bandwidth is quite large.

In summary, a three-layer structure permits one to choose a
variety of resonant incidence angles and corresponding reso-
nant boundary layer widths. By choosing an incidence angle
closer to π/2, we can find a unique boundary layer width,
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Fig. 14. Magnitude of the reflection coefficient versus the incidence angle
in a three-layer structure for the boundary layer width l2 = 0.07 m; the
corresponding resonant angle is θ = 1.55.

such that resonant transmission will be achieved. Moreover, the
resonant boundary width is comparable in size with the plasma
width, and the bandwidth could be adequate to ensure partial
transmission in the neighborhood of the resonant incidence
angle.

VI. DISCUSSION

In this paper, we studied resonant transmission of electro-
magnetic waves through a three-layer structure, consisting of
dense plasma (ωpe � ω) and two boundary layers of rarefied
plasma on each side (ωpe < ω) shown in Fig. 6. For the
dense plasma, we chose ωpe/ω = 6, which corresponds to
the plasma permittivity ε2 = −35. For the plasma width, we
chose l2 = 0.02 m. Those parameters represent conditions
that are relevant during hypersonic flight [8]. For the rarefied
plasma, we chose the permittivity ε1 = 0.9, which corresponds
to about ωpe/ω = 0.3. Under those conditions, the electromag-
netic wave becomes evanescent in all three layers.

We have used an impedance method, which is convenient
for studying multilayer structures and can easily be extended
to study a large number of layers numerically. The im-
pedance method enabled us to obtain analytical results for
electromagnetic-wave transmission in a simple and transparent
way and to gain a better understanding of that process. Our
study clearly shows that in a two-layer structure, consisting
of dense and rarefied plasma, transmission is induced by the
resonance between the incident and the surface wave. For a
two-layer structure, not every incidence angle will result in
resonant conditions if the boundary layer permittivity is fixed.
Studying the relationship between the resonant permittivity
0 < ε1 < 1 and the resonant incidence angle θ, we found that
ε1 is increasing if θ is increasing and that ε1 is close to one if θ
is close to π/2. At the same time, as θ is increasing, the width
of the boundary layer l1 is decreasing. For a fixed ε1, there is

a unique pair (θ, l1) which produces a surface-wave resonance,
resulting in a 100% transmission of the electromagnetic wave.
For example, for the parameters chosen earlier, we found that
resonant transmission occurs only if the incident angle is θ =
1.2910 and the width of the boundary is l1 = 0.78 m. The
resonant bandwidth is very narrow in this case. In order to
reduce the width of the boundary layer, one needs to increase θ,
which will result in an increase in ε1.

By using the impedance method, we studied a symmetric
three-layer structure and found the equation for the trans-
parency condition. Unlike for two-layer structures, this equa-
tion permits multiple solutions for a surface-wave resonance.
Those multiple solutions are related to the multiplicity of the
resonant eigenmodes induced by coupling between the surface
waves on each side of the dense-plasma layer. Studying the
relationship between the resonant incidence angle and the res-
onant boundary layer width for the aforementioned parameters,
we found three classes of incidence angles. With a high degree
of accuracy, in the first class, θ ∈ (1.2761554, 1.27885]. In the
second class, θ ∈ [1.27885, 1.3087] as well as θ = 1.2761554
and θ = 1.533614. In the third class, θ ∈ (1.533614, π/2).
For each θ in the second class, there is a unique resonant
boundary layer width which results in a 100% transmission
of the electromagnetic wave. For each θ in the first and third
classes, there are two resonant boundary layer widths. For the
first class of angles, the resonant boundary layer widths are
much larger than the plasma width, while for the third class,
the boundary layer width is comparable to the plasma width.
Similarly, we can find three classes for the resonant boundary
layer width (measured in meters): l1 >1.079, l1 ∈ [0.39, 1.079],
and l1 ∈ [0.06661, 0.08373]. Note that the boundary layer
widths in the first and second classes are much larger than the
width of the plasma layer. For each l1 in the second class, there
are two resonant incidence angles. For those angles, absolute
transparency can be achieved. Choosing an incidence angle
between the resonant incidence angles, one can achieve partial
transparency. For each l1 in the first and third classes, there is
a unique resonant incidence angle. In particular, choosing l1 in
the third class, such that it is comparable to the plasma width,
we showed that the corresponding incidence angle is close to
π/2 and the bandwidth is quite large.

In summary, for a three-layer structure, one can observe total
transmission of an electromagnetic wave by inducing a surface-
wave resonance. This can be achieved by choosing an adequate
incidence angle and a corresponding boundary layer width. For
an incidence angle close to π/2, the boundary layer width is
comparable in size to the width of the plasma layer. In this
case, the bandwidth may be sufficiently large to achieve at least
partial transmission.

Our study shows that, in general, surface-wave resonance
can be used to amplify evanescent waves, in order to achieve
transparency of dense plasmas in special configurations such
as in the particular two- and three-layer structures we have
discussed. There are certain limitations of our model that would
have to be addressed in the future to clarify its applicability
to the problem of communications through dense plasmas
[9]–[13]. First, we assumed that the plasma layers are homo-
geneous and that there is a sharp interface between them. It
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remains to be investigated how the surface-wave dispersion
relations and resonant conditions such as given by (42) will
change when a smooth transition occurs between the layers
of different plasma density. Second, we neglected the role of
electron–atom collisions and electron temperature. In general,
the dissipation caused by electron–atom collisions and by elec-
tron thermal motion will adversely affect the resonant trans-
mission. The effects of dissipation are particularly detrimental
for the narrow resonance situation (equivalent to the system
of high quality factors). On the other hand, electron thermal
motion effects lead to the appearance of new resonant modes
and additional transparency regimes [15]. Lastly, 2-D effects
have to be considered [9]. All those questions go beyond the
scope of this paper and are left for future studies.
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