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ABSTRACT

Observation of low- and high-frequency backward waves in the nonlinear regime of the Buneman instability is reported. Intense low-
frequency backward waves propagating in the direction opposite to the electron drift (with respect to the ion population) of ions and elec-
trons are found. The excitation of these waves is explained based on the linear theory for the stability of the electron velocity distribution
function that is modified by nonlinear effects. In the nonlinear regime, the electron distribution exhibits a wide plateau formed by electron
hole trapping and extends into the negative velocity region. It is shown that within the linear approach, the backward waves correspond to
the weakly unstable or marginally stable modes generated by the large population of particles with negative velocities.
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I. INTRODUCTION

The Buneman instability is a two-stream type instability driven
by the relative drift v0 of electrons with respect to ions in an unmagne-
tized cold plasma. It has been studied in numerous settings as a mech-
anism of turbulence and source of anomalous resistivity in space
plasmas,1–5 as a generation mechanism for short wavelength radiation
sources,6 in ion beam fusion applications,7 and many others. The lin-
ear regime of this instability has been well studied and understood for
some time.8,9 In contrast, the nonlinear regime is complicated, and its
various aspects are still subjects of interest. The nonlinear dynamics of
trapping and the resultant holes,10–13 the long-time behavior of the
nonlinear regime,14–16 and nonlinear Landau damping17 are among
such aspects of the problem. In this regard, numerical simulations play
an important role complementing the analytical theories. Over the
past decades, many numerical studies have been performed to reveal
various nonlinear phenomena in the Buneman instability.18–23 Despite
these efforts, however, theoretical explanations for a variety of the
observed nonlinear phenomena remain elusive.

Reference 24 provides one of the first descriptions of the effects
of nonlinear mode coupling. It predicts a decline in the linear growth
rate accompanied by a nonlinear, oscillatory growth, but it fails to pre-
dict the saturation level of the instability. Following a similar approach,
Refs. 25 and 26 calculate the ion susceptibility, taking into account the
nonlinear mode-coupling and thus expanding the quasi-linear disper-
sion relation into the nonlinear regime. In contrast with Ref. 24, this

theory predicts the saturation, the initial depression of the relative drift
velocity, and the initial heating of electrons. However, as soon as elec-
tron trapping becomes important, this theory fails in its predictions
for various quantities such as drift velocity and ion susceptibility.
Electron trapping is later incorporated into the model in a companion
paper,27 and the effects on the ion dynamics are investigated. In
another effort, Ref. 28 develops a weak turbulence theory for the non-
linear regime of the Buneman instability. This theory is shown29 to
explain some characteristics of the nonlinear evolution seen in numer-
ical simulations. However, the shape of the electron velocity distribu-
tion function (VDF) is taken as a shifted Maxwellian at all times,
whereas various simulations show that in the nonlinear regime, the
VDF deviates significantly from a shifted Maxwellian. The criteria for
applicability of quasilinear theory are not satisfied in many situa-
tions.30 It is our goal in this study to investigate the nonlinear stage of
the strong Buneman instability when the whole electron population is
streaming with respect to the ions, both components are warm, and
they have the same initial temperatures. This regime is characterized
by the excitation of large-amplitude fluctuations of the potential, the
strong modification of the electron distribution function, and heating
due to the electron reflections and trapping, and as a consequence, the
excitation of the waves in the direction opposite to the beam velocity.

In many situations, large deviation of the distribution function
from the initial Maxwellian is a defining feature of the nonlinear
evolution. This feature has led to an approach in which the nonlinearly
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modified VDF is used in the linear dispersion relation to interpret and
explain the mode behavior. For example, the suppression of Landau
damping in the nonlinear regime can be understood from the fact that
the nonlinear VDF develops a plateau that stops the Landau damp-
ing31 due to the commonly used local criterion @f =@v > 0 from the
linear theory of Landau damping (Fig. 1). This criterion suggests that
for @f =@v > 0, the modes with phase velocity close to the resonant
condition x ¼ kv become unstable, whereas in the region of the nega-
tive slope of the VDF with @f =@v < 0, the modes are damped. It is
important to note that for the waves with negative phase velocity and
for which the velocity of resonant particles is also negative,
v ¼ x=k < 0, the situation is reversed, so that @f =@v < 0 is required
for the instability, and for @f =@v > 0, resonant modes are damped. In
both cases, a region of zero slope in the VDF (or a plateau) leads to the
marginal stability of the modes with the phase velocity in the plateau
region; see Fig. 1.

Although the local instability criterion is often useful and insight-
ful, the whole profile of the distribution function is required in general
to determine the full linear stability as embodied in various integral
stability criteria, e.g., the Penrose criterion.32 The linear analysis on the
modified distribution function has explained new types of waves such
as nonlinear electron-acoustic waves (EAWs).33–35 EAWs are a class
of nonlinear waves with phase velocity close to the electron thermal
velocity. According to the linear theory of Landau damping, these
modes are expected to be damped, whereas simulations show that they
are marginally stable. To explain this behavior, the theory developed
in Refs. 34 and 36 used the standard Maxwellian VDF with an addi-
tional term that accounts for the small plateau seen in the simulations.
Based on the linear dispersion relation, this plateau is found to be
responsible for new modes termed “corner modes.” The existence of a
large-amplitude wave, propagating with the phase velocity near the
zero-slope inflection point of the electron VDF, has also been demon-
strated in Ref. 13. Even though it has been argued in Ref. 37 that a
purely nonlinear theory taking into account particle trapping is neces-
sary to explain the new modes seen in Ref. 34, it seems unavoidable
that the existence of these modes is in large part related to the suppres-
sion of Landau damping due to flattening of the distribution function,
an effect that has clear interpretation in the linear theory.

The linear analysis using the dispersion relation based on the
modified distribution function is also used in other nonlinear stud-
ies.1,4,38,39 In Refs. 1, 4, 38, and 39, a two-Maxwellian VDF was fit to
the nonlinear VDF found from the simulations. The resulting

distribution function is then fed into the linear dispersion relation.
The solution of this dispersion relation leads to the frequencies and
growth rates of the modes observed in the simulations.

We employ a similar approach in this study, where using a
low-noise, high-resolution, grid-based Vlasov solver, we observe the
nonlinear excitation of strong waves that propagate in the direction
opposite to that of the initial electron drift. These waves are referred to
below as backward waves. Backward waves have been observed in
some simulations of current-driven instabilities, and they are believed
to have important effects on the nonlinear evolution of these instabil-
ities.3,5,39–41 However, the origin of these backward waves is still not
well understood. Different scenarios such as secondary linear instabil-
ity,39 three-wave decay,42 and induced scattering off ions3,42 are men-
tioned as possible mechanisms for the excitation of these waves. The
backward waves are generated well into the nonlinear regime and are
not generally expected based on the linear theory of the Buneman
instability, in which the Maxwellian electron population is streaming
with respect to the (also Maxwellian) ions. In this study, we report the
observations of low-frequency (ion-sound-like) and high-frequency
(Langmuir-like) backward waves. The intensity of the ion-sound-like
waves is much higher than that of the high-frequency mode, the
amplitude of which also decreases further into the nonlinear regime.

In the nonlinear stage, the electron VDF strongly deviates from
Maxwellian. The electron VDF is modified by the trapping in the holes
and forms a plateau that extends well into the negative velocity region.
The plateau in the negative velocity region allows for the existence of
weakly unstable and marginally stable backward (and forward) waves
that otherwise would suffer Landau damping. This situation is similar
to the observations in Refs. 13, 34, 43, and 44, where the trapping of
electrons or ions forms a plateau in the VDF and allows for a new class
of waves. Here, we show that the nonlinear VDF observed in simula-
tions is susceptible to the excitation of backward waves observed in
simulations.

We use the VDF from simulations averaged over time intervals
of about 15x�1pi � 20x�1pi , where xpi is the ion plasma frequency.
These time intervals are long enough to get clear view of the low-
frequency modes in the fast Fourier transform (FFT) of the electric
field from nonlinear simulations. These spectra are compared with
results of the linear stability analysis performed on the actual distribu-
tion function obtained by averaging for each interval.

The remainder of the paper is organized as follows: In Sec. II, we
review the linear dispersion relation of the Buneman instability and
its solution for the cases of this study. In particular, we show that the
linear growth rates calculated from our simulations are in agreement
with the linear theory for the initial Maxwellian distribution. In Sec.
III, the general setup of the nonlinear problem and simulations is
reported. We have performed simulations with v0 ¼ 4vte and
v0 ¼ 10vte. In Sec. IV, the linear analysis based on the modified VDF
is applied to the simulation results, and its predictions with regard to
backward and forward waves are discussed. In Sec. V, two other sim-
ulations with v0 ¼ 1:5vte and v0 ¼ 1:75vte are compared, and accord-
ingly, we show that a threshold for excitation of backward waves lies
between these two values. We also show that for values of v0 less than
this threshold, the formed plateau in electron VDF is not wide
enough to extend into the negative velocity region, and therefore,
backward waves do not appear. In Sec. VI, we conclude our study
with a discussion of the results.

FIG. 1. The regions of damped, unstable, and marginally stable modes according
to the local criterion from the linear theory of Landau damping.
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II. LINEAR REGIME OF THE BUNEMAN INSTABILITY

The Buneman instability is the electrostatic instability driven by
the relative drift of plasma species. In the limit that both electron and
ion temperatures vanish, the dispersion relation of the Buneman insta-
bility is

1�
x2

pe

ðx� kv0Þ2
�

x2
pi

x2
¼ 0: (1)

Here, x is the eigen-mode frequency, k is the wave vector, v0 is the ini-
tial drift velocity of the electrons, xpi is the ion plasma frequency, and
xpe is the electron plasma frequency. The instability occurs for

kv0 < xpeð1þ ðme=miÞ1=3Þ3=2, with the maximum mode growth rate

c ¼
ffiffi
3
p

2 ð
me
2mi
Þ1=3xpe at k � xpe=v0, and real part of the frequency

x ¼ 1
2 ð

me
2mi
Þ1=3xpe.

Considering ions and electrons with finite temperatures, the dis-
persion relation reads

1�
x2

pi

2k2v2ti
Z0

xffiffiffi
2
p
jkjvti

� �
�

x2
pe

2k2v2te
Z0

x� kv0ffiffiffi
2
p
jkjvte

 !
¼ 0; (2)

where vti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0=mi

p
and vte ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=me

p
are the ion and electron

initial thermal velocities, and Ti0 and Te0 are the initial temperature of
ions and electrons. In this study, we take T0 ¼ 0:2 eV as the initial
temperature for both ions and electrons. The equal ion and electron
temperature regime is of particular interest for the study of solar plas-
mas.2 We note that, therefore, the ion sound velocity cs is equal to the
vti. Also, we take n0 ¼ 1017m�3 as the plasma density.

Using these parameters, Figs. 2(a) and 2(b) show the solution of
Eq. (2), for the two drift velocities cases v0 ¼ 4vte and v0 ¼ 10vte (note
the different axis ranges). These two drift velocities are also considered
in the nonlinear simulations of this study. With periodic boundary
conditions, as used here, only the modes satisfying the condition
kL=2p ¼ m for integer m are allowed. In the case of v0 ¼ 4vte, the
most unstable mode corresponds the wave number m¼ 26. The case
v0 ¼ 10vte is closer to the cold plasma limit v0=vte � 1. In this case,
the positive growth rate region is shorter, and the most unstable mode
corresponds to the wave number m¼ 9. The growth rate diagram is
also sharper, and the maximum growth rate has increased. Backward

waves cannot be observed in the solution of linear dispersion of the
Buneman instability; therefore, we have omitted the negative k region
from Figs. 2(a) and 2(b). In Figs. 2(a) and 2(b), we have also reported
the growth rate of some chosen electric field modes as measured from
the simulations. The evolution of the amplitude of these chosen modes
is shown in Figs. 3(b) and 4(b). As we see, after some initial oscilla-
tions, the amplitude of each mode shows linear growth. The slope of
this linear growth is used to measure the growth rate of each mode.

III. NONLINEAR VLASOV SIMULATIONS

In our simulations, we solve the Vlasov–Poisson equations

@f‘
@t
þ vx

@f‘
@x
þ qEx

m‘

@f‘
@vx
¼ 0;

@Ex
@x
¼ eðni � neÞ;

(3)

where f‘ is the distribution function for species ‘; ‘ ¼ i; e for ions and
electrons, respectively, Ex is the electric field, n‘ ¼

Ð
f‘ dvx is the den-

sity of species ‘, q is the charge, which is þe for the ions and �e for
the electrons, andm‘ is the mass of species ‘. The ions are taken to be
hydrogen with massmi¼ 1 amu.

The numerical method used is the well-known and tested semi-
Lagrangian splitting scheme.45,46 In this method, the Vlasov equation
is split into a convection equation and a force equation. Each of these
equations is then solved by the method of characteristics and cubic
spline interpolation. The boundary condition is periodic in space and
open in the velocity direction. The Poisson equation is solved by a
spectral method, the FFT. The initial conditions are

feðx; v; 0Þ ¼
n0ð1þ �k0 cos ðk0xÞÞffiffiffiffiffi

2p
p

vte
exp �ðv� v0Þ2

2v2te

 !
; (4)

fiðx; v; 0Þ ¼
n0ffiffiffiffiffi
2p
p

vti
exp � v2

2v2ti

 !
: (5)

The quantities � ¼ 10�8kD, where kD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0T0=n0e2

p
is the Debye

length, and k0 ¼ 2p
L parameterize an initial small perturbation. These

parameters are required to excite the instability because the method
for solving the Vlasov formulation inherently introduces little

FIG. 2. (a) The linear growth rate (blue) and frequency (red) for the case of v0 ¼ 4vte. (b) The linear growth rate (blue) and frequency (red) for the case of v0 ¼ 10vte. The
black circles show the growth rates measured from the simulation. (Note the different axis ranges.).
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numerical noise. For this study, we also tried the perturbation with the
most unstable mode and also several perturbed modes, and we con-
firmed that the results are not sensitive to the choice of initial pertur-
bation. The system length is taken L¼ 6mm, which is approximately
570 Debye lengths, and a spatial grid of 4096 points is used. This
length is large enough to contain many unstable modes, including the
mode with maximum linear growth rate [see Figs. 2(a) and 2(b)]. The
velocity grids for ions and electrons consist of 1921 and 4033 points,
respectively. The time step used in the simulations is 2� 10�3 x�1pi ,
which is about 0:086x�1pe . Therefore, the time step is small enough to
resolve fast variations of the plasma. We note that x�1pi ¼ 2:39 ns in
this setup.

After a few nanoseconds of simulation, the electric field energy
starts to grow linearly and continues until it reaches a peak. This peak
is followed by a slow decay due to the energy transfer from the waves
to the plasma and particle heating [Figs. 3(a) and 4(a)]. The nonlinear
regime is characterized by the appearance of trapping holes in the ion
and electron distribution functions. The ion holes correspond to nega-
tive electrostatic potential, whereas the electron holes correspond to
positive electrostatic potential.10 The electron holes appear early in the
nonlinear regime and in the bulk region of the distribution function
[Fig. 5(a), left]. As we see in the left figure in Fig. 5(a), the number of
these holes in the early nonlinear regime is close to the mode number
of the most unstable mode (26, in the case of v0 ¼ 4vte). The left figure

in Fig. 5(b) shows the potential profile at the same time as the left fig-
ure in Fig. 5(a). The large-amplitude (rogue) waves about 1.5V–2V
can be seen in this figure. This amplitude is of the same order of mag-
nitude as the initial drift energy of electrons (1=2mev20 � 1:6 eV).
Early electron holes then merge together and form larger holes [Fig.
5(a), right] in a process discussed by a number of previous works.14

This process of merging leads to the appearance of higher wavelengths
in the potential profile [Fig. 5(b), right]. In addition, the ion holes
appear in the tail of the distribution function later in the nonlinear
regime [Fig 5(c), right]. Backward-propagating waves appear in the
early nonlinear regime after the wave amplitude is large enough to sig-
nificantly reflect the electrons backward and extend the plateau to the
negative regions of electron VDF. Backward and forward waves can be
seen clearly in Figs. 6 and 7.

The electron scattering from large-amplitude fluctuations of the
potential results in a dramatic increase in the electron temperature.
Figure 8 shows the evolution of the (spatially averaged) temperature

Te ¼
1
n0L

ð
meðvx � VxeÞ2feðx; vx; tÞ dx dvx: (6)

The fluid velocity Vxe is the first moment of distribution function;
i.e., Vxe ¼

Ð
vxfe dvx=

Ð
fe dvx . The electron energy starts to increase in

early nonlinear stage (after about 47 ns), at the same time when
the rogue waves appear in the potential and the backward waves are

FIG. 3. (a) The electric field energy (E) vs time. (b) The evolution of the amplitude of the individual electric field modes. The case of v0 ¼ 4vte.

FIG. 4. (a) The electric field energy (E) vs time. (b) The evolution of the amplitude of the individual electric field modes. The case of v0 ¼ 10vte .
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generated. The electron temperature then saturates to about 2.4 eV.
We note that this value is of the same order of magnitude as the ampli-
tudes of the sharp peaks in Fig. 5(b).

The rest of the paper is dedicated to the characteristics of the spec-
tra (backward and forward waves) in the nonlinear stage obtained in
simulations and from analytical calculations. Before that, however, it is

interesting to note another nonlinear phenomenon that can be seen in
our results. In all of our simulations, we see a significant group of elec-
trons that have been accelerated ahead of the initial drift velocity, as
seen in the electron VDF (see, for example, the small bump and
energetic tail in the right-hand side of VDF, in Figs. 9 and 13). This
acceleration is likely due to the electron trapping and de-trapping in

FIG. 5. (a) The electron distribution function in n0=cs, (b) electrostatic potential, and (c) the ion distribution function in n0=cs. In each row, the figure on the left-hand side is at
t¼ 47.39 ns (19:8x�1pi ), and the figure on the right-hand side is at t¼ 163.22 ns (68:2x�1pi ). These figures correspond to the case of v0 ¼ 4vte .
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the large-amplitude (forward) waves. Similar self-acceleration of the
beam in the two-stream instabilities has been studied earlier in Refs. 23
and 47.

IV. BACKWARD WAVES AS MARGINALLY STABLE
EIGEN-MODES OF THE NONLINEARLY MODIFIED
VELOCITY DISTRIBUTION FUNCTION

As discussed above, the electron distribution in the nonlinear
stage is strongly modified. To study the stability of such distributions,
we represent the electron VDF obtained from the simulation by ten
electron beams, each with a beam density of dj, in the form

feðvxÞ ¼
X10
j¼1

n0djffiffiffiffiffi
2p
p

vej
exp �

ðvx � v0jÞ2

2v2ej

 !
: (7)

The dj are normalized by the condition
P10

j¼1 dj ¼ 1. Figure 9 shows
the evolution of the spatially averaged electron VDF in the case
v0 ¼ 4vte. It can be seen that in each time interval, the VDFs of Eq. (7)
can be closely fit to the simulated VDFs. The fit is done using the

SciPy curve_fit function, which uses the least squares method to non-
linearly fit the ten-Maxwellian VDF Eq. (7) to the simulated VDF. The
positivity of the beam densities (dj) and beam thermal velocities (vej)
was enforced in the fit. We note that some of the beam velocities v0j in
the fit have a negative value, which is important for the fit to be well
extended to the negative velocities. In general, the more Maxwellian
functions we use for the fit, the more accurate it is. However, using
more than ten Maxwellians does not significantly change the value of
the standard error as returned by the fitness function. We have also
checked that that lower error does not have much impact on the theo-
retical spectrum of the eigen-modes. Each fit results in a set of 29 inde-
pendent parameters dj; v0j; vej. Using these parameters, we solve the
corresponding dispersion equation

1�
x2

pi

2k2v2i
Z0

xffiffiffi
2
p
jkjvi

� �
�
X10
j¼1

djx2
pe

2k2v2ej
Z0

x� kv0jffiffiffi
2
p
jkjvej

 !
¼ 0 (8)

for the theoretical spectrum and growth rates of the waves. For the
case v0 ¼ 4vte, the ion distribution function does not change much, so
we use the initial value of the ion temperature (vti) for vi. For
v0 ¼ 10vte, we observe a slight modification of the ion distribution; it
is described below.

A. Linear eigen-mode spectra for v0 ¼ 4vte

Figures 10(a)–10(d) show the spectrum of nonlinear waves in
four subsequent stages of nonlinear simulations. In each figure, we
also show the eigen-modes obtained from the solution of Eq. (8). In
general, the modes in two different regions can be seen in these figures:
the arc-shaped high-frequency modes with x � OðxpeÞ (Langmuir-
like modes) and the low-frequency modes with x � OðxpiÞ (ion-
sound-like). We note that, for the FFT in time, we have used the
Hanning window to reduce the amount of spectral leakage.48 Despite
this, some faint modes can be seen in between. The time intervals were
taken long enough so that the FFT has a relatively high resolution and
can clearly show the low-frequency modes. As we see, the amplitudes
of the low-frequency modes are several orders of magnitude larger
than those of the high-frequency modes, and therefore, they are domi-
nant in the nonlinear regime. The phase velocity of the low-frequency

FIG. 6. The electric field (V/cm) as a function of time and position for the case of
v0 ¼ 4vte. After the backward-propagating waves appear at around t¼ 45 ns, the
coexistence of backward and forward waves forms a grid pattern in the electric field
profile.

FIG. 7. The electric field (V/cm) as a function of time and position for the case
v0 ¼ 10 vte . After the backward-propagating waves appear at around t¼ 30 ns, the
coexistence of backward and forward waves forms a grid pattern in the electric field
profile.

FIG. 8. The evolution of electron temperature for the case v0 ¼ 4vte.
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modes is close to the velocity of the ion holes in the ion distribution
function [Fig. 5(c), right].

Figures 11(a)–11(d) show the theoretical mode frequencies x
and corresponding growth rates c for the distribution function from
the corresponding time intervals of Fig. 9. In these figures, we have
omitted growth rates less than �0:1xpi. We can see small positive or
near-zero growth rates in the range of jkkDj� 0:4, whereas the
modes outside of this range are strongly damped due to the ion
Landau damping, which is significant for phase velocities around
OðvtiÞ. These spectra of the weakly unstable or marginally stable

eigen-modes in the range jkkDj� 0:4 show close resemblance to
the eigen-mode spectra obtained in the nonlinear simulations
[Figs. 10(a)–10(d)].

In Fig. 11, we observe the asymmetry between positive and neg-
ative k for the Langmuir-like (high-frequency) modes. This asymme-
try is a result of asymmetric damping of the positive and negative k
modes, and it can also be seen in the simulation results (Fig. 10). Our
theoretical analysis of the eigen-mode spectra of the modified distri-
bution function also shows these high-frequency modes with near-
zero or negative growth rates as seen in Figs. 11(a)–11(d). Similarly,

FIG. 9. Evolution of the electron VDF for v0 ¼ 4 vte. (a) the initial VDF at t¼ 0, (b) VDF from nonlinear simulations (blue line) averaged over 19:8x�1pi to 34:8x�1pi , (c)
34:8x�1pi to 51:4x�1pi , (d) 51:4x�1pi to 68:2x�1pi , and (e) 68:2x�1pi to 100x�1pi . The fit from Eq. (7) is shown in red in (b)–(e).
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in our simulations, these modes fade away further as seen in the last
time window [Fig. 10(d)].

B. Linear eigen-mode spectra in the cold plasma limit
of the Buneman instability (v0 ¼ 10vte)

Increasing the initial electron drift to v0 ¼ 10vte leads to a stron-
ger instability, which saturates to a much higher value of electric field
energy [Fig. 4(a)] and increasing the electron and ion heating. In order
to explain the nonlinear modes in this case, we need to consider the
ion heating in the nonlinear regime. We therefore fit a Maxwellian
function to the ion VDF in one of the time windows, and find
vti ¼ 2:4 cs for use in Eq. (8) (Fig. 12). We note that it is important to
have the most accurate fit in the region of the phase velocity of propa-
gating waves. Therefore, in calculating the fit residual, we have given a

special weight to the points around that region (vx � 610 cs in Fig.
12). The electron VDF is also fit in two time windows [Figs. 13(b) and
13(c)]. Like before, the parameters found by these fits are substituted
in Eq. (8), and this equation is solved to find the theoretical spectrum
of the eigen-modes.

In the spectrum of the nonlinear waves, we see that the frequen-
cies of the dominant modes (and therefore their phase velocities) are
generally higher than the case of v0 ¼ 4 vte (compare Fig. 10 with Fig.
14). This feature is well captured by the theoretical model (compare
Fig. 11 with Fig. 15). Another difference between this case and that of
v0 ¼ 4vte is the shorter range of the spectrum in the k values. In the
current case, we see that the modes with jkj� 0:2 (as in contrast to
jkj� 0:4) are faint. This is consistent with the linear theory, which
also shows a shorter unstable spectrum for the case of v0 ¼ 10vte
[Figs. 2(a) and 2(b)]. Like before, we see that the high-frequency
modes fade way from the spectrum as time passes [see Fig. 14(b)]; this
observation can be explained by the theoretical growth rates being
negative in each time window [Figs. 15(a) and 15(b)].

V. DRIFT VELOCITY THRESHOLD FOR THE
APPEARANCE OF BACKWARD WAVES

The backward waves do not appear if the drift velocity is below
of some finite threshold vtr. In order to narrow the down the threshold
value, we compare two simulations with v0 ¼ 1:5vte and v0 ¼ 1:75vte.
In both cases, all other parameters are unchanged. We show that the
backward waves are not present in the former case, whereas they are
present in the latter. Therefore, vtr is somewhere between these two
values. Figures 16(a) and 16(b) show the electric field energy for the
cases of v0 ¼ 1:5vte and v0 ¼ 1:75vte. By comparing these figures with
Figs. 3(a) and 4(a), we see that by increasing v0 from 1:5vte to 10vte,
the saturation energy increases.18,40 However, because the linear
growth rate also increases with v0, the nonlinear regime is reached
sooner.

Figure 17(a) shows the electric field evolution in the case of
v0 ¼ 1:5vte. We see that, in this case, no backward waves appear, even
deep in the nonlinear regime. However, in the case of v0 ¼ 1:75vte
[Fig. 17(b)] after about 600ns, lines of negative slope appear, indicat-
ing the presence of backward waves. The explanation can again be
given according to the linear theory of Landau damping using the
nonlinear electron VDF. The electron VDF for the case v0 ¼ 1:5vte
after equilibrium [Fig. 18(a)] shows a plateau in the positive velocity
region up to about vx ¼ 20 cs. However, in the negative velocities,
despite some nonlinear modifications, the gradient remains mainly
positive. In fact, the trapping in this case is not strong enough to
extend the plateau to the negative velocity region. Therefore, the
absence of the plateau leads to the lack of the backward waves in this
case. In contrast, the plateau of the case v0 ¼ 1:75vte [Fig. 18(b)] is
extended well into the region of negative velocities, and therefore, the
marginally stable backward waves appear in this case. The absence
of backward waves in the case of v0 ¼ 1:5vte and their excitation
in the case of v0 ¼ 1:75vte can also be seen in the Fourier spectrum
[Figs. 19(a) and 19(b)]. We note that the time intervals of these spectra
correspond to the end of the simulation; therefore, the high-frequency
modes have already disappeared, as in the previous cases.

The minimum required drift velocity for the excitation of
backward waves found in our simulations with hydrogen v0 � 1:5vte
�1:75vte is above the linear instability criteria v0 > 1:3vte for Ti¼ Te.

9

FIG. 10. The spectrum of nonlinear waves in the case of v0 ¼ 4vte , for (a)
19:8x�1pi to 34:8x�1pi , (b) 34:8x�1pi to 51:4x�1pi , (c) 51:4x�1pi to 68:2x�1pi , and
(d) 68:2x�1pi to 100x�1pi . In each case, a zoom into the low-frequency region is
shown on the right of the full spectrum. The red lines show the modes found by
solving Eq. (8).
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In Ref. 40, the threshold v0 ¼ 1:3vte for the excitation of backward
waves in plasmas with Te � Ti and heavier ions was reported. We
note, however, that the linear instability threshold is a function of the
mass and the temperature ratios, and it is greatly reduced for lower

values of me=mi and Ti � Te.
9,49,50 For Te � Ti, the linear instability

becomes the ion-sound like one and has a much lower threshold
v0 > OðcsÞ.50 We have confirmed in additional simulations (not
reported here) that the threshold for the generation of backward waves
also decreases with increase in ion mass and decrease in ion tempera-
ture with respect to the electrons.

VI. SUMMARY AND DISCUSSION

In this work, we investigated the backward waves that are excited
in the nonlinear regime of the Buneman instability. We have shown
that the backward waves are excited if the value of the initial drift
velocity exceeds a certain threshold, which was found in our simula-
tions to be in the range between v0 ¼ 1:5vte and v0 ¼ 1:75vte. Using
dispersion stability analysis, we have shown that characteristics of the
backward and forward waves observed in nonlinear simulations can
be explained, both in high-frequency and low-frequency regions, as
marginally stable configurations of the nonlinear electron distribution
function. We have found that an extended plateau in the region of the
phase velocity of backward waves (in the region of the negative elec-
tron velocities) is necessary for the formation of the backward waves.
This is further confirmed by the simulations with v0 ¼ 1:5vte, where
the absence of the plateau in the negative velocity region of electron
VDF prevents the excitation of backward waves.

FIG. 11. The theoretical frequencies (solid lines) and the growth rates (dashed lines) for the case of v0 ¼ 4vte shown in four stages: (a) 19:8x�1pi to 34:8x�1pi , (b) 34:8x�1pi
to 51:4x�1pi , (c) 51:4x�1pi to 68:2x�1pi , and (d) 68:2x�1pi to 100x�1pi . These results are found by solving Eq. (8). The modes with growth rates less than �0:1xpi are omitted.
The real and imaginary parts of a complex root are shown with the same color.

FIG. 12. Ion distribution function for the case v0 ¼ 10 vte , averaged in 31:4x�1pi to
46x�1pi (solid blue line) shown together with the fitted Maxwellian (dashed red line).
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In a similar approach, the formation of a plateau in the ion VDF
(Ref. 43) and the electron VDF (Refs. 13, 33, and 34) has been found
responsible for the new class of waves not expected from the linear
theory due to finite Landau damping. In those studies, however, the
modes were generally of smaller amplitude, and the contribution of
the trapped particles was limited to a short range of velocities inside a
narrow plateau in the VDF. In our simulations, the backward waves
are generated simultaneously with formation of the electron beams in

the negative direction due to electron reflections from large-amplitude
potential structures as illustrated in Fig. 5(b) of the spatial potential
profile. This process, starting with the electron trapping into the elec-
tron holes, proceeds via the growth of the potential fluctuations and
further electron scattering (due to trapping and de-trapping). As a
result of such scattering, the electrons are heated with the formation of
the electron VDF with an extended plateau in the region of the nega-
tive velocities. The resulting potential structures have large amplitudes,
and the plateau in the electron VDF covers a significant region of the
velocity range (i.e., many of the electrons are trapped). Our theoretical
analysis shows that the nonlinearly modified distribution functions
represent the marginally stable configuration from the perspective of
linear stability.

In Ref. 40, the ion kinetic effects associated with ion heating and
backward waves generated in the nonlinear regime of current-driven
instabilities were studied, in particular, as relevant to the hollow-
cathode discharges and cathode surface sputtering. We note that in
our study the ions are not heated for v0 ¼ 4vte and only weakly heated
for v0 ¼ 10vte. Backward waves have also been reported in the parti-
cle-in-cell simulation of the Buneman instability in Ref. 41. Excitation
of the backward waves was observed to co-exist with an enhanced
anomalous resistivity in Ref. 5. Similarly, backward waves were also
suggested as the reason for an increase in the effective collision fre-
quency seen in the simulation of Ref. 3. In that work, it was conjec-
tured that the underlying mechanism for the generation of the
backward waves is the induced scattering off the ions. The resonant
condition for the induced scattering from ions have the form
xðk1Þ � xðk2Þ � ðk1 � k2Þvti. The low-frequency modes in our sim-
ulations show a symmetry between the forward and backward spectra
[i.e., xðk1Þ � xðk2Þ for these modes] and k ¼ k1 ¼ �k2. Moreover,
for these low-frequency modes, one has xðk1Þ � xðk2Þ � jkvtij. This

FIG. 13. Evolution of the electron VDF for
v0 ¼ 10 vte . (a) the initial VDF at t¼ 0 (b)
VDF from nonlinear simulations (blue line)
averaged over t ¼ 16:8x�1pi to 31:4x�1pi

(c) t ¼ 31:4x�1pi to 46x�1pi . The fit from
Eq. (7) is shown in red in (b) and (c).

FIG. 14. The spectrum of nonlinear waves the case v0 ¼ 10 vte , for (a) 16:8x�1pi
to 31:4x�1pi and (b) 31:4x�1pi to 46x�1pi . The red lines show the modes found by
solving Eq. (8). In each case, a zoom into the low-frequency region is shown on the
right of the full spectrum.
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resonant condition is difficult to satisfy for the symmetric modes when
xðk1Þ � xðk2Þ � 2jkvtij. Therefore, it is unlikely that in our case the
induced scattering off the ions is responsible for the excitation of the
symmetric spectra of low-frequency backward and forward waves.

Based on nonlinear weak turbulence theory for the bump-on-tail
instability, Ref. 42 attributes the high-frequency backward waves to
the combined effect of three-wave decay and scattering off the ions
and the low-frequency backward waves to merely the three-wave-

FIG. 15. The theoretical frequencies (solid lines) and the growth rates (dashed lines) in two stages for the case v0 ¼ 10 vte: (a) 16:8x�1pi to 31:4x�1pi and (b) 31:4x�1pi to
46x�1pi . These results are found by solving Eq. (8). The modes with growth rates less than �0:15xpi are omitted. The real and imaginary parts corresponding to a given com-
plex root are shown with the same color.

FIG. 16. The electric field energy in two cases (a) v0 ¼ 1:5vte and (b) v0 ¼ 1:75vte .

FIG. 17. The electric field as a function of time and position in the cases of (a) v0 ¼ 1:5vte and (b) v0 ¼ 1:75vte.
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decay process. However, the low-frequency modes in Ref. 42 are tran-
sient and decay to the level of noise later in the nonlinear regime. In
Ref. 42, the formation of the plateau of the electron distribution func-
tion in the high-velocity region (of order vte) is consistent with the
observed high-frequency backward waves. As we have shown above in
our simulations, the wide plateau extending into the negative region
(and thus covering the low velocity region) is responsible for the sus-
tainment of the low-frequency ion-sound-like modes. The backward
waves have been investigated in Vlasov simulations39 for the case of
v0 ¼ 4vte. That study suggests the origin of the backward waves can be
a secondary linear instability driven by bulks of counter-streaming
electrons. However, the analysis was focused on the high-frequency
modes, and the FFT in time was not long enough to clearly show the
dominant low-frequency modes. The Buneman-type instability,
excited by electron beams from solar nanoflares, was proposed as an
underlying mechanism for the generation of turbulence in solar wind,
plasma heating, and anomalous resistivity.2,3,51 We show here that
electron (plasma) heating and backward waves are closely related. It is
also expected that anomalous resistivity is also affected. The effective
heating of electrons observed in the regime v0 	 vte may be of interest
for industrial applications of plasma-beam discharges. It has been sug-
gested40 that backward waves may be related to the hollow cathode

erosion in Hall thruster due to the subsequent acceleration of the ions.
This process was not considered in our study but potentially may
occur at a later stage and with non-periodic setup when there is a con-
stant energy input to the system. Intriguing experimental observations
of the waves propagating against the direction of the electron beam
were reported in Ref. 52. No theoretical explanation has been pro-
posed so far. It is possible that such waves are excited via the mecha-
nism considered in our study.

Two-dimensional effects can be important and can modify the
nonlinear dynamics of trapping and heating.10 It is, however, expected
that in applications to magnetized plasma, the transverse plasma
motion is constrained by the magnetic field, whereas the dynamics
along the magnetic field is expected to be well approximated by the
one-dimensional model, as used in this study and other previous
works.1,4 Our results show that the backward waves are related to par-
ticle trapping and accompanied by the formation of the electron holes,
which extend the plateau in the electron VDF to the negative velocity
region. The dynamics and conditions of electron holes in multi-
dimensional plasma is a multifaceted topic, where many questions
remain open.10 Some computational studies show that the stable elec-
tron holes do not appear in isotropic multi-dimensional plas-
mas.10,53–55 The reason is that the fraction of trapped particles is

FIG. 18. The electron VDF at time 2872 ns in the cases of (a) v0 ¼ 1:5vte and (b) v0 ¼ 1:75vte.

FIG. 19. The Fourier modes between 2800 ns to 3000 ns in the cases of (a) v0 ¼ 1:5vte and (b) v0 ¼ 1:75vte . In each case, a zoom into the low-frequency region is shown
on the right of the full spectrum.
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proportional to /D=2
0 , where /0 is the amplitude of potential and D is

the number of spatial dimensions. Therefore, for D¼ 2 or D¼ 3, the
population of trapped particles may be too small to furnish stable elec-
tron holes.56 However, strong magnetic fields can make the dynamics
quasi-one-dimensional along the magnetic field, and stable electron
holes can appear.53,55 In such a situation, the parallel electron VDF
may form a plateau extending to the negative velocity region and lead-
ing to onset of the backward waves as discussed above. The situation
may become more complex when narrowly localized electron beams
with a width of the order of the electron skin-depth across the mag-
netic field are involved, and two-dimensional effects may become
essential, e.g., leading to the transverse ion heating Ref. 57.
Nevertheless, it is interesting to note, that even in this case, the two-
dimensional simulations Ref. 57 demonstrate the electron heating and
show the electron VDF extending to the negative velocity region, simi-
lar to the case considered here. The existence of backward waves in
multi-dimensional situations requires additional analysis that is
beyond the scope of this study. The electron trapping and hole forma-
tion may also be prevented by collisions when the collision frequency
exceeds the characteristic bounce frequency for trapped electrons.
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