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Abstract
The impact of velocity shear on the localized solutions of Rayleigh–Taylor (RT)
and resistive drift wave (DW) instabilities has been investigated. Slab geometry
is used, and the plasma density gradient is assumed to have a finite spatial struc-
ture. It demonstrates that the velocity shear has quite different effects on these
instabilities: while it stabilizes RT instability and causes tilting of the eddies of
equipotential contour, it has a very mild impact on the resistive DW instability
and simply shifts the eddies with no tilting.
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1 INTRODUCTION

The stability properties of eigenmode solutions of different gradient drift-driven plasma waves has been investigated
extensively since the 1960s, and it has been widely accepted that plasma instability will be quenched by the shear of
plasma flow when the gradient of the flow exceeds the growth rate without the velocity shear.[1–4] A generic role of velocity
shear in the suppression of plasma instability and turbulent transport can be estimated by finding the effective growth
rate and using a mixing length rule.[5] However, almost all the analytical studies were conducted under an assumption
of constant logarithmic gradient of equilibrium plasma density, Λn =−dln(n0)/dx, which may be far from the reality of
the edge of magnetically confined plasmas. The choice of plasma density profile may significantly affect the conclusions.
For example, recently, it was shown that a modification of Λn from constant can significantly change the dynamics of the
drift wave (DW).[6] Therefore, in this article, we will revisit the impact of velocity shear on the eigenmode solutions of
different plasma instabilities by considering plasma with non-constant Λn.

We will consider both the interchange modes and resistive DW, which are related to plasma polarization caused,
respectively, by cross-field magnetic drift of charged particles (e.g., interchange modes, ion temperature gradient modes,
and resistive ballooning modes) and by electron dynamic along the magnetic field (e.g., resistive DW). The interchange
mode appears when the pressure gradient is inverted with respect to an effective gravitational field (due to the curvature
of confining magnetic field), and to a large extent, it can be characterized by the Rayleigh–Taylor (RT) instability of fluids,
which will be considered in this article.

In what follows, we will specify Λn(x) as Λn(x) = n̂∕ cos h2(x∕w), where both n̂ and w are constants characterizing
the widths of the variation of density and its gradient, respectively. Such a plasma density profile is similar to that in the
pedestal region of tokamak[7] and to that in the linear machine with a limiter.[8] In order to focus on the effect of such a
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non-constantΛn, we will limit this article to the linear regime, and the shear flow will be externally applied as V 0(x)=V ′
0x,

where V ′
0 is a constant to avoid the Kelvin-Helmholtz effect. The effects of a self-generated plasma flow via Reynolds stress

on the plasma instabilities and of velocity shear on the transport driven by the interchange modes and resistive DW are
beyond the scope of this article and be will be studied in future publications.

2 VELOCITY SHEAR FOR RT/INTERCHANGE MODES

In this section, we consider the RT instability of a stratified fluid in a gravity field characterized by acceleration g, which
could be considered a proxy of the interchange plasma instability with effective acceleration geff = 2Te/miR for cold ions.[9]

To be consistent with plasma notations, we assume that the gravitational acceleration is in the x-direction, and the flow is
in y-direction. Then, in the Boussinesq approximation, small perturbations of fluid velocity stream function �̃� , defining
the perturbation of fluid velocity, Ṽ = ez × ∇�̃� , is described by[10]

d2𝜓

dx2 − k2
y𝜓 + d ln(n0)

dx
gk2

y

�̃�2 𝜓 = 0, (1)

where the Fourier expansion of �̃� in time and y-coordinate, �̃� = 𝜓(x)exp(−i𝜔t + ikyy), have been used, and
�̃� = 𝜔− kyV 0(x). Notice that, in the interchange mode, the perturbation of electrostatic potential obeys an equation simi-
lar to Equation (1), except that it has an extra term proportional to V ′

0dln(n0)/dx, which does not change the basic features
of the impact of velocity shear on RT instability.

Equation (1) is usually solved as the eigenfunction–eigenvalue problem with the boundary condition of
𝜓(x →±∞) = 0, where the role of the eigenvalues is played by 𝜔. Without velocity shear, an analogy of Equation (1) to
the Schrödinger equation for an electron in potential well U ∝-cosh−2(x/w) and energy E ∝ −k2

y allows us to find the RT
instability growth rate versus integer mode number m(m = 0,1,2… ).[11] Here, we are interested in the impact of velocity
shear on the fastest growing mode, the growth rate, and eigenfunction, which corresponds to m = 0 read

𝛾2
RT(𝜅) = −𝜔2 = 𝛾

2
RT

|𝜅|
1 + |𝜅| , and 𝜓RT = cos h−|𝜅|(x∕w), (2)

where 𝛾
2
RT = gn̂ characterizes the growth rate, and 𝜅 = wky. As we can see, without velocity shear, the unstable RT wave

is purely growing.
Including the velocity shear, we could solve Equation (1) by using a successive approximation method assuming V ′

0
is small and expanding both corrections of frequency 𝛿𝜔 = 𝜔 − i𝛾RT and the eigenfunction 𝛿𝜓 = 𝜓(x) − 𝜓RT(x) in powers
of V ′

0. With no restrictions, we assume that 𝜓RT(x) is real and limit our analysis through the second order of V ′
0. In fact,

these corrections can be found by combing Equation (1) and its integral expression

Q(𝜓) = ∫ d𝜉

[
−
||||d𝜓

d𝜉
||||

2
− 𝜅2|𝜓|2 − 𝛾

2
RT

cos h2(𝜉)
𝜅2

�̃�2 |𝜓|2] = 0, (3)

where 𝜉 = x/w. It should be noted that Equation (1) has an asymptotic solution, 𝜓(|𝜉| → ∞) ∝ exp(−|𝜅𝜉|), such that
integrals in Equation (3) converge at |𝜉|→∞. As a result, from Equations (1) and (3), we can easily obtain the first-order
corrections

𝛿𝜔1

𝛾RT
= 0 and 𝛿𝜓1(𝜉) = −i2𝜅3 𝛾

2
RT

𝛾2
RT

V ′
0

𝛾RT
𝜓RT(𝜉)∫

𝜉

0

d𝜉′

𝜓2
RT(𝜉) ∫

∞

𝜉′

𝜉′′𝜓2
RT(𝜉

′′)
cos h2(𝜉′′)

d𝜉′′, (4)

where 𝛿𝜓1 is the asymmetric function, and the second-order correction to eigenvalue is

𝛿𝜔2

𝛾RT
|𝜅→∞ ≈ − i

8

( V ′
0

𝛾RT

)2

𝜅2, and 𝛿𝜔2

𝛾RT
|𝜅→0 ≈ −i2

( V ′
0

𝛾RT

)2

𝜅. (5)

Therefore, we see that the impact of velocity shear on RT instability could be characterized by the effective Richardson
number, which we define as Ri = g|d ln(n0)∕dx|(V ′

0)
−2 = (𝛾RT∕V ′

0)
2.[10] It follows that the mode with small wavelength will
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F I G U R E 1 Growth rate of the most unstable Rayleigh–Taylor
mode versus 𝜅. V ′

0∕𝛾RT = 0 (dashed black) and its analytical solution
(red circle) from Equation (2), V ′

0∕𝛾RT = 0.2 (dotted blue) and
V ′

0∕𝛾RT = 0.4 (solid green)
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F I G U R E 2 An impact of velocity shear on the eddies of electrostatic potential contour corresponding to the eigenfunctions in Figure 1
for 𝜅 = 2. (a) V ′

0∕𝛾RT = 0 and (b) V ′
0∕𝛾RT = 0.4

first be stabilized by the velocity shear,[12] where the reduction of growth rate for large 𝜅 is mainly due to the correction
of 𝛿𝜓1. On the other hand, for small 𝜅, there is virtually no stabilization of RT instability. The same trend of an impact
of poloidal velocity shear on the growth rate of the resistive interchange modes[13] and ion temperature gradient (ITG)
modes[14] has also been found.

From Equation (4), we find that the velocity shear leads to a small correction in the eigenfunction. However, taking
into account that this correction is imaginary and asymmetric, it could cause a strong stretching of the eddies of equipo-
tential contour. Such stretching of eddies can be accounted for as follows: from Equation (4), we know 𝛿𝜓1(𝜉) is negative
(positive) for 𝜉 > 0 (𝜉 < 0) such that the real part of �̃� , �̃� r = 𝜓 r(𝜉)cos(kyy) − 𝜓 i(𝜉)sin(kyy), will be tilted towards positive
(x,y) given − 𝜓 i(𝜉)sin(kyy)> 0.

To check these analyses, numerical solutions of Equation (1) have been found, as shown in Figure 1, for different 𝜅
and V ′

0. Notice that both 𝛾 and V ′
0 are normalized by the parameter 𝛾RT such that 𝛾 tends to unity for the case without

velocity shear as shown in Equation (2). It demonstrates that, for large values of 𝜅, the fastest growing modes are stabilized,
whereas for small 𝜅, instability persists. We note that, in the simulations, the real part of 𝜔 for all cases is zero such that
the RT modes are purely growing even in the presence of velocity shear, which agrees with our analysis (𝛿𝜔r = 0 to the
second order of V ′

0). We also noted that the eigenfunctions for a marginally stable solution is similar to that in resistive
interchange mode, which is strongly squeezed.[15] The eddies corresponding to the eigenfunctions for 𝜅 = 2 are shown
in Figure 2, demonstrating that velocity shear causes strong tilting of eddies.

However, we should keep in mind that the slab model of the RT instability does not account for many important effects
in practical tokamak, including both poloidal and toroidal periodicities of tokamak geometry, centrifugal and Coriolis
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F I G U R E 3 The growth rate of dissipative DW instability versus V 0
′ for

𝜌sky = 0.3, w/𝜌s = 20, and 𝜈‖∕�̂�∗ = 10

forces, and electromagnetic and other effects. As a result, theoretical assessment of the role of plasma flows, both poloidal
and toroidal, on different instabilities becomes much more complex. Nonetheless, it appears that plasma flow shear is
very efficient in reducing the growth rate of RT/interchange mode with small wavelength.

3 VELOCITY SHEAR FOR RESISTIVE DW

In this section, we consider resistive DW occurring in a plasma with non-uniform density. If we ignore the electron
temperature perturbation, the dispersion equation for the perturbed electrostatic potential reads[16]

𝜌2
s

d2𝜙

dx2 −
[

1 + 𝜌2
s k2

y −
𝜔∗

�̃�
+ i �̃� − 𝜔∗

𝜈‖
]
𝜙 = 0, (6)

where 𝜔∗ = ky𝜌
2
sΩiΛn, Ωi = eB0/mic, 𝜌s = TeMc2∕e2B2

0, and 𝜈‖ = k2
z Te∕m𝜈ei with 𝜈ei being the electron–ion col-

lision frequency. Equation (6) is obtained from cold ion fluid equation subject to E×B and polarization
drifts, as well as quasi-neutrality condition, where the electrostatic potential perturbation, 𝜙, takes the form of
e𝜙/Te = 𝜙(x)exp(−i𝜔t + ikyy+ ikzz) for eigenmode solution. Here, we considered the case V ′

0 ≪Ωi and kz ≪ ky, the lat-
ter of which implies that the variation of the perturbations along the main equilibrium magnetic field has much larger
scale than that in the poloidal direction. In fact, an equation similar to Equation (6) can be obtained for DW with Landau
damping effect by assuming 𝜔≪ kzV Te.

Unlike RT instability, where the modes are purely growing, resistive DW instability has complex frequencies 𝜔 with
the imaginary part (the growth rate denoted by 𝛾) usually being much smaller than the real part. In the absence of velocity
shear and for a wave-like solution, we have 𝜔r = 𝜔∗∕(1 + 𝜌2

s k2
⊥
) and 𝛾 ≈ 𝜔2

∗𝜌
2
s k2

⊥
∕𝜈‖(1 + 𝜌2

s k2
⊥
)3, respectively, for constant

𝜔* and 𝜈‖ ≫𝜔*. Therefore, the mode with largest growth rate corresponds to 𝜌2
s k2

⊥
≈ 1∕2. As a result, the dependence of

growth rate, computed from the Schrödinger equation, on the mode number m is more complicated compared with RT
for the same Λn(x).

Recalling the profile of Λn(x), we have 𝜔∗ = �̂�∗ cos h−2(x∕w), where �̂�∗ = 𝜌skyCsn̂ characterizes the DW frequency.
Then, the considered problem is characterized by the dimensionless parameters of 𝜈‖∕�̂�∗,V ′

0∕�̂�∗,w∕𝜌s and 𝜌sky. In this
article, we solve Equation (6) numerically, where the largest growth rate versus V ′

0 for 𝜌sky = 0.3, w/𝜌s = 20, and 𝜈‖∕�̂�∗ = 10
has been illustrated in Figure 3. As can be seen, unlike the RT instability, there is quite a mild impact of V ′

0 on the growth
rate of dissipative DW instability even though V ′

0 ≫𝛾 . Considering that V 0(x) is invariant under x →−x, V ′
0 →−V ′

0, and
all other terms in Equation (6) are even in x, the velocity shear effects on 𝜔 are independent of the sign of V 0

′, and from
simulations, we find that the real (imaginary) part of 𝜔 quadratically increases (decreases) with V ′

0.
We note that, at a rather large velocity shear, localized solutions of Equation (6) are absent. This effect can be inter-

preted within eikonal approximation, where the wave packet could be considered an effective “particle”, the dynamic of
which is described by the “Hamiltonian” 𝜔(kx, x) = 𝜔∗(x)(1 + 𝜌2

s k2
y + 𝜌2

s k2
x)−1 + V ′

0kyx and canonical variables x and kx.[17]

To obtain a localized solution of the wave packet, the motion of the particle should be bounded by two turning points
corresponding to kx = 0, which indicates that 𝜕𝜔(kx = 0,x)/𝜕x should have at least one root. As a result, for our case
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F I G U R E 4 An impact of velocity shear on the eddies of electrostatic potential contour corresponding to the eigenfunctions in Figure 3
for V ′

0 = 0 (a) and V ′
0∕�̂�∗ = 0.08 (b)

𝜔∗ = �̂�∗ cos h−2(x∕w), it is easy to show that this is only possible for

|V ′
0| < |V ′

0|𝑙𝑜𝑐 = 4
33∕2

�̂�∗

wky(1 + 𝜌2
s k2

y)
. (7)

Beyond this limit, no localized solution exists, which is in good agreement with the result of numerical simulations
(e.g., see Figure 3). From this approach, we can also see that, if 𝜔* is constant, no localized solution is possible for
Equation (6).

The manifestation of the different impacts of velocity shear on resistive DW and RT could also be seen from corre-
sponding eigenfunctions, where the eddies related to resistive DW instability are shown in Figure 4. It can be seen that,
unlike RT instability, the eddies corresponding to resistive DW are not tilted by the velocity shear, although the centre of
eigenfunction has been shifted towards positive V 0(x). We note that the mode number for the most unstable mode has
been reduced due to the presence of velocity shear. However, such a number depends both on ky and w, where the most
unstable mode corresponds to small mode number for relatively large ky and small w.

The fact that the eddies of DW are not tilted by the velocity shear can be explained as follows: For the case of 𝜈‖ ≫ �̂�∗,
the last term in Equation (6) has little impact on the eigenfunction but simply drives the instability. As a result, if we
assume that the eigenfunction of Equation (6) without the driving term is real for V ′

0 = 0, then the imaginary part of the
eigenfunction is in the order of or even smaller than �̂�∗∕𝜈‖ and thus is negligible even for V ′

0 ≠ 0. As a result, the velocity
shear will not tilt the eddies of DW but simply change the structure of eigenfunctions (e.g., shift the eddies towards
positive V 0(x), and we note that the shift of eigenfunction in the radial direction due to the impact of velocity shear was
also observed when considering constant Λn but with magnetic shear[18]).

4 DISCUSSIONS AND CONCLUSIONS

This article focused on the impact of velocity shear on the localized solutions of resistive DW and RT instabilities, which
are related to plasma polarization caused, respectively, by electron dynamic along the magnetic field and cross-field mag-
netic drift of charged particles, by considering Λn to be Λn(x)∝ cosh−2(x/w). Such treatment of Λn introduces an effective
“potential well” and thus allows us to find the localized solutions. It demonstrates that the velocity shear has quite differ-
ent effects on these plasma instabilities. First, it causes the stabilization of a short wavelength mode of RT instability by
slightly changing the eigenfunctions, although the instability of the mode with long wavelength will still persist. How-
ever, it has a very mild impact on the growth rate of resistive DW. Second, the eddies of electrostatic equipotential contour
for RT are strongly tilted due to the impact of the velocity shear, but it is not the case for the DW, where the eddies are
simply shifted along the radial direction without tilting.

Here, we provide a possible explanation for the different impacts of velocity shear on these two plasma instabilities.
First, the RT instability is associated with the dynamics of density protrusions, and similarly, the interchange plasma
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instability is pertinent to the dynamics of plasma density perturbations with embedded electric charges originating from
almost “irreversible” cross-field magnetic drift effects. Spatial distribution of these charges produces E×B drifts, which
in turn drives the instability. Analogous processes are relevant to all plasma instabilities driven by magnetic drift effects
(e.g., toroidal ITG and ballooning modes). Therefore, advection of plasma density perturbations with embedded electric
charges by shear plasma flow inevitably alter such instabilities. The case of DW situation is very different. In this case, the
electric field and related E×B drifts are due to a largely “reversible” response of fast parallel electron dynamics on plasma
density perturbations. Even though advection of plasma density perturbations by velocity shear changed the “landscape”
of density perturbations, the distribution of electric charges virtually has no “memory”, and therefore, velocity shear has
very mild impact on the growth rate of DW instabilities.

We note that the choice of Λn ∝ cos h−2(x/w) is somewhat idealized. However, it largely demonstrates the features
of the effect of velocity shear on plasma wave instabilities when the gradient of plasma density has a finite radial scale
similar to that in the pedestal region. Therefore, we believe it can provide considerable physical insight on the influence
of velocity shear on different plasma instabilities.
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