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ABSTRACT

The effects of velocity shear on the unstable modes driven by the effective gravity (Rayleigh–Taylor and interchange) and resistive drift wave
instabilities for inhomogeneous equilibrium fluid/plasma density are analyzed for the localized eigenmode problems. It is shown that the
effect of the velocity shear drastically depends on the type of instability. Whereas the velocity shear can significantly suppress both
Rayleigh–Taylor and interchange instabilities, it has only a weak impact on the growth rate of the resistive drift wave. This is directly related
to the physical nature of these instabilities. For the Rayleigh–Taylor and interchange instabilities, the shear flow tilts the eddies of the stream
functions, while for the resistive drift wave instability the shear flow simply shifts the eddies in the radial direction with no tilting. However,
for a large velocity shear, the eigenmode solutions for resistive drift waves cease to exist.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5130409

There is long-lasting interest in the impact of the velocity shear
on fluid and plasma instabilities and turbulence (e.g., see Refs. 1–11).
In fusion research, this interest is stipulated by much experimental evi-
dence of the role of the strong shear of plasma flow in the transition of
plasma operation from a low confinement L-mode to a high confine-
ment H-mode.12–16 The underlying physics of these phenomena is
poorly understood and, therefore, further theoretical studies are neces-
sary, e.g., see Refs. 7–9.

It is often assumed (e.g., see Refs. 17–19) that the plasma instabil-
ities and fluctuation levels will be quenched if the shear of plasma flow
velocity, jV 00j [here, V 00 � dV0ðxÞ=dx with x being the radial coordi-
nate], exceeds the growth rate, cinst, in the absence of velocity shear.
This corresponds to the condition that the Richardson number,
Ri � ðcinst=V 00Þ

2, falls below unity, which is often used as an empirical
rule for estimates of the shear flow effects in various experimental con-
ditions. In this Letter, we show, however, that the situation is more
complex and, in general, the impact of velocity shear on fluid and
plasma instabilities cannot be described just by the Richardson num-
ber. One such example was given in Ref. 20. Here, we demonstrate
that the responses of the instabilities to the external shear flow depend
on the underlying mechanism of the instabilities. The Rayleigh–Taylor
(RT) type instabilities, such as the Rayleigh–Taylor (RT) instability in

neutral fluids and the interchange modes (IM) in confined plasmas,
are essentially two-dimensional aperiodic modes driven by the effec-
tive gravity. Therefore, the density perturbations in RT and charge sep-
aration in IM are directly affected by the external shear flow. In the
resistive drift waves (RDW), which are dissipative negative energy
modes, the electrostatic potential perturbations are largely maintained
by the electron dynamics along the magnetic fields. As a result, the lat-
ter modes are much less affected by the velocity shear.

One of the complications of the analysis of the velocity shear
effect on fluid/plasma instabilities is the non-Hermitian nature of cor-
responding differential equations. As a result, the standard approach,
where perturbed quantities, ~aðr; tÞ, are decomposed as ~aðr; tÞ
¼ âðxÞ expð�ixt þ ikyy þ ikzzÞ, does not give the full set of the solu-
tions of the linearized problem (e.g., see Refs. 21–23 and the references
therein). The other solutions belonging to the continuous spectrum
are possible, which may grow non-exponentially in time. As such, the
so-called non-modal solutions were investigated in a number of
papers1,4,21,24,25 for both Rayleigh–Taylor type and drift waves instabil-
ities assuming that the density gradients and flow shear, V 00, are con-
stants. Then, the initial value problem for ~aðr; tÞ was solved in terms
of the “shearing box” variables t; g ¼ y � V 00xt; x and z. In the linear
approximation, such solutions may demonstrate transient time
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power-law amplifications of initial perturbations of ~aðr; tÞ and may be
important in situations when the modal (exponentially growing) insta-
bilities are absent.

In what follows we will only look for the solution of the linearized
equations in the standard modal form. When exist, in the linear
regime the solutions with c ¼ ImðxÞ > 0 will dominate the transient
non-modal solutions and, therefore, can be considered as the most
important solutions. The roles of bothmodal and non-modal solutions
in the nonlinear regime have to be analyzed separately and are not
considered in our paper. Also, in order to avoid possible effects of the
Kelvin–Helmholtz instability, we take V0ðxÞ ¼ V 00x where V 00 is con-
stant. Moreover, we consider spatially localized perturbations in
plasma (or neutral fluid) characterized by the logarithmic gradient of
equilibrium fluid/plasma density, KnðxÞ ¼ �d ln n0=dx. We will use
the Boussinesq approximation and we adopt the following ansatz for
the equilibrium density profile

KnðxÞ ¼
1
2D

dn
�n

1

cosh2ðx=DÞ
� 1

Ln

1

cosh2ðx=DÞ
; (1)

which for dn < �n corresponds to n0ðxÞ ¼ �n � ðdn=2Þtanhðx=DÞ.
We start with the Rayleigh–Taylor type (RT and IM) instabilities,

where we will assume that the effective gravity acceleration g is in the
x-direction and take kz¼ 0. Then for perturbed stream function/elec-
trostatic potential, ~/ ¼ /ðxÞ expð�ixt þ ikyyÞ, we have the following
differential equation:

d2/
dx2
� k2y/� KnðxÞ

gk2y
~x2 þ r

kyV 00
~x

 !
/ ¼ 0; (2)

where ~x ¼ x� kyV 00x, and r¼ 0 for RT (e.g., see Ref. 20) while
r¼ 1 for IM.

In the absence of the velocity shear, Eq. (2) can be solved analyti-
cally by using similarity to the Schr€odinger equation26 for electron in
the potential well / �cosh�2ðx=DÞ, and we could find the growth
rate, c, vs the integer mode number,m. The fastest growing mode cor-
responds tom¼ 0, where the eigenvalue is given by

�x2 ¼ c20ðjÞ � �c2jjj=ð1þ jjjÞ; (3)

with j ¼ D� ky; �c2 ¼ g=Ln, and the corresponding eigenfunction is
/0 ¼ cos h�jjjðx=DÞ.

For a small velocity shear, Eq. (2) can be solved on the basis of
perturbation expansion by rewriting both deviations of frequency
dx ¼ x� ic0 and eigenfunction d/ ¼ /ðxÞ � /0ðxÞ in powers of
V 00, i.e., dx ¼

P
j dxjðV 00Þ

j and d/ ¼
P

j d/jðV 00Þ
j. With no restric-

tions we assume that /0ðxÞ is real and limit our analysis by the second
order of V 00. After some algebra, we obtain

dx1 ¼ �
rD
2Ln

V 00j
j2 þ jjj ;

dx2

c0

����
j!1

� � i
8
V 020
�c2

j2;

dx2

c0

����
j!0

� � i
8jjj

V 020
�c2

rD2

L2n
þ p2jjj2

 !
;

(4)

and the first order correction to the eigenfunction, d/1, is antisymmet-
ric and purely imaginary, which causes tilting of the eddies of

equipotential contour in that the real part of ~/; Reð~/Þ
¼ /0ðxÞ cosðkyyÞ � d/1ðxÞ sinðkyyÞ, will be tilted toward the positive
(negative) x, y-region for V 00 > 0 (V 00 < 0). Such a tilting effect
becomes more prominent for larger jjV 00j.

For large jjj, Eq. (4) indicates that both RT and IM will be
“suppressed” when jV 00j�2

ffiffiffi
2
p

�c=jjj. The reduction of the growth rate
is mainly due to the first term in the bracket of Eq. (2). However, the
velocity shear never eliminates the instability completely.5 Taking into
account that the width of the eigenfunction estimated from /0ðnÞ is
w=D � 1=

ffiffiffiffiffiffi
jjj

p
� 1; KnðxÞ can be taken as unity that the non-

modal approach24 can be applied, which shows that the instability will
be quenched when V 00 � �c=

ffiffiffi
2
p

. Therefore, for large jjj, the reduction
of the growth rate is more remarkable for the modal solutions than
that for the non-modal solutions. Note that the expansion method is
valid when jV 00kyjw=�c � jV 00j

ffiffiffiffiffiffi
jjj

p
=�c < 1 and dx1;2 < �c. Therefore,

for jjj 	 1, the corresponding Eq. (4) is valid in the regime
jV 00j <

ffiffiffi
8
p

�c=jjj < �c=
ffiffiffiffiffiffi
jjj

p
, where the growth rate can be largely

reduced by the velocity shear as shown in Eq. (4).
However, for jjj ! 0, Eq. (4) shows that the velocity shear has a

stronger impact on the growth rate of IM than on that of RT. We also
notice that the real frequency due to the velocity shear appears only in
IM but not in RT. As a matter of fact, the case j! 0 corresponds to
the eigenfunction extending along the x-coordinate on the distance
much larger than the width of KnðxÞ such that the density profile can
be considered as a step-function. For this case, by integrating Eq. (2),
we find

x
c0
¼ � rj

2jjj
V 00
c0

D
Ln

6i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

4
V 00
c0

D
Ln

� �2
s

: (5)

Equation (5) is valid for any V 00 providing j! 0 and consistent with
Eq. (4) for small V 00.

Numerical simulations of Eq. (2) are performed for RT/IM,
which agree with our analyses. Here, we only show the results of IM
for illustration and those of RT can be found in Ref. 20, where the
main difference is for jjj � 1 as shown in Eq. (4). Moreover, in the
simulations, we find that the choices of D=Ln, the form

5 of KnðxÞ (e.g.,
the hyperbolic profile of n0ðxÞ like in the pedestal region of tokamak27

and in the edge of linear device28) and Boussinesq approximation do
not affect the conclusions. Figure 1 depicts the growth rates of the
most unstable modes of IM vs jjj for D=Ln ¼ Dn=2�n ¼ 1=4. It con-
firms that at large jjj, the growth rate is significantly reduced in the
presence of the velocity shear, while for small jjj, the reduction of the
growth rate agrees with Eq. (5). The eddies of equipotential contour
Reð~/Þ for the cases without and with the velocity shear are plotted in
Fig. 2 and clearly demonstrate the tilting of the eddies due to the veloc-
ity shear. The real parts of x from simulations agree with Eq. (4), illus-
trating that the eddies begin to propagate along the y-direction due to
the impact of velocity shear.

Whereas the Rayleigh–Taylor type instabilities can be signifi-
cantly suppressed by the velocity shear satisfying jV 00j > cinst (Ri < 1),
it’s not the case for RDW, where the governing equation for /ðxÞ is

q2
s
d2/
dx2
� 1þ q2

s k
2
y �

x
ðxÞ
~x
þ i

~x � x
ðxÞ
�k

" #
/ ¼ 0: (6)

Here, qs ¼ cTe=eB0Xi; Xi ¼ eB0=mic; x
ðxÞ ¼ kyq2
sXiKnðxÞ, and

�k ¼ k2zTe=m�ei with �ei being electron-ion collision frequency. The
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last term drives the instability by introducing a phase shift between the
perturbations of electrostatic potential and density, where we have
used the adiabatic limit �k 	 x̂
 � kyq2

sXi=Ln to obtain Eq. (6) for
RDW [the hydrodynamic limit �k � x̂
 is not relevant to Eq. (6) and
thus is beyond the scope of this Letter].

The dependence of the growth rate on the mode number m is
complicated when solving Eq. (6) by using the similarity to the
Schr€odinger equation. However, the most unstable mode of interest can
bem¼ 0 mode (e.g., for qsky ¼ 0:5 and D=qs ¼ 30), which can largely
simplify the analysis. Therefore, in the following, we will focus on the
m¼ 0 mode to elucidate the effect of the velocity shear on RDW.

In the adiabatic limit, we can assume that the driving term has lit-
tle impact on the eigenfunctions but simply drives the instability,

which allows us first finding / from Eq. (6) without the driving term
and then computing the growth rate by multiplying Eq. (6) with the
complex conjugate of / and integrating it over x-space

c
ð

x

~x2
r

j/j2dx ¼
ð

x
 � ~xr

�k
j/j2dx; (7)

where c� ~xr ¼ xr � kyV0ðxÞ has been assumed with xr ¼ ReðxÞ.
Without the velocity shear, Eq. (6) is similar to Eq. (2) and we

obtain

x0
r ¼

x̂

ð1þ q2k2yÞð1þ ��1Þ

; /0ðxÞ ¼ cosh��ðx=DÞ; (8)

where � ¼ ð1þ q2
s k

2
yÞ

1=2Dq�1s 	 1. As a result, the growth rate can
be estimated from Eq. (7) as

c0 ¼
x̂2



�k

q2
s k

2
y þ ð2�Þ

�1

ð1þ q2
s k

2
yÞ

3 ; (9)

which is consistent with the result for constantx
 when q2
s k

2
y 	 ð2�Þ

�1

(keeping in mind that the effective qskx � 2pðqs=DÞ1=2 � 1 so it can
be ignored in the growth rate for constantx
).

From Eq. (8), we see that the eigenfunction has localization width
�

ffiffiffiffiffiffiffiffi
qsD

p
, within which cos hðx=DÞ � exp½ðx=DÞ2=2�. As a result, for

small V 00, we have

x

~xr
� x̂
 expðx20=D

2Þ
xr cosh

2 ðx � x0Þ=D½ �
; (10)

where x0 ¼ kyV 00D
2=2x0

r . Substituting it into Eq. (6), we find

xr � x0
r 1þ k2yV

02
0 D2=ð2x0

r Þ
2

h i
; / ¼ /0ðx � x0Þ; (11)

which shows that the velocity shear simply shifts the eigenfunction
toward positive V0, without changing its shape (to the order of
x̂
=�k). The growth rate can be estimated from the integral in Eq. (7)
as

c � c0 1� k2yV
02
0 D2=2ðx0

r Þ
2

h i
: (12)

Therefore, from Eqs. (11) and (12) we see that the growth rate (real
frequency) will quadratically decrease (increase) with V 00.

Equation (12) indicates that RDW will be stabilized when
jV 00j > jV 00jstab �

ffiffiffi
2
p

x0
r ðDkyÞ

�1. However, the localized solutions are
only possible for jV 00j below some threshold value jV 00jloc, which is
smaller than jV 00jstab. This effect can be interpreted by investigating the
property of the potential well UðxÞ ¼ �x
=~xr assuming that
kyV 00x � xr � x0

r . As a result, the threshold value of V
0
0 to have local-

ized solution approximately corresponds to the transition of U from a
potential well to that with only one barrier at V0ðxÞ < 0, provided that
the effective “energy” E ¼ �ð1þ q2

s k
2
yÞ is close to the bottom of the

potential well,�x̂
=x0
r , for zeroth mode. After some algebra, we obtain

jV 00jloc � 0:66x0
r ðDkyÞ

�1 < jV 00jstab (note that no localized solution is
possible beyond jV 00jloc but non-modal solutions exist25 if Kn can be
taken as a constant). It follows that c � c0ð1� 0:22V 020 =jV 00j

2
locÞ.

Therefore, the strongest impact of the velocity shear on the growth rate
for the localized solution is dc ¼ c0 � c � 0:22c0 � c0. Recalling the
expression of c0, we have c0 � jV 00jloc when �k 	 x̂
q2

sDk
3
y=

ð1þ q2
s k

2
yÞ

2, which suggests that RDW cannot be significantly
FIG. 2. Eddies of electrostatic potential contour for j¼ 5 and D=Ln ¼ 1=4. V 00
¼ 0 for the left panel and V 00 ¼ 0:2�c for the right panel.

FIG. 1. The growth rate of the most unstable interchange mode vs jjj for D=Ln
¼ Dn=2�n ¼ 1=4 (inset is zoom-in for small jjj). The curves of solid black, dashed
blue, and dash-dot red are for V 00=�c ¼ 0; 0:2, and 0.4.
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suppressed by the velocity shear even though jV 00j 	 cinst correspond-
ing to Ri � 1.

We note that at V 00 ¼ jV 00jloc; x0 � 0:33D and kyV 00x0 � 0:22x0
r

� x0
r . Therefore, the assumption of kyV 00x� xr used in the deriva-

tion of Eq. (10) and in the estimate of jV 00jloc is valid. As a result,
~xr � x0

r 	 c such that the omission of c in Eq. (7) is reasonable. We
also note that an impact of the magnetic shear and thus RDW cou-
pling to the ion sound waves has been ignored in Eq. (6). However,
the emission of sound waves leading to the dissipation occurs only at
the wings of the eigenfunction and thus becomes small when
DLn < Lsqs, where Ls is the magnetic shear length.

Equation (6) is solved numerically and we find that localized
solutions are only possible for jV 00j~<jV 00jloc. The growth rate and ratio
of V 00=c of the most unstable mode are depicted as functions of
V 00=jV 00jloc in Fig. 3 for �k ¼ 50x̂
 (the results are insensitive to
�k=x̂
 	 1). It confirms that the impact of the velocity shear on the
growth rate is small even though jV 00j 	 c, where the growth rate
agrees well with Eq. (12) for all V 00 < jV 00jloc. We can also see that the
growth rate as a function of V 00=jV 00jloc is strongly affected by ky but
not by D as predicted by Eqs. (9) and (12). The eddies shown in Fig. 4,
in agreement with our analytical results, are not tilted in the presence
of the velocity shear but simply shifted in the radial direction.

In conclusion, we investigated the influence of velocity shear on
the localized RT/IM and RDW with inhomogeneous equilibrium
fluid/plasma density. The effective “potential well” induced by the
inhomogeneous density allows us to find solutions in the localized
domain. We find that the velocity shear with jV 00j > cinst has different
effects on these instabilities: it can significantly suppress RT/IM but
can only slightly reduce the growth rate of RDW. In addition, the
velocity shear causes strong tilting of the eddies of the equipotential
contour of RT/IM (see Fig. 2) but only shifts the eddies of RDW in the

radial direction without tilting (see Fig. 4). However, for a large veloc-
ity shear, the eigenmode solutions for RDW cease to exist.

These differences are due to the different physics of these
instabilities. The RT instability is in regard to the dynamics of den-
sity variation and thus could be directly altered by the sheared flow.
Similarly, IM modes are governed by the dynamics of plasma den-
sity perturbations with charge separation originated from the
almost “irreversible” cross field drift due to the gravity. Therefore,
shear flow induced advection of density with embedded charges
inevitably alters such instabilities. Whereas for RDW, the electric
field largely results from the fast parallel electron dynamics in
response to the plasma density perturbations in the adiabatic limit.
Therefore, the distribution of electric charges virtually has no
“memory” and, therefore, the velocity shear has a very small effect
on the RDW instability.

The authors gratefully acknowledge fruitful discussions with P.
H. Diamond. This work was supported by the U.S. Department of
Energy, Office of Science, Office of Fusion Energy Sciences under
Award No. DE-FG02-04ER54739 at UCSD.
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