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The fluid theory of a new type of electron temperature gradient instability is proposed. This mode

is closely related to the short wavelength Alfv�en mode in the regime k2
?q

2
i > 1. Contrary to

standard electron temperature gradient modes, which are mostly electrostatic, the considered mode

is fundamentally electromagnetic and does not exist in the electrostatic limit. The mechanism of

instability relies on gradients in both the electron temperature and magnetic field. It is suggested

that this instability may be a destabilizing mechanism for collisionless microtearing modes, which

are observed in a number of gyrokinetic simulations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975189]

In magnetically confined plasmas, turbulence results in

the so-called “anomalous” transport of particles and energy.

Despite decades of work, various manifestations of anomalous

transport are still not fully understood, particularly those

which arise in tokamak physics.1,2 Significant progress has

been made in the understanding of anomalous particle and ion

(energy) transport, which is driven largely by ion temperature

gradient (ITG) modes.3 Unfortunately, understanding the

sources of anomalous electron (energy) transport has proved

to be a more difficult problem.2,4 Short wavelength electron

temperature gradient (ETG) modes and trapped electron

modes (TEMs) are being considered as possible sources of

turbulence in some experiments.2,4–8 Still, a number of obser-

vations, such as the dependence of electron energy transport

on the plasma pressure parameter b, point to other transport

mechanisms; particularly, those caused by the magnetic flutter

associated with electromagnetic (EM) fluctuations.2,9 ETG

and TEM modes are mostly electrostatic and may in fact be

stabilized by electromagnetic effects at higher b.8

Microtearing modes10–13 are inherently electromagnetic

and are thus natural candidates for electromagnetic electron

transport. For high poloidal mode numbers, m> 1, when the lin-

ear tearing-mode stability parameter, D0 ¼ �2m=r, is negative,

mirotearing modes can be driven linearly unstable by thermal

force effects. These microtearing modes are, however, funda-

mentally related to collisions, which could make them less rele-

vant for modern tokamaks, where collisions are weak.

Electromagnetic fluctuations could also result from the

nonlinear instability of small scale (high m) magnetic

islands, which can be excited by diamagnetic and nonlinear

diffusion effects.14–18 These small-scale magnetic islands

can be nonlinearly sustained, resulting in island overlap and

magnetic stochasticity. In magnetically stochastic regions,

the radial diffusion of magnetic field lines can result in

significant electron energy transport. A number of electron

transport models have been proposed based on this mecha-

nism.19,20 Magnetic fluctuations, and the subsequent mag-

netic stochasticity, could also be caused by nonlinear

excitation of subdominant (linearly damped) microtearing

modes, where electrostatic modes, such as the ITG mode,

provide the main source of instability.9,21,22

Recent, high performance, gyrokinetic simulations have

renewed interest in microtearing turbulence as a potential

source of anomalous electron transport. In particular, these

simulations show that magnetic fluctuations possessing

tearing-mode parity provide a level of anomalous electron

energy transport which is consistent with the experimental

data, particularly for spherical tokamaks with large magnetic

gradients.23–26 Experimental measurements with HIBP diag-

nostics in the JIPPT-IIU tokamak also detect magnetic fluc-

tuations with the general characteristics of microtearing

dispersion.27

Classical microtearing modes,10–13 destabilized by ther-

mal forces, require finite electron temperature gradients and

collisions. Still, a large body of gyrokinetic simulations indi-

cates the presence of an additional, collisionless, destabiliza-

tion mechanism, likely related to magnetic gradients.25,28,29

In this paper, we present the local formulation of an instabil-

ity related to the so-called short wavelength Alfv�en mode.

This mode is fundamentally electromagnetic and represents

the extension of the Alfv�en mode in the k?qi� 1 regime.

Density gradients provide the drift corrections to the mode

dispersion, which are important for small-scale drift mag-

netic islands.16,17,30–33 We show that this mode can be desta-

bilized by gradients in the magnetic field and electron

temperature, and thus, we call it the electromagnetic electron

temperature gradient (EM-ETG) mode. Although these

destabilization mechanisms are similar to the standard toroi-

dal ETG mode, the underlying nature of the short wave-

length Alfv�en mode is very different, as it is strongly

electromagnetic and fundamentally depends on perturbations

in the magnetic field.
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The dispersion equation for Alfv�en waves, including the

effect of finite ion Larmor radius, can be obtained from

kinetic theory in the form34

x2 ¼ z sþ 1

1� I0 zð Þe�z

� �
v2

Ak2
jj; (1)

where z ¼ k2
?q

2
i ¼ k2

?Ti=ðmix2
ciÞ, and s¼Te/Ti. For small

(z< 1) and large (z> 1) ion Larmor radius, (1) reduces to

x2 ¼ 1þ z
3

4
þ s

� �� �
v2

Ak2
jj z < 1; (2)

x2 ¼ zð1þ sÞv2
Ak2
jj z > 1: (3)

The EM-ETG mode is the generalization of (3) for inho-

mogeneous plasma with density, temperature, and magnetic

field gradients. In this work, we develop an appropriate nonlin-

ear model of this mode using the framework of fluid theory.

In the short wavelength limit (k?qi> 1), ions are umag-

netized and follow the Boltzmann response

~ni ¼ �
e/
Ti

n0: (4)

In the considered regime, the electrons remain strongly mag-

netized and are described by standard fluid equations. The

electron continuity equation takes the form

@ne

@t
þr? � nev?ð Þ þ rk nevkeð Þ ¼ 0: (5)

We assume quasineutrality in what follows, and thus we

have ne ¼ ni ¼ n0 þ ~ni ¼ n. The perpendicular velocity is

found from the electron momentum balance equation, where

the pressure gradient and gyroviscosity35 terms are included

to account for the diamagnetic drift and finite Larmor radius

effects, respectively,

men
dv

dt
¼ �en Eþ ve � Bð Þ � rp�r �P: (6)

Considering the low frequency regime x� xce, this yields

ve? ¼ vEþ vPeþ vIeþ vpe

¼ c
b̂�rw

B
� c

b̂�rpe

enB
� c

xce
b̂� d

dt
v

0ð Þ
e? � c

b̂�r �P
enB

;

(7)

where v
ð0Þ
e? ¼ vE þ vPe; d=dt ¼ @=@tþ ðvð0Þe? � rÞ, and ve? is

composed of the E�B and diamagnetic drifts at lowest

order, along with the inertial and gyroviscous drifts at higher

order. The destabilizing effect is provided through the com-

pressibility of the E�B and diamagnetic drifts in the conti-

nuity equation (5)

n r � vEð Þ ¼ �2nvE � rlnB ¼ � n

s
vDe � r

e/
Ti

� �
; (8)

r � nvPeð Þ ¼ �2nvPe � rlnB ¼ n0vDe � r
pe

pe0

� �
; (9)

where

vDe ¼ �
2cTe

eB
b̂ �rlnB: (10)

The contribution of the inertial and gyroviscous drifts into

the continuity equation are simplified by taking into account

the gyroviscous cancellation,35,36 which allows us to use

vIe þ vpe ¼ �
1

xce
b̂ � d0

dt
v

0ð Þ
e? ; (11)

where d0=dt ¼ @=@tþ vE � r. For these higher order terms,

gradients and curvature of the magnetic field are neglected in

the simplification of the continuity equation, and we find

r � ne vIe þ vpeð Þ½ � ¼ n0q
2
e r? �

d0

dt
r?

1

s
e/
Ti
� pe

pe0

� �
: (12)

The parallel velocity term in the continuity equation (5)

is simplified using Ampère’s law

Jk ¼ �enevek ¼
c

4p
r� B ¼ c

4p
r2
?w; (13)

where w is the z-component of the magnetic vector potential

for the perturbed magnetic field, ~B ¼ ẑ �rw. The expres-

sion for the total magnetic field is

B ¼ B0ẑ þ ẑ �rw;

and the parallel gradient operator along the total field is

rk ¼
B � r

B
¼ @

@z
þ 1

B0

ẑ � rw�r: (14)

Using the total electron density from (4) in Equation (8),

then linearly expanding the pressure pe¼ nTe in (12), results

in the following simplifications:

�n

s
vDe � r

e/
Ti

� �
¼�n0

s
vDe � r

e/
Ti

� �
� 1

2

e/
Ti

� �2
" #

; (15)

n0q
2
e r? �

d0

dt
r?

1

s
e/
Ti
� pe

pe0

� �

� n0q
2
e

d0

dt
r2
?

1

s
þ 1

� �
e/
Ti
�

~Te

Te0

" #
: (16)

In Eq. (15), we have retained the scalar nonlinear term due

to the density perturbation. Inserting these simplifications,

along with (9) and (13), into Eq. (5) then yields the final

form of the nonlinear continuity equation

@

@t

e/
Ti

� �
� v	e

s
@

@y

e/
Ti

� �
þ vDe

� r 1

s
e/
Ti

� �
� 1

2s
e/
Ti

� �2

� pe

pe0

" #

�q2
e

d0

dt
r2
?

1

s
þ 1

� �
e/
Ti
�

~Te

Te0

 !

þ ck2
De

s
rkr2

?
ew
Ti
¼ 0; (17)
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where

v	e ¼ �
cTe

eB

@lnn0

@x
: (18)

The remaining nonlinear equations are found by consid-

ering the parallel electron dynamics. We consider the limit

x� kjjvTe, where kinetic theory gives the relation

rkTe ¼ 0: (19)

Note that (19) constrains the electron temperature to be con-

stant along the perturbed magnetic field lines. In the linear

limit, this condition becomes

ikjj ~Te �
1

B0

@w
@y

@Te0

@x
¼ 0: (20)

The parallel momentum equation under condition (19) takes

the form

0 ¼ �eneEk � Terkne; (21)

which, for Ek ¼ �r/þ c�1@w=@t, yields the evolution

equation for w

@w
@t
¼ crk/�

cTe

ene
rkne: (22)

Note that the rkne operator involves the gradient of both the

perturbed and equilibrium density, the latter of which is

associated with perturbations in the magnetic field.

In the linear limit, and using the local approximation for

the low field side of the tokamak such that vDe ¼ vDeŷ, from

Equations (17), (19), and (22), we arrive at the following dis-

persion relation:

x� x	eð Þ
1þ s

xsþ x	eð Þ ¼ c2k2
jj k

2
?k

2
De

þ xDe x� x	e 1þ geð Þ½ �
�k2
?q

2
e x� x	e 1þ geð Þ½ �; (23)

where k2
De ¼ Te=ð4pe2n0Þ; q2

e ¼ Te=ðmex2
ceÞ; ge ¼ @lnTe=

@lnn0; x	e ¼ v	eky, and xDe ¼ vDeky. Plots of this disper-

sion relation are shown in Fig. 1. In neglect of the dispersive

terms, Eq. (23) is similar to the dispersion equation obtained

in Ref. 6 from kinetic theory. Further neglecting temperature

and magnetic field gradients, and noting that c2k2
De ¼ sv2

Aq2
i ,

it is easy to see that (23) reduces to (3). The first term on the

right of (23) thus originates from the Alfv�en wave compo-

nent, and is related to the bending of magnetic field lines.

This term is stabilizing, whereas the component xDex	eð1 þ
geÞ of the second term, originating from gradients in the

magnetic field and temperature, is destabilizing for suffi-

ciently large ge. An approximate condition for the instability

can be written as

sv2
A q2

i k2
jj k

2
? < xDex	ege: (24)

Note that the condition x < kjjvTe has to be satisfied for

our approximation to remain valid. In terms of plasma

parameters, the instability condition (24) can be written as

be > k2
?x2 LTS2

Rq2
; (25)

or, with k? ’ kx 
 ky and kxx ’ 1

be >
LT

R

S2

q2
; (26)

where x is the distance from the magnetic surface, S is the

shear parameter, and where we have used the shear length,

Ls ¼ qR=S; kjj ¼ kyx=Ls, and

xDe ¼
2kycTe

eBR
: (27)

Condition (26) is consistent with conclusions from gyroki-

netic simulations that the electromagnetic transport increases

with plasma pressure, and is more pronounced for spherical

tokamaks (smaller R). When the destabilizing term is large,

FIG. 1. Real frequency and growth rate of the EM-ETG mode; (left) normalized to the diamagnetic drift frequency, (right) in absolute value; for

1/x¼ kx¼ 10ky, S¼ 0.5, and ge¼ 3.
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we can use the estimate x2 � xDex	e, which makes the con-

dition x < kjjvTe become

kyxð Þ2 > k2
yq

2
e

q2R

S2LT
: (28)

It is worth discussing the relation of the EM-ETG mode to

the standard ETG mode such as in Ref. 8. The fundamental

difference is the condition x� kjjvTe, which is employed in

our work, versus the condition x
 kjjvTe which is used for

the standard ETG mode. For the standard case, x
 kjjvTe,

the parallel electron motion can be neglected, and the basic

equations for the electron density and pressure become

@ne

@t
þ vE � rn0 þ n0 r � vEð Þ þ r? � nevpeð Þ ¼ 0; (29)

3

2

@pe

@t
þ vE � rp0e

� �
þ 5

2
p0e r � vEð Þ

þ 5

2
vDe � rpe þ

5

2
nvDe � rTe ¼ 0: (30)

Equations (29), (30), and the ion density equation (4) form

the basic standard ETG model.8 In this limit, the parallel

electron current in the continuity equation and the heat flux

in the energy equation are small and neglected. These terms

are responsible for the electromagnetic corrections.

Conversely, in the limit of x� kjjvTe, the parallel electron

streaming is dominant so that the electron temperature and

density are determined by Equations (19) and (21), respec-

tively. In this case, the electron continuity equation (17)

must be viewed as an equation for the parallel current, where

the density is found from (21). It is easy to see that the

eigen-mode described by equations for (17), (19) and (21) is

fundamentally dependent on the perturbed magnetic field. If

the perturbed magnetic potential is neglected in Equation

(22), the simple Boltzmann distribution for the electron den-

sity follows and no eigen-mode occurs from (22) and (4).

In this paper, a fluid theory for the EM-ETG instability in

toroidal plasmas has been proposed. The closely related short

wavelength (drift) Alfv�en modes with k2
?q

2
i > 1 have long

been considered as a source of electromagnetic fluctuations in

magnetized plasmas. Nonlinear structures related to these

modes, such as vortices and magnetic islands, have been stud-

ied in a number of papers.17,37–39 Stochastization of the mag-

netic field related to such structures was a main element of the

electron energy transport models in Refs. 19, 20, 31, and 32.

Furthermore, this instability may provide a dynamical route to

the nonlinear regimes considered in Refs. 19, 20, 31, and 32.

We hypothesize that the destabilization mechanism, resulting

from electron temperature and magnetic field gradients, is

similar to the destabilization caused by magnetic drift effects

detected in gyrokinetic simulations.23–25 Note that in the tran-

sition regimes k2
?q

2
i � 1, the ion diamagnetic drifts may pro-

vide additional destabilization40–42 to the short wavelength

electromagnetic modes.

In order to investigate the EM-ETG mode’s relevance to

the excitation of small scale (high m) tearing modes, and to

the accompanying formation of magnetic islands, two addi-

tional aspects must be incorporated into the model. First, the

excitation of tearing modes and the subsequent change in

magnetic field topology via reconnection requires an addi-

tional effect, such as dissipation and/or electron inertia.

Neither of these were included in the current model. One can

expect that collisionless dissipation due to wave-particle

interaction (Landau damping) may be more relevant than

collisions, which are weak for modern tokamaks. Landau

damping can be incorporated into our model via linear

kinetic closures, such as those given in Refs. 43 and 44. A

similar model has actually been used by Kadomtsev,45,46

which is also based on short wavelength Alfv�en modes, and

includes collisionless dissipation in the form of a kinetic clo-

sure for electrical conductivity. The dissipation allows for

plasma slipping (“unfreezing”) through the magnetic flux

surfaces, while the underlying dynamics of the short wave-

length Alfv�en wave determine the temporal and spatial

scales of the structures. Although the linear stability of the

model detailed in Refs. 45 and 46 was not investigated, their

finding that magnetic field lines pierce surfaces which are

constrained to move with the plasma is suggestive of a

change in magnetic topology, which is fundamental to the

formation of magnetic islands.

Determining if the proposed EM-ETG mode (with the

inclusion of dissipative/electron inertia effects) can lead to

the formation of magnetic islands will also require the model

to be developed in a non-local form. This will involve the

explicit inclusion of magnetic shear effects, kjj ¼ kjjðxÞ,
which is the inherent spatial dependence required to create

the structure of magnetic islands. The electron inertia may

be important on its own and need to be included in the “inner

sub-layer,” where x > kjjðxiÞvTe. The analysis with all these

additional elements is left for future publication.

Other fluid theories of microtearing modes have been

proposed in Refs. 47 and 48. Similar to our work, the fluid

models in these papers included some terms due to the mag-

netic gradient drifts, but also electron inertia and equilibrium

electron current. The destabilization in Ref. 47 was due to

the collisions, similar to the standard theory of microtearing

modes.10,11
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